Nothing Special   »   [go: up one dir, main page]

JPS58220106A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS58220106A
JPS58220106A JP57104318A JP10431882A JPS58220106A JP S58220106 A JPS58220106 A JP S58220106A JP 57104318 A JP57104318 A JP 57104318A JP 10431882 A JP10431882 A JP 10431882A JP S58220106 A JPS58220106 A JP S58220106A
Authority
JP
Japan
Prior art keywords
light
substrate
photoelectric conversion
solid
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57104318A
Other languages
Japanese (ja)
Other versions
JPH0352602B2 (en
Inventor
Masaharu Imai
今井 正晴
Osamu Onizuka
修 鬼塚
Akimasa Morita
晃正 森田
Ikuo Toufukuji
東福寺 幾夫
Shunpei Tanaka
俊平 田中
Hiroshi Matsui
宏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP57104318A priority Critical patent/JPS58220106A/en
Publication of JPS58220106A publication Critical patent/JPS58220106A/en
Publication of JPH0352602B2 publication Critical patent/JPH0352602B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/331Coatings for devices having potential barriers for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/413Optical elements or arrangements directly associated or integrated with the devices, e.g. back reflectors

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To improve an aperture rate by providing a filter array having lenses which focus incident light and allow the transmission of light of only one color among red, green and blue to the photoelectric converters disposed on a semiconductor substrate. CONSTITUTION:Photoelectric converters 12 are formed like a matrix on the surface region of a semiconductor substrate 10. A filter array 20 is adhered via an oxide film 19 on the surface of the substrate 10. The array 20 is formed with spherical recesses in accordance with the respective converters 12 on the surface of a light transmittable substrate 22. Light transmittable materials 24, 26, 28 contg. respective dyes for red, green and blue are packed in said recesses. The materials 24, 26, 28 act as color sepn. filters and also act as convex lenses as they have high refractive indices. Therefore, the light which is made incident to the light shielding regions except the converters 12 is converted and is made incident only to the transducers 12. The aperture rate is thus improved without requiring intricate adjustment.

Description

【発明の詳細な説明】 この発明は固体撮像装置に係り、特に、カラー撮像用の
固体撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device, and particularly to a solid-state imaging device for color imaging.

近年、半導体集積技術の進歩に伴ない、撮像管に代わっ
て固体撮像装置が使われている。ここで、固体撮像装置
においては、入射光は表面に形成されるM、極の間隙か
ら光電変換部に照射されるので、開口率(全入射光量に
対する実際に光電変換される光量の比)が悪いという欠
点垂直、水平転送レジスタ、オーバーフロードレインな
どは遮光されているので、特に開「」率が悪い。
In recent years, with advances in semiconductor integration technology, solid-state imaging devices have been used in place of image pickup tubes. Here, in a solid-state imaging device, since the incident light is irradiated onto the photoelectric conversion unit from the gap between the M and the poles formed on the surface, the aperture ratio (the ratio of the amount of light actually photoelectrically converted to the total amount of incident light) is Bad Disadvantages Since vertical and horizontal transfer registers, overflow drains, etc. are shielded from light, the opening ratio is particularly poor.

これを解決するために、光電変換部の上に名光電変換素
子に対応した微小凸レンズを有するレンズアレイを配す
ることが考えられる。この凸レンズにより遮光部に直進
する入射光を光重変換素子上に収束することにより、開
[」率を向上することができる。
In order to solve this problem, it is conceivable to arrange a lens array having minute convex lenses corresponding to the famous photoelectric conversion elements above the photoelectric conversion section. By using this convex lens to converge the incident light that goes straight into the light shielding section onto the light weight conversion element, the aperture ratio can be improved.

