JPS5822068Y2 - refrigerator - Google Patents
refrigeratorInfo
- Publication number
- JPS5822068Y2 JPS5822068Y2 JP17041378U JP17041378U JPS5822068Y2 JP S5822068 Y2 JPS5822068 Y2 JP S5822068Y2 JP 17041378 U JP17041378 U JP 17041378U JP 17041378 U JP17041378 U JP 17041378U JP S5822068 Y2 JPS5822068 Y2 JP S5822068Y2
- Authority
- JP
- Japan
- Prior art keywords
- cooler
- defrosting
- refrigerator
- heater
- freezer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Removal Of Water From Condensation And Defrosting (AREA)
Description
【考案の詳細な説明】
本考案は冷凍室壁面を冷却器で構成する直冷式冷蔵庫に
係り、特に冷凍室内への着霜が主として特定の冷却作用
面になされるようにした冷蔵庫に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a direct-cooled refrigerator in which the wall surface of the freezer compartment is constituted by a cooler, and more particularly to a refrigerator in which frost is formed in the freezer compartment primarily on a specific cooling surface.
従来、冷凍室壁面を冷却器で構成した直冷式冷蔵庫にお
いて、扉を開放すると冷凍室内に多湿外気が侵入するこ
とで冷凍室内面、即ち冷却器の内面全体に着霜が生ずる
ことは良く知られている。It is well known that in conventional direct-cooled refrigerators in which the wall of the freezer compartment is made up of a cooler, when the door is opened, humid outside air enters the freezer compartment, causing frost to form on the inside of the freezer compartment, that is, on the entire inner surface of the cooler. It is being
このため、冷却器に除霜ヒータを添設してその除霜をさ
せるようにしているが、除霜時には熱あるいは除霜水に
よる食品の変質等の悪影響を防ぐため冷凍室内から食品
を取り除く必要がある。For this reason, a defrost heater is attached to the cooler to defrost it, but when defrosting, it is necessary to remove the food from the freezer compartment to prevent adverse effects such as deterioration of the food due to heat or defrost water. There is.
従ってタイマ力式等の採用で定期的な自動除霜を行なう
ことも困難であった。Therefore, it has been difficult to perform periodic automatic defrosting using a timer system or the like.
本考案は上記の欠点を除去すべくなされたものであり、
その目的は庫内の貯蔵物が接する可能性の低い特定の冷
却器面に着霜を集中させ且つその除霜水が特定方向に自
然流下される構成とすることにより、除霜運転を貯蔵物
収納状態で実行してもその除霜熱及び除霜水による貯蔵
物の変質をまねくおそれがなく、従って貯蔵物収納の有
無を問わずに、除霜運転を可能にする冷蔵庫を提供する
事にある。The present invention was made to eliminate the above drawbacks,
The purpose of this is to concentrate frost on a specific cooler surface that is unlikely to come into contact with stored items in the refrigerator, and to configure the system so that the defrosting water flows down naturally in a specific direction. To provide a refrigerator that is free from the risk of deterioration of stored items due to defrosting heat and defrosting water even when executed in a stored state, and therefore enables defrosting operation regardless of whether stored items are stored. be.
以下本考案を一実施例によって具体的に詳述する。Hereinafter, the present invention will be specifically explained in detail by way of an example.
実施例を説明するための第1図乃至第6図において、第
1図にはこの考案を適用した冷蔵庫の基本構成が示され
ている。1 to 6 for explaining the embodiment, FIG. 1 shows the basic configuration of a refrigerator to which this invention is applied.
この第1図において、1は外箱2とこれに収納されたフ
リーザ3及び内箱4との各間に断熱層5を形成もて成る
断熱箱で、フリーザ゛3内は冷凍室6とされ、内箱4内
はエバポレータ(冷蔵室用冷却器)7により冷却される
冷蔵室8とされている。In FIG. 1, reference numeral 1 denotes a heat insulating box having a heat insulating layer 5 formed between an outer box 2 and a freezer 3 and an inner box 4 housed therein, and the inside of the freezer 3 is a freezing chamber 6. The inside of the inner box 4 is a refrigerator compartment 8 that is cooled by an evaporator (cooler for the refrigerator compartment) 7.
9はコンプレッサ、10はコンデンサ、11及び12は
夫々冷凍室6及び冷蔵室8の開閉扉である。9 is a compressor, 10 is a condenser, and 11 and 12 are doors for opening and closing the freezer compartment 6 and the refrigerator compartment 8, respectively.