しかしながら、通常1、各光電変換素子の11法は10
μm前後であり、これと同じ精度で凸レンズの球面を形
成するのが困難である。まだ、このレンズアレイと光電
変換部の相対的な位置合わせが正確に行なわれないと、
入射光が光重変換素子上ではなく遮光領域十に収束して
14うことも起る。さらに、カラー撮像に用いるには、
光電変換部の上に3色の色分解フィルタアレイを配す必
要もあり、こめような場合は3つの相対内な位置合せは
事実上不可能である。
However, normally 1, the 11 method of each photoelectric conversion element is 10
This is around μm, and it is difficult to form a spherical surface of a convex lens with the same precision. If the relative positioning of this lens array and photoelectric conversion section is not yet performed accurately,
It also happens that the incident light is converged not on the light weight conversion element but on the light shielding area 14. Furthermore, for use in color imaging,
It is also necessary to arrange a three-color color separation filter array above the photoelectric conversion section, and in such a crowded case, it is virtually impossible to align the three relative positions.

この発明は」二連の事情に対処すべくなされたもので、
カラー撮像用の固体撮像装置において開口率を向−トす
ることを目的とする。
This invention was made to deal with two situations.
The purpose of this invention is to improve the aperture ratio in solid-state imaging devices for color imaging.

以下、図面を参照してこの発明による固体撮像装置の一
実施例を説明する。第1図はその分解斜視図であり、第
2図は断面図である。半導体基板10の表面領域に光電
変換素子12がマトリクス駄に形成されるとともに、制
御電極14、垂直転送レジスタ16、水平転送レジスタ
18が形成される。基板10の表面上には、第2図に示
すように、酸化膜19を介して平板状のフィルタアレイ
20が貼伺けられる。フィルタアレイ20は各光電変換
素子12に対応している複数のフィルタからなるフィル
タ部と遮光性の枠部とを有する。フィルタ部の詳細は第
2図に示すように、透光性基板22の表面に多数の球面
状の四部が形成され、その四部の中に赤、緑、宵のそれ
ぞれの色素が混入された透光性材料24,26.28が
充填される。ここで、基板22、透光性材料24,26
.28はガラス、樹脂等からなり、透光性材料24,2
6゜28は基板22より屈折率が高い材料が使われる。
Hereinafter, one embodiment of a solid-state imaging device according to the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view thereof, and FIG. 2 is a sectional view thereof. Photoelectric conversion elements 12 are formed in a matrix on the surface region of semiconductor substrate 10, and control electrodes 14, vertical transfer registers 16, and horizontal transfer registers 18 are also formed. As shown in FIG. 2, a flat filter array 20 is pasted on the surface of the substrate 10 with an oxide film 19 interposed therebetween. The filter array 20 has a filter section made up of a plurality of filters corresponding to each photoelectric conversion element 12 and a light-shielding frame section. As shown in FIG. 2, the details of the filter section are as follows: a large number of four spherical sections are formed on the surface of a translucent substrate 22, and each of the four sections is made of a transparent material in which red, green, and evening pigments are mixed. A photosensitive material 24, 26, 28 is filled. Here, the substrate 22, the transparent materials 24, 26
.. 28 is made of glass, resin, etc., and is a translucent material 24, 2
A material having a higher refractive index than the substrate 22 is used for 6°28.

第2図の断面図では、光電変換素子12以外の遮光され
るべきレジスタ等は図示が省略される。
In the cross-sectional view of FIG. 2, resistors and the like that should be shielded from light other than the photoelectric conversion element 12 are not shown.

このような構成によれば、凹部内に充填されだ透光性材
料24,26.28は色分解フィルりとして作用すると
ともに、屈折率が高いので凸レンズとしても作用する。
According to such a configuration, the translucent materials 24, 26, and 28 filled in the recesses act as color separation filters, and also act as convex lenses because of their high refractive index.

その結果、第3図に示すように、フィルタアレイ20が
なければ光電変換素子以外の遮光領域に入射される光が
収束されて光電変換素子のみに入射される。したがって
、開口率の向上が計られる。しかも、フィルタアレイ自
体がレンズ効果を有するので、フィルタとレンズの位置
合せが不要である。さらに、フィルタアレイは半導体基
板の表面の光電変換素子の製造プロセスの研長として基
板上に直接製造することが可能であるので、フィルタア
レイと光電変換素子の相対的な位置合せは高精度に行な
われる。また、直接製造することにより、使用中にフィ
ルタアレイがずれることも防止される。
As a result, as shown in FIG. 3, without the filter array 20, light that would otherwise be incident on the light shielding area other than the photoelectric conversion element is converged and incident only on the photoelectric conversion element. Therefore, the aperture ratio can be improved. Furthermore, since the filter array itself has a lens effect, there is no need to align the filter and lens. Furthermore, since the filter array can be manufactured directly on the semiconductor substrate as part of the manufacturing process for photoelectric conversion elements on the surface of the semiconductor substrate, the relative alignment of the filter array and the photoelectric conversion elements can be performed with high precision. It will be done. Direct manufacturing also prevents the filter array from shifting during use.

次に、第4図(a)〜(d)を参照17てこの製造方法
を説明する。基板10に光電変換素子12、その他の撮
像素子としての必要素子が形成された後に、第4図(a
)に示すように、酸化膜19上に透光性基板22、フォ
トレジスト30が貼付される。そ(7て、各フィルりに
対応する開口(ここでは水平方向に長い長方形)を有す
るマスクを介してフォトレジスト30が鎮光される。こ
こで、マスクの各開口の中心が各光電変換素子12の中
心と一致するように、マスクと撮像装置が位置合せされ
る。これにより、同図(b)に示すように、フィルタ(
四部)に対応する部分のフォトレノストが除去される。
Next, a method of manufacturing the lever 17 will be explained with reference to FIGS. 4(a) to 4(d). After the photoelectric conversion element 12 and other necessary elements as an image sensor are formed on the substrate 10, the process shown in FIG.
), a transparent substrate 22 and a photoresist 30 are pasted on the oxide film 19. (7) The photoresist 30 is light-damped through a mask having an opening (here, a horizontally long rectangle) corresponding to each fill.Here, the center of each opening of the mask is aligned with each photoelectric conversion element. The mask and the imaging device are aligned so that they coincide with the center of the filter (
The photorenost in the part corresponding to part 4) is removed.

次に、この残されたフォトレジストをマスクとして、フ
ィルタに対応する部分にレーザービームを照射する。
Next, using the remaining photoresist as a mask, the portion corresponding to the filter is irradiated with a laser beam.

ここで、フィルタに対応する部分は長方形の平面形状を
有するので、レーザビームはシリンドリカルレンズ等に
よって横置ビームとして照射される。樹脂等の透光性基
板22はレーザビームにより熱変性を受は脆くなる。こ
こで、レーザビームの強度分布はガウス分布であるので
、光軸上が最も強く熱変性を受け、周辺部に向かうにつ
れてその程度は弱くなる。そのため、レーザビームを照
射した後に透光性基板22の表面を腐食液を用いて腐食
すれば、熱変性を受けた部分が腐食され、同図(c)に
示すように、基板22の表面領域に球面状の凹部が形成
される。
Here, since the portion corresponding to the filter has a rectangular planar shape, the laser beam is irradiated as a horizontal beam by a cylindrical lens or the like. The transparent substrate 22 made of resin or the like is thermally denatured by the laser beam and becomes brittle. Here, since the intensity distribution of the laser beam is a Gaussian distribution, the area on the optical axis undergoes thermal degeneration most strongly, and the degree of degeneration becomes weaker toward the periphery. Therefore, if the surface of the transparent substrate 22 is corroded using a corrosive liquid after being irradiated with a laser beam, the thermally denatured portion will be corroded, and the surface area of the substrate 22 will be corroded as shown in FIG. A spherical recess is formed on the surface.

そして、同図(d)に示すように、表面に残されたフォ
トレジスト30を除去し、凹部に色素を含む高屈折率の
透光性部材24.26.28を充填する。この際、フィ
ルりの色区分に従って、−色毎に3回に分けて充填する
Then, as shown in FIG. 3D, the photoresist 30 left on the surface is removed, and the recesses are filled with a high refractive index transparent member 24, 26, 28 containing a dye. At this time, filling is divided into three times for each color according to the color classification of filling.

この実施2例では、透光性基板22の各凹部は多少の間
隙があけられて設けられているが、各凹部を密接して設
ければ、なお開口率が向上する。
In this second embodiment, the recesses of the light-transmitting substrate 22 are provided with some gaps, but if the recesses are provided closely together, the aperture ratio can still be improved.