また、13は冷凍室6及び冷蔵室8間を隔絶した仕切用
断熱壁14に貫通された排水管、15は排水管13を介
して流下する水を受けこれを庫外に案内する水受樋であ
る。In addition, 13 is a drain pipe that penetrates the partition insulation wall 14 that isolates the freezer compartment 6 and the refrigerator compartment 8, and 15 is a water receiving gutter that receives water flowing down through the drain pipe 13 and guides it to the outside of the refrigerator. It is.
前記フリーザ3は第2図にも示す如く、冷凍室6の左右
側壁を形成するためのプラスチック製の側板16,17
と、冷凍室6の下部壁を形成する第一の冷却器18と、
同じく上部壁及び背面壁を形成する第二の冷却器19と
から成り、両冷却器1B、19は側版16,17の各上
下辺内側に形成しである保持溝20a、20aと20b
、20bとに、夫々各冷却器18及び19の左右端縁を
挿入して係合保持させることにより第3図にも示す如く
全体として箱状に形成される。As shown in FIG. 2, the freezer 3 has plastic side plates 16 and 17 forming the left and right side walls of the freezing chamber 6.
and a first cooler 18 forming the lower wall of the freezer compartment 6;
The second cooler 19 also forms the upper wall and the rear wall, and both the coolers 1B and 19 have retaining grooves 20a, 20a and 20b formed inside the upper and lower sides of the side plates 16 and 17, respectively.
, 20b, the left and right edges of each cooler 18 and 19 are inserted into and held in engagement with the coolers 18 and 20b, thereby forming a box-like shape as a whole, as shown in FIG.
そして、各側板16,17の内側面中の第二の冷却器の
天井面部との保合部の下方部には後方に下降傾斜する水
受案内部21a、21bを内方に突出させ、且つ第二の
冷却器19においては、前端縁がプラスチック製の熱的
絶縁枠22を介して断熱箱1の前面開口縁上部23に連
結され、該前端縁を除く天井面部19aが後方に傾斜さ
れており、その傾斜角θは略10度である。Water receiving guide portions 21a and 21b, which are inclined downwardly to the rear, are protruded inward from the lower portions of the inner surfaces of the side plates 16 and 17 that are connected to the ceiling surface portion of the second cooler. In the second cooler 19, the front edge is connected to the upper part 23 of the front opening edge of the heat insulating box 1 via a thermally insulating frame 22 made of plastic, and the ceiling surface portion 19a excluding the front edge is tilted rearward. The inclination angle θ is approximately 10 degrees.
そして第二の冷却器19にはさらに、天井面部19aの
後方端から垂下状に折曲された背面部19bを有し、そ
の下端縁には正面より見て左右に略■字状に延びる水受
段部24.25を前カヘ突出するよう折曲手段により形
成し、且つ雨水受段部24,25の最下位部分を互に対
向するようにして垂下状に折曲せしめその対向間に逆V
字状に連続する空間を形成するよう水切用切欠部26を
背面部19bに形成している。The second cooler 19 further has a back surface portion 19b that is bent in a hanging shape from the rear end of the ceiling surface portion 19a, and the lower edge of the back surface portion 19b is provided with water that extends in a substantially square shape from side to side when viewed from the front. The rainwater receiving stages 24 and 25 are formed by a bending means so as to protrude toward the front part, and the lowest parts of the rainwater receiving stages 24 and 25 are bent in a hanging shape so as to face each other. V
A drain cutout 26 is formed on the back surface 19b to form a continuous space in the shape of a letter.
−力、第一の冷却器18の後端には上端縁が前記水受段
部24.25の折曲面に当接する形状の背面部27を折
曲によって立上り状に形成し、その背面部27の中間部
分には水受段部24゜25の互に対向した垂下端が挿入
される排水口28を切欠により形成している。- At the rear end of the first cooler 18, a rear surface portion 27 is formed by bending so that the upper edge thereof contacts the bent surface of the water receiving step portion 24.25. A drain port 28 is formed by a cutout in the middle portion of the drain hole 28, into which the mutually opposing hanging ends of the water receiving step portions 24 and 25 are inserted.
29は第二の冷却器19o)天井面部19aに配設する
ロールポンド力式或いはパイプオンシート方式等により
冷媒流路を形成した蒸発管路、30は同じく第一の冷却
器18に設けた蒸発管路で、これらは倒れも通過する液
冷媒を蒸発させて冷却作用を生じさせるためのもので、
第二の冷却器19の設定温度を第一の冷却器18のそれ
よりも5℃以上低い状態にすべく、蒸発管路29の総容
積を蒸発管路30のそれよりも大きく設定している。29 is a second cooler 19o) An evaporation pipe in which a refrigerant flow path is formed by a roll-pond force type or a pipe-on-sheet type arranged on the ceiling surface part 19a, and 30 is an evaporation pipe provided in the first cooler 18. These pipes are used to evaporate the liquid refrigerant passing through the pipes and produce a cooling effect.