次に、第5図を参照してこの発明の第2の実施例を説明
する。素子の上に塗付、蒸着等によりガラスM40を形
成し、ガラス層40の上に多数の微小な孔を有するマス
ク42を重ねて、これらを、ある種のイオン雰囲気中に
入れる。
Next, a second embodiment of the present invention will be described with reference to FIG. A glass M40 is formed on the element by coating, vapor deposition, etc., a mask 42 having a large number of minute holes is placed on the glass layer 40, and these are placed in a certain type of ion atmosphere.

ここで、孔と光電変換素子12の中心が一致するように
マスクが重ねらねる。こうするとガラス内部のイオンと
のイオン交換により外部のイオンがガラス層40内に拡
散される。孔は非常に小さいので、イオンの拡散分布は
孔を中心とする同・し球状となり、孔から離れるにつれ
てイメン濃度が除々に小さくなる。とのようなイオン交
換においては、新しく拡散されたイオンがガラス層40
内にあったイオンより、分極率が小さければ、元のガラ
ス層40に比べてイオンが拡散された部分の屈折率が「
がる。そこで、このような条件を満たすようなイオンを
選んでイオン交換をイj−なえば、孔を中心として同心
球)1\ 状に屈折率が下がり、結果として凸レンズが形成された
ことになる。この後、雰囲気中から取出し、マスクを取
り除く。そして、第1の実施例で使ったようなフィルタ
の大きさに対応した開口を有するマスクを重ねて、色分
解フィルタの色素をガラス層40上に塗イ」する。ある
いは、色素をドーピングする。
Here, the masks are stacked so that the centers of the holes and the photoelectric conversion elements 12 coincide. In this way, external ions are diffused into the glass layer 40 by ion exchange with ions inside the glass. Since the pores are very small, the ion diffusion distribution becomes spherical with the pores at the center, and the ion concentration gradually decreases as you move away from the pores. In ion exchange, newly diffused ions enter the glass layer 40.
If the polarizability is smaller than that of the ions inside, the refractive index of the part where the ions are diffused will be lower than that of the original glass layer 40.
Garu. Therefore, if ions that satisfy these conditions are selected and ion exchange is performed, the refractive index decreases in the shape of concentric spheres centered around the hole, resulting in the formation of a convex lens. After this, it is taken out of the atmosphere and the mask is removed. Then, a mask having an aperture corresponding to the size of the filter used in the first embodiment is overlaid, and the dye of the color separation filter is applied onto the glass layer 40. Alternatively, dope with a dye.

このようにして製造される第2の実施例によっても、撮
像素子、レンズ、フィルタの間の位置合せが容易で、し
かも、開口率が向上される。
The second embodiment manufactured in this manner also facilitates alignment between the image sensor, lens, and filter, and improves the aperture ratio.

なお、この実施例で、イオン雰囲気中に入れる代わりに
、イオンビームをマスク42の孔ヲ介してガラス層40
に照射することによりイオン交換を行なってもよい。ま
た、ガラス層40内のレンズ作用をする領域の大きさは
、イオンの拡散時間を制御することにより調整すること
が   ゛できる。
In this embodiment, instead of entering the ion atmosphere, the ion beam is passed through the hole in the mask 42 to the glass layer 40.
Ion exchange may also be performed by irradiating with. Furthermore, the size of the region within the glass layer 40 that acts as a lens can be adjusted by controlling the ion diffusion time.

以上説明したようにこの発明によれば、複雑な調整を必
要とせずに開[]率を向上し、た固体撮像装置を提供す
ることができる。
As described above, according to the present invention, it is possible to provide a solid-state imaging device with improved aperture ratio without requiring complicated adjustment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による固体撮像装置の一夾施例の斜視
図、第2図はその断面図、第3図はその効果を説明する
図、第4図(a)〜(d)はその製造工程を示す図、第
5図は第2実施例の製造工程を示す図である。 10・・半導体基板、12・・・光電変換素子、22・
・・透光性基板、24,26.28・・・透光性部材、
3θ フォトレジスト。 出願人復代理人 弁理士 鈴 江 武 彦第4図 第3図 2 第5図 第1頁の続き 0発 明 者 田中俊平 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内 0発 明 者 松井宏 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内
FIG. 1 is a perspective view of one embodiment of a solid-state imaging device according to the present invention, FIG. 2 is a sectional view thereof, FIG. 3 is a diagram explaining the effect, and FIGS. FIG. 5 is a diagram showing the manufacturing process of the second embodiment. 10... Semiconductor substrate, 12... Photoelectric conversion element, 22...
...Transparent substrate, 24,26.28...Transparent member,
3θ photoresist. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 4 Figure 3 Figure 2 Continued from Figure 5 Page 1 0 Inventor Shunpei Tanaka 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside of Lympus Optical Industry Co., Ltd. 0 Invention Author Hiroshi Matsui 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside of Lymphus Optical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の表面領域にマトリクス状に配設された複数
の光電変換素子と、前記半導体基板上に配設され各光電
変換素子に対応する部分に入射光を収束するレンズを有
し、各レンズが赤、緑、青のいずれか一色の光のみを通
過するような平板状のフィルタアレイを具備する固体撮
像装置。
It has a plurality of photoelectric conversion elements arranged in a matrix on a surface area of a semiconductor substrate, and a lens arranged on the semiconductor substrate to converge incident light on a portion corresponding to each photoelectric conversion element, and each lens A solid-state imaging device that includes a flat filter array that passes only one color of red, green, or blue light.
JP57104318A 1982-06-17 1982-06-17 Solid-state image pickup device Granted JPS58220106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57104318A JPS58220106A (en) 1982-06-17 1982-06-17 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57104318A JPS58220106A (en) 1982-06-17 1982-06-17 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS58220106A true JPS58220106A (en) 1983-12-21
JPH0352602B2 JPH0352602B2 (en) 1991-08-12

Family

ID=14377581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57104318A Granted JPS58220106A (en) 1982-06-17 1982-06-17 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS58220106A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992568A (en) * 1982-11-18 1984-05-28 Mitsubishi Electric Corp Photo receptor such as solid-state image pickup element and manufacture thereof
EP0124025A2 (en) * 1983-04-26 1984-11-07 Kabushiki Kaisha Toshiba Solid-state color imaging device and process for fabricating the same
EP0154962A2 (en) * 1984-03-12 1985-09-18 Hitachi, Ltd. Image sensor
JPS6132469A (en) * 1984-07-24 1986-02-15 Toppan Printing Co Ltd Color solid-state image pickup element
JPS6362267A (en) * 1986-09-02 1988-03-18 Nippon Sheet Glass Co Ltd Manufacture of module with lens
JPS63188102A (en) * 1987-01-30 1988-08-03 Fujitsu Ltd Color solid-state image sensor
JPS63291466A (en) * 1987-05-25 1988-11-29 Nippon Sheet Glass Co Ltd Solid-state image sensing device
JPS6488501A (en) * 1987-09-30 1989-04-03 Nippon Sheet Glass Co Ltd Plane lens plate
JPS6491101A (en) * 1987-10-01 1989-04-10 Nippon Sheet Glass Co Ltd Plane lens plate
JPH0468570A (en) * 1990-07-09 1992-03-04 Sharp Corp Solid-state image sensing device and manufacture thereof
JPH0945885A (en) * 1995-07-26 1997-02-14 Lg Semicon Co Ltd Ccd solid-state image pickup divice and its preparation
EP0795913A2 (en) * 1996-03-11 1997-09-17 Eastman Kodak Company Solid state imager with inorganic lens array
JP2012507458A (en) * 2008-11-03 2012-03-29 サン−ゴバン グラス フランス Plate glass with light-condensing region by ion exchange
WO2015011901A1 (en) * 2013-07-24 2015-01-29 セイコーエプソン株式会社 Color filter substrate, electro-optical device, and projection-type display device
JP2016018986A (en) * 2014-07-09 2016-02-01 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Image sensor and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175356U (en) * 1981-04-30 1982-11-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175356U (en) * 1981-04-30 1982-11-05