In order to keep the set temperature of the second cooler 19 at least 5° C. lower than that of the first cooler 18, the total volume of the evaporation pipe line 29 is set larger than that of the evaporation pipe line 30. .
このとき、特に第一の冷却器18の蒸発管路30は製氷
皿を載置する部分で他の部分より密な添設分布となるよ
うにしている。At this time, in particular, the evaporation pipe line 30 of the first cooler 18 is arranged to have a denser distribution in the part where the ice tray is placed than in other parts.
この実施例においては冷凍室内容積60gのもので第二
の冷却器19の蒸発管路29の経内容積を300の、第
一の冷却器18における蒸発管路30の経内容積を1o
occに定めている。In this embodiment, the internal volume of the freezer compartment is 60 g, the internal volume of the evaporation pipe 29 of the second cooler 19 is 300, and the internal volume of the evaporation pipe 30 of the first cooler 18 is 10.
occ.
31は第一の除霜ヒータで、第二の冷却器19中の天井
面t19aの前部及び左右部にわたるよう添設される。Reference numeral 31 denotes a first defrosting heater, which is attached to the second cooler 19 so as to span the front and left and right sides of the ceiling surface t19a.
32は第二の除霜ヒータで、第二の冷却器19の背面部
19bに略均−に分布するよう添設され、また第三の除
霜ヒータ33は天井面部19aの前方付近中央に添設さ
れる。A second defrost heater 32 is attached to the back surface 19b of the second cooler 19 so as to be distributed approximately evenly, and a third defrost heater 33 is attached to the center near the front of the ceiling surface section 19a. will be established.
この実施例では第一の除霜ヒータ31と第三の除霜ヒー
タ33との合計出力と第二の除霜ヒータ32の出力との
比が略3対7の比率となるよう、第一の除霜ヒータ31
の出力は25Wに、第三の除霜ヒータ33の出力は5W
に、また第二の除霜ヒータ32の出力は70〜80Wに
夫々定められている。In this embodiment, the first defrost heater 31 and the third defrost heater 33 are arranged such that the ratio of the total output of the first defrost heater 31 and the third defrost heater 33 to the output of the second defrost heater 32 is approximately 3:7. Defrost heater 31
The output of the third defrosting heater 33 is 25W, and the output of the third defrosting heater 33 is 5W.
Furthermore, the output of the second defrosting heater 32 is set to 70 to 80 W, respectively.
本考案の具体化にとって必要なその他の構成部品は第5
図の冷凍サイクル系統図中に、及び第6図の制御回路図
中に夫々示されているが、これらの具体的配置関係は以
下の説明で容易に理解できるので第1図乃至第3図への
図示は省略した。Other components necessary for realizing the present invention are listed in the fifth section.
Although they are shown in the refrigeration cycle system diagram in the figure and the control circuit diagram in Figure 6, the specific arrangement relationship between them can be easily understood with the following explanation, so please refer to Figures 1 to 3. The illustration of is omitted.
第5図に示す冷凍サイクルにおいて、コンプレッサ9の
出口9aはコンデ゛ンサ10、主キャピラリチューブ3
4、冷媒流路制御手段となす電磁弁35、冷蔵室8内の
エバポレータ7、連結管36、第一の冷却器18、連通
管37及び第二の冷却器19を上記順に介してコンプレ
ッサ9の入口9bに接続され、更に主キャピラリチュー
ブ34の出口と第二の冷却器19の入口との間に補助キ
ャピラリチューブ34aが接続される。In the refrigeration cycle shown in FIG.
4. The compressor 9 is supplied to the compressor 9 through the solenoid valve 35 serving as a refrigerant flow path control means, the evaporator 7 in the refrigerator compartment 8, the connecting pipe 36, the first cooler 18, the communicating pipe 37, and the second cooler 19 in the above order. An auxiliary capillary tube 34 a is connected to the inlet 9 b and further connected between the outlet of the main capillary tube 34 and the inlet of the second cooler 19 .
この冷凍サイクルを制御する制御回路は第6図に示され
ている。A control circuit for controlling this refrigeration cycle is shown in FIG.
この第6図において、38は両端に母線39.40を接
続した交流電源で、−力の母線39は冷凍室6内の温度
を検知しそれが設定温度以下に達したときにオフする冷
凍室温検知スイッチ41、導線42、リレー43の常閉
側接点44、コンプレッサ9を駆動するコンプレッサー
モータ45、導線46及び過負荷電流に応答してオフす
る過電流保護スイッチ47を介して他力の母線40に接
続する。In this Fig. 6, 38 is an AC power supply with busbars 39 and 40 connected to both ends, and the -power busbar 39 detects the temperature inside the freezer compartment 6 and turns off when the temperature reaches the set temperature or lower. The other power bus 40 is connected via the detection switch 41, the conductor 42, the normally closed contact 44 of the relay 43, the compressor motor 45 that drives the compressor 9, the conductor 46, and an overcurrent protection switch 47 that turns off in response to an overload current. Connect to.
前記母線39はまた、冷蔵室8の温度を検知する冷蔵室
温検知スイッチ48の、設定温度以上の検知でオンにな
る第一接点49及び電磁弁35を介して導線46に接続
し、金蔵室温検知スイッチ48の、設定温度以下の検知
でオンする第二接点50を連結管ヒータ51及び排水管
ヒータ52を並列lζ介して母線40に接続する。The bus bar 39 is also connected to a conductor 46 via a first contact 49 and an electromagnetic valve 35 of a refrigerating room temperature detection switch 48 that detects the temperature of the refrigerating compartment 8, which turns on when the temperature exceeds a set temperature. A second contact 50 of the switch 48, which turns on when a temperature lower than the set temperature is detected, is connected to the bus bar 40 via a connecting pipe heater 51 and a drain pipe heater 52 in parallel.
上記連結管ヒータ51は連結管36に設けられその外表
面に対する氷結を防止するためのものであり、また、排
水管ヒータ52は前記排水管13に設けられその氷結現
象を防止するためのものである。The connecting pipe heater 51 is provided on the connecting pipe 36 to prevent freezing on the outer surface thereof, and the drain pipe heater 52 is provided on the drain pipe 13 to prevent the freezing phenomenon. be.
前記リレー43の常開側接点53は前記第一の除霜ヒー
タ31、第二の除霜ヒータ32、第三の除霜ヒータ33
を並列化した除霜ヒータ群54とフリーザ3の異常昇温
時に断電する温度ヒユーズ55と第二の冷却器19の除
霜完了に基すくその温度上昇を検知してオフする除霜完
了温度スイッチ56とを介して母線40に接続する。The normally open side contact 53 of the relay 43 is connected to the first defrost heater 31, the second defrost heater 32, and the third defrost heater 33.
A defrosting heater group 54 that is arranged in parallel, a temperature fuse 55 that is cut off when the temperature of the freezer 3 rises abnormally, and a defrosting completion temperature that is turned off based on the completion of defrosting of the second cooler 19 when the temperature rise is detected. It is connected to the bus bar 40 via a switch 56.
57はタイマースイッチ58を備え前記導線42と母線
40との間に接続された除霜用タイマー、59はリレー
コイルで、これの一端は前記常開側接点53に接続する
と共にタイマースイッチ58を介して導線42に接続し
、また他端は除霜ヒータ群54と温度ヒユーズ55との
共通接続点に接続する。57 is a defrosting timer which is equipped with a timer switch 58 and is connected between the conducting wire 42 and the bus bar 40; 59 is a relay coil, one end of which is connected to the normally open side contact 53 and connected to the timer switch 58; The other end is connected to a common connection point between the defrosting heater group 54 and the temperature fuse 55.
上記において、除霜用タイマー57はタイマースイッチ
58を所定時間に一回、短時間閉成させることを繰返す
構成となっている。In the above, the defrosting timer 57 is configured to repeatedly close the timer switch 58 for a short time once every predetermined time.
尚、タイマースイッチ58を作動する時間は季節等によ
り異なるが、この実施例では平均すると24時間に一回
程度動作させるように設定されている。Note that the time at which the timer switch 58 is activated varies depending on the season, etc., but in this embodiment, it is set to operate approximately once every 24 hours on average.
また、第二の冷却器19の内面には親水性を良くするア
ルマイト処理が施されている。Further, the inner surface of the second cooler 19 is subjected to alumite treatment to improve hydrophilicity.
前記温度ヒユーズ55は第二の冷却器19の前部中央P
1に配置され、除霜完了温度スイッチ56は除霜水流下
終端である背面部19bの最下部P2、付近に配置され
る。The temperature fuse 55 is located at the front center P of the second cooler 19.
1, and the defrosting completion temperature switch 56 is located near the bottom P2 of the back surface portion 19b, which is the lower end of the defrosting water flow.