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992568A (en) * 1982-11-18 1984-05-28 Mitsubishi Electric Corp Photo receptor such as solid-state image pickup element and manufacture thereof
EP0124025A2 (en) * 1983-04-26 1984-11-07 Kabushiki Kaisha Toshiba Solid-state color imaging device and process for fabricating the same
JPS59198754A (en) * 1983-04-26 1984-11-10 Toshiba Corp Color solid-state imaging device
EP0154962A2 (en) * 1984-03-12 1985-09-18 Hitachi, Ltd. Image sensor
US4689652A (en) * 1984-03-12 1987-08-25 Hitachi, Ltd. Image sensor
JPH0224028B2 (en) * 1984-07-24 1990-05-28 Toppan Printing Co Ltd
JPS6132469A (en) * 1984-07-24 1986-02-15 Toppan Printing Co Ltd Color solid-state image pickup element
JPS6362267A (en) * 1986-09-02 1988-03-18 Nippon Sheet Glass Co Ltd Manufacture of module with lens
JPS63188102A (en) * 1987-01-30 1988-08-03 Fujitsu Ltd Color solid-state image sensor
JPS63291466A (en) * 1987-05-25 1988-11-29 Nippon Sheet Glass Co Ltd Solid-state image sensing device
JPS6488501A (en) * 1987-09-30 1989-04-03 Nippon Sheet Glass Co Ltd Plane lens plate
JPS6491101A (en) * 1987-10-01 1989-04-10 Nippon Sheet Glass Co Ltd Plane lens plate
JPH0468570A (en) * 1990-07-09 1992-03-04 Sharp Corp Solid-state image sensing device and manufacture thereof
JPH0945885A (en) * 1995-07-26 1997-02-14 Lg Semicon Co Ltd Ccd solid-state image pickup divice and its preparation
EP0795913A2 (en) * 1996-03-11 1997-09-17 Eastman Kodak Company Solid state imager with inorganic lens array
EP0795913A3 (en) * 1996-03-11 1997-10-29 Eastman Kodak Co
JP2012507458A (en) * 2008-11-03 2012-03-29 サン−ゴバン グラス フランス Plate glass with light-condensing region by ion exchange
WO2015011901A1 (en) * 2013-07-24 2015-01-29 セイコーエプソン株式会社 Color filter substrate, electro-optical device, and projection-type display device
JP2015025835A (en) * 2013-07-24 2015-02-05 セイコーエプソン株式会社 Color filter substrate, electro-optic device, projection type display device, and manufacturing method of color filter substrate
US9671640B2 (en) 2013-07-24 2017-06-06 Seiko Epson Corporation Color filter substrate, electro-optical device, and projection-type display device
JP2016018986A (en) * 2014-07-09 2016-02-01 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Image sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0352602B2 (en) 1991-08-12

Similar Documents

Publication Publication Date Title
JPS58220106A (en) Solid-state image pickup device
CN100365820C (en) Solid-state imaging device, manufacturing method of solid-state imaging device, video camera
US6301051B1 (en) High fill-factor microlens array and fabrication method
JP3079969B2 (en) Complete contact image sensor and method of manufacturing the same
US5593913A (en) Method of manufacturing solid state imaging device having high sensitivity and exhibiting high degree of light utilization
US8325266B2 (en) Method of forming thin camera
CN100504505C (en) Lens array and manufacturing method thereof
US8675282B2 (en) Solid-state imaging device and method for manufacturing the same
KR100511543B1 (en) Method of manufacturing microlens substrate, and microlens exposure optical system
CN108352390B (en) Solid-state imaging device and method of manufacturing the same
JPS6344624A (en) Liquid crystal device
CN108269815A (en) Cmos image sensor and forming method thereof
JPH0470601B2 (en)
JPH08313706A (en) Microlens array integrated with light-shielding part and its production
JP2005079344A (en) Solid-state imaging device and manufacturing method thereof
CN102290423B (en) Method for manufacturing image sensor device
JPH03175403A (en) Solid-state image pickup device
JP2678074B2 (en) Method for manufacturing solid-state imaging device
JP2006003869A (en) Method for forming microlens of image sensor
JP2005259824A (en) Solid state imaging device and method of forming asymmetric optical waveguide
JP2006235084A (en) Method of manufacturing microlens
JPS59195861A (en) Manufacture of solid-state image pickup device
JP2000324518A (en) Condensing simulator
JPH0468570A (en) Solid-state image sensing device and manufacture thereof
JPH04234705A (en) Color filter manufacturing method