次に上記構成の作用について説明する。Next, the operation of the above configuration will be explained.
先ず、冷凍室6及び冷蔵室8の各内部温度が設定値以上
にある場合は、冷凍室温検知スイッチ41がオン、冷蔵
室温検知スイッチ48の第一接点49がオン、ル−43
の常閉側接点44がオンになっている。First, when the internal temperatures of the freezer compartment 6 and the refrigerator compartment 8 are higher than the set values, the freezer room temperature detection switch 41 is turned on, the first contact 49 of the refrigerator room temperature detection switch 48 is turned on, and the loop 43 is turned on.
The normally closed side contact 44 of is turned on.
従って、電磁弁35は通電状態にあって開放しており、
またコンプレッサーモータ45が運転されている。Therefore, the solenoid valve 35 is energized and open.
Also, the compressor motor 45 is being operated.
この状態ではコンデンサ10から吐出された液冷媒が主
キャピラリチューブ34、電磁弁35を介してエバポレ
ータ7、第一の冷却器18及び第二の冷却器19をこの
順に直列に通る。In this state, the liquid refrigerant discharged from the condenser 10 passes through the evaporator 7, the first cooler 18, and the second cooler 19 in series in this order via the main capillary tube 34 and the electromagnetic valve 35.
この場合、電磁弁35、エバポレータ7及び第一の冷却
器18より成る直列冷媒通路抵抗よりも補助キャピラリ
チューブ34aのそれが大きいので、その補助キャピラ
リチューブ34aを液冷媒が通過することはほとんどな
い。In this case, since the resistance of the auxiliary capillary tube 34a is greater than the resistance of the series refrigerant passage consisting of the solenoid valve 35, evaporator 7, and first cooler 18, liquid refrigerant hardly passes through the auxiliary capillary tube 34a.
このようにしてエバポレータ7及びフリーザ3は冷却作
用を生じ、冷凍室6及び冷蔵室8の庫内温度が徐々に低
下され、冷蔵室8が設定温度まで冷却されると冷蔵室温
検知スイッチ48はこれを検知して第二接点50オンに
切換える。In this way, the evaporator 7 and the freezer 3 produce a cooling effect, and the internal temperatures of the freezer compartment 6 and the refrigerator compartment 8 are gradually lowered. When the refrigerator compartment 8 is cooled to the set temperature, the refrigerator room temperature detection switch 48 is activated. is detected and the second contact 50 is switched on.
そうすると、電磁弁35が断電により閉成され、これに
代って連結管ヒータ51及排水管ヒータ52が通電され
る。Then, the electromagnetic valve 35 is closed due to power cutoff, and instead of this, the connecting pipe heater 51 and the drain pipe heater 52 are energized.
上記のように電磁弁35が閉成されると主キャピラリチ
ューブ34から吐出されている液冷媒は補助キャピラリ
チューブ34aを通過してフリーザ3の第二の冷却器1
9のみに供給され、冷凍室6の冷却が続行される。When the solenoid valve 35 is closed as described above, the liquid refrigerant discharged from the main capillary tube 34 passes through the auxiliary capillary tube 34a and is transferred to the second cooler 1 of the freezer 3.
9, and cooling of the freezer compartment 6 continues.
冷凍室6が設定温度以下に達するとこれに応答して冷凍
室温検知スイッチ41がオフしコンプレッサーモータ4
5が断電されコンプレッサ9による一冷却サイクル動作
が完了される。When the freezing chamber 6 reaches the set temperature or lower, the freezing room temperature detection switch 41 is turned off in response to this, and the compressor motor 4 is turned off.
5 is cut off, and one cooling cycle operation by the compressor 9 is completed.
そして冷凍室6内が設定温度以上になると冷凍室温検知
スイッチ41かオンされるので再びコンプレッサ9が運
転され上記のような庫内温度制御が開始される。Then, when the temperature inside the freezer compartment 6 reaches the set temperature or higher, the freezing room temperature detection switch 41 is turned on, so the compressor 9 is operated again and the above-mentioned interior temperature control is started.
このような冷凍サイクルにおいて、第一の冷却器18及
び第二の冷却器19のうち、第二の冷却器19は液冷媒
が電磁弁35または補助キャピラリチューブ34aの倒
れを通るときでもその液冷媒の供給を受けること、並び
に蒸発管路29の総容積が第一の冷却器18の蒸発管路
30のそれよりも大きく定められていること等によって
常に第一の冷却器18より5℃以上低い温度を呈するよ
うに設定されているから、開閉扉11の開放に伴い冷凍
室6内に多湿外気が侵入したときは、第一の冷却器18
に対するよりもむしろ温度の低い第二の冷却器19に対
してより多くの着霜がなされると云う現象を生じ、この
ときに第一の冷却器18にもわずか着霜されることがあ
るがその霜は昇華現象によって第二の冷却器19に転移
される。In such a refrigeration cycle, of the first cooler 18 and the second cooler 19, the second cooler 19 prevents the liquid refrigerant from passing through the solenoid valve 35 or the collapsed auxiliary capillary tube 34a. , and the total volume of the evaporator line 29 is set larger than that of the evaporator line 30 of the first cooler 18, so that the temperature is always 5° C. or more lower than that of the first cooler 18. Therefore, when humid outside air enters the freezer compartment 6 due to opening of the opening/closing door 11, the first cooler 18
A phenomenon occurs in which more frost is formed on the second cooler 19, which has a lower temperature, than on the second cooler 19, and at this time, a slight amount of frost may also form on the first cooler 18. The frost is transferred to the second cooler 19 by a sublimation phenomenon.
次に以上のようにして第二の冷却器19に付着された霜
の溶解除去について説明する。Next, a description will be given of melting and removing the frost that has adhered to the second cooler 19 as described above.
即ち、前記除霜用タイマー57は冷凍室温検知スイッチ
41のオン期間だけ通電されるから常にコンプレッサー
モータ45の動作時間を積算しており、その合計時間が
24時間に達する都度、タイマースイッチ58を短時間
閉成させることを繰り返す。That is, since the defrosting timer 57 is energized only while the freezing room temperature detection switch 41 is on, it constantly accumulates the operating time of the compressor motor 45, and each time the total time reaches 24 hours, the timer switch 58 is shortened. Repeat closing time.
タイマースイッチ58が閉成するとリレーコイル59が
通電されその常開側接点53がオンになるので以後この
状態にリレー43が自己保持され且つコンプレッサーモ
ータ45が断電される。When the timer switch 58 is closed, the relay coil 59 is energized and its normally open contact 53 is turned on, so that the relay 43 is maintained in this state and the compressor motor 45 is de-energized.
この結果リレー43の自己保持期間中、除霜ヒータ群5
4、即ち第一の除霜ヒータ31、第二の除霜ヒータ32
及び第三の除霜ヒータ33が通電されて着霜状態にある
第二の冷却器19の除霜運転が行なわれ、その除霜水は
第二の冷却器19の、傾斜角θが略lO度に定められた
天井面部19aの傾斜に沿い、途中で落水することなく
、背面部19bまで流下され、更にこの背面部19bを
伝わり水受段部24.25により案内されながら排水口
28に流下されここから排水管13を介して水受樋15
に導びかれる。As a result, during the self-holding period of the relay 43, the defrosting heater group 5
4, that is, the first defrost heater 31 and the second defrost heater 32
The third defrosting heater 33 is energized to perform a defrosting operation of the second cooler 19 which is in the frosting state, and the defrosting water is supplied to the second cooler 19 when the inclination angle θ is approximately lO. The water flows down to the back surface 19b along the slope of the ceiling surface 19a determined by the water flow without falling on the way, and then flows down the back surface 19b to the drain port 28 while being guided by the water receiving step 24.25. From there, the water flows through the drain pipe 13 to the water receiving gutter 15.
be guided by.
上記の如き天井面部19aを流下する途中での落水防止
は第二の冷却器19の内面がアルマイト処理されたこと
によって一層確実化され、また、水受段部24.25の
互に対向された垂下部分間では水切用切欠部26により
効果的に水切りされる。Preventing water from falling on the way down the ceiling surface part 19a as described above is further ensured by alumite treatment on the inner surface of the second cooler 19, and by making the water receiving stages 24 and 25 face each other. Water is effectively drained from the hanging portion by the drain cutout 26.
以上によって第二の冷却器19への付着箱が除去される
と第二の冷却器19の表面温度は急激に上昇されるので
、その表面温度を検知する除霜完了温度スイッチ56が
オフされ、従ってリレー43は自己保持が解除されて復
帰して除霜ヒータ群54が断電され、冷凍サイクルは通
常の動作に戻される。When the adhesion box to the second cooler 19 is removed in the above manner, the surface temperature of the second cooler 19 will rise rapidly, so the defrosting completion temperature switch 56 that detects the surface temperature is turned off. Therefore, the self-holding of the relay 43 is released and returns to normal, the defrosting heater group 54 is cut off, and the refrigeration cycle is returned to normal operation.
以上のように制御される冷凍室6においては、貯蔵物と
接触する可能性の低い上部の第二の冷却器19に主たる
着霜をなさしめ、そしてその第二の冷却器19の天井面
部19aを後方に下降傾斜せしめて除霜水をこれが冷凍
室6内で滴下されることのないよう特定部位まで自然流
下させる構成としていること、並びに、フリーザ3の各
側板16.17に水受案内部21a、21bを設け、第
二の冷却器19の天井面部19aから側板16゜17に
沿い流下する除霜水についてはこれを前記水受案内部2
1a、21bが受けて自身の傾斜に沿い前記背面部19
bまで案内して最終的に庫外へ排出する構成としている
ので、除霜運転を貯蔵物収納状態で実行しても、貯蔵物
が直接除霜熱を受けたり或いは除霜水と接したりするこ
とがなく、貯蔵物の、除霜運転に起因する変質を防止す
ることができる。In the freezer compartment 6 controlled as described above, frost is mainly formed on the upper second cooler 19 that is less likely to come into contact with stored items, and the ceiling surface portion 19a of the second cooler 19 is frosted. The structure is such that the defrosting water is tilted downwardly backward to allow the defrosting water to naturally flow down to a specific area to prevent it from dripping into the freezing chamber 6, and a water receiving guide is provided on each side plate 16 and 17 of the freezer 3. 21a and 21b are provided, and the defrosting water flowing down from the ceiling surface part 19a of the second cooler 19 along the side plates 16 and 17 is transferred to the water receiving guide part 2.
1a and 21b are received along the slope of the back part 19.
Since the structure is such that the stored items are guided to b and finally discharged outside the refrigerator, even if the defrosting operation is performed with stored items stored, there is no chance that the stored items will directly receive defrosting heat or come into contact with defrosting water. Therefore, it is possible to prevent deterioration of stored materials due to defrosting operation.
従って上記実施例のように、貯蔵物収納の有無を問わす
に、除霜運転を除霜用タイマー57により定期的に実行
させて平均的着霜量が常に減少されている状態を形成さ
せ、このことによってフリーザ3の冷却効率の向上を図
れるようにすると云う手法の採用も可能にねる。Therefore, as in the above embodiment, regardless of whether stored items are stored or not, the defrosting operation is periodically executed by the defrosting timer 57 to create a state in which the average amount of frost is constantly reduced. This makes it possible to adopt a method of improving the cooling efficiency of the freezer 3.
本考案は以上述べたように、貯蔵物を収納状態のままで
除霜運転しても貯蔵物が除霜熱及び除霜水によって変質
されることを防止できる冷蔵庫を提供できる。As described above, the present invention can provide a refrigerator that can prevent stored items from being deteriorated by defrosting heat and defrosting water even if the stored items are defrosted while being stored.
特に実施態様によれば(lliを断熱材例えばプラスチ
ック製としているので、両冷却器間の温度差を確実に維
持でき、また、第二の冷却器に対してのみ除霜熱を与え
る目的のもとでのその除霜熱が第一の冷却器によって消
費されることを防止できて除霜ヒータの出力の低減を図
り得る。In particular, according to the embodiment (because the lli is made of a heat insulating material such as plastic, it is possible to reliably maintain the temperature difference between the two coolers, and it is also possible to provide defrosting heat only to the second cooler. It is possible to prevent the defrosting heat from being consumed by the first cooler and to reduce the output of the defrosting heater.
第1図乃至第6図は本考案の一実施例に関し、第1図は
冷蔵庫の縦断側面図、第2図はフリーザの分解斜視図、
第3図はフリーザ単体の正面図、第4図は第二の冷却器
の展開図、第5図は冷凍サイクルの構成国、第6図は制
御回路の結線図である。
図中、1は断熱箱、3はフリーザ、6は冷凍室、7はエ
バポレータ、8は冷蔵室、9はコンプレッサ、10はコ
ンデンサ、16,17は側板、18は第一の冷却器、1
9は第二の冷却器、19aは天井面部、・ 19bは背
面部、21a、21bは水受案内部、24,25は水受
段部、28は排水口、29.30は蒸発管路、31は第
一の除霜ヒータ、32は第二の除霜ヒータ、33は第三
の除霜ヒータ、34は主キャピラリチューブ、35は電
磁弁、41は冷凍室温検知スイッチ、43はリレー、4
5はコンプレッサーモータ、48は冷蔵室温検知スイッ
チ、54は除霜ヒータ群、56は除霜完了温度スイッチ
、57は除霜用タイマーである。1 to 6 relate to an embodiment of the present invention, in which FIG. 1 is a vertical sectional side view of a refrigerator, FIG. 2 is an exploded perspective view of a freezer,
FIG. 3 is a front view of the freezer, FIG. 4 is an exploded view of the second cooler, FIG. 5 is a configuration of the refrigeration cycle, and FIG. 6 is a wiring diagram of the control circuit. In the figure, 1 is a heat insulation box, 3 is a freezer, 6 is a freezing chamber, 7 is an evaporator, 8 is a refrigerator compartment, 9 is a compressor, 10 is a condenser, 16 and 17 are side plates, 18 is a first cooler, 1
9 is a second cooler, 19a is a ceiling surface part, 19b is a back part, 21a, 21b are water receiving guide parts, 24, 25 are water receiving stages, 28 is a drain port, 29.30 is an evaporation pipe line, 31 is a first defrost heater, 32 is a second defrost heater, 33 is a third defrost heater, 34 is a main capillary tube, 35 is a solenoid valve, 41 is a freezing room temperature detection switch, 43 is a relay, 4
5 is a compressor motor, 48 is a refrigerating room temperature detection switch, 54 is a group of defrosting heaters, 56 is a defrosting completion temperature switch, and 57 is a defrosting timer.
Claims (1)
に後方に下降傾斜する天井面部を有し前記第一の冷却器
よりも低い冷却温度に設定された第二の冷却器と、この
第二の冷却器に設けられた除霜ヒータと、前記第二の冷
却器の左右端部と係合し冷凍室の左右側壁を形成する1
11[iIと、この側板の第二の冷却器の天井面部との
係合部の下方部に形成され上方からの除霜水を受けこれ
を所定方向に案内する水受は案内部とを具備してなる冷
蔵庫。 2、側板が断熱性を有する材料により形成されているこ
とを特徴とする実用新案登録請求の範囲第1項に記載の
冷蔵庫。[Claims for Utility Model Registration] (1) A first cooler forming a lower wall of the freezer compartment; a second cooler, a defrosting heater provided in the second cooler, and a first cooler that engages with the left and right end portions of the second cooler to form left and right side walls of the freezer compartment.
11[ii] A water receiver is formed at a lower part of the engagement part of the side plate with the ceiling surface part of the second cooler and receives the defrosting water from above and guides it in a predetermined direction. A refrigerator. 2. The refrigerator according to claim 1, wherein the side plate is made of a material having heat insulating properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17041378U JPS5822068Y2 (en) | 1978-12-11 | 1978-12-11 | refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17041378U JPS5822068Y2 (en) | 1978-12-11 | 1978-12-11 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5585684U JPS5585684U (en) | 1980-06-13 |
JPS5822068Y2 true JPS5822068Y2 (en) | 1983-05-11 |
Family
ID=29173383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17041378U Expired JPS5822068Y2 (en) | 1978-12-11 | 1978-12-11 | refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5822068Y2 (en) |
-
1978
- 1978-12-11 JP JP17041378U patent/JPS5822068Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5585684U (en) | 1980-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5375428A (en) | Control algorithm for dual temperature evaporator system | |
JPS5828908B2 (en) | refrigerator | |
US20220042739A1 (en) | Refrigerator control method | |
US7003967B2 (en) | Methods and apparatus for controlling refrigerators | |
US12038220B2 (en) | Refrigerator and deep freezing compartment defrost operation | |
US20220170675A1 (en) | Method for controlling refrigerator | |
US12130079B2 (en) | Method for controlling refrigerator | |
KR100348068B1 (en) | Controlling method of refrigerator | |
US20220235976A1 (en) | Refrigerator | |
JPS5822068Y2 (en) | refrigerator | |
JPS5822066Y2 (en) | refrigerator | |
JPS5822071Y2 (en) | refrigerator | |
JPS5829429Y2 (en) | refrigerator | |
WO2020175824A1 (en) | Method for controlling refrigerator | |
JPS6216625Y2 (en) | ||
JPS5828910B2 (en) | refrigerator | |
JPS5822070Y2 (en) | refrigerator | |
JP3600009B2 (en) | Refrigerator control method | |
JPS5822067Y2 (en) | refrigerator | |
KR840001721Y1 (en) | Refrigerator | |
JPS5828911B2 (en) | refrigerator | |
JPS61191849A (en) | Method of operating showcase | |
JPS5834737B2 (en) | refrigerator | |
JPS5829430Y2 (en) | refrigerator | |
JPH11248331A (en) | Refrigerator |