Nothing Special   »   [go: up one dir, main page]

JPS5821900A - Cooler for electronic part - Google Patents

Cooler for electronic part

Info

Publication number
JPS5821900A
JPS5821900A JP12078981A JP12078981A JPS5821900A JP S5821900 A JPS5821900 A JP S5821900A JP 12078981 A JP12078981 A JP 12078981A JP 12078981 A JP12078981 A JP 12078981A JP S5821900 A JPS5821900 A JP S5821900A
Authority
JP
Japan
Prior art keywords
heat
gel
heat sink
printed circuit
transfer medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12078981A
Other languages
Japanese (ja)
Inventor
幹雄 依田
柴田 易蔵
尾坂 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12078981A priority Critical patent/JPS5821900A/en
Publication of JPS5821900A publication Critical patent/JPS5821900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はプリント板に装着される電子部品の冷却装置に
関する。     ・ 近年、集積回路や大規模集積回路など急激な進歩に伴な
い、プリント板への実装密度ならびに複数枚のプリント
板を並設して構成される電子装置の実装密度は年々高い
ものどなってきている。実装密度の向上に伴って電子部
品の発生する熱の処(1)。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for electronic components mounted on a printed board. - In recent years, with the rapid advancement of integrated circuits and large-scale integrated circuits, the packaging density on printed circuit boards and the packaging density of electronic devices constructed by arranging multiple printed circuit boards in parallel has become higher year by year. ing. Heat generated by electronic components as packaging density increases (1).

理が信頼性向上と相丑って大きな問題となっている。The combination of reliability and reliability has become a major problem.

従来、このように実装密度の高い電子装置においては電
子部品の装着されたプリント板を複数枚並設し、ファン
等により部品に直接風を当てて冷却する強制風冷方式が
採られている。
Conventionally, in electronic devices with such a high packaging density, a forced air cooling method has been adopted in which a plurality of printed circuit boards with electronic components mounted thereon are arranged side by side, and the components are cooled by blowing air directly onto them using a fan or the like.

一方、電子装置の配置される環境は空調室から電気室、
電気室から現場へと悪くなって来ている。
On the other hand, the environments in which electronic devices are placed range from air-conditioned rooms to electrical rooms,
Things are getting worse from the electrical room to the field.

このような悪い環境において上述の如き強制風冷方式を
採用すると、空気中の塵埃が集積回路などの部品のピン
部分に付着し短絡を惹起することがある。また、腐食性
ガスなどの存在する環境で使用される場合にはピン部分
が腐食性ガスによって腐食して細り、ついには消失する
という予期しない事故も発生している。
If the above-described forced air cooling method is employed in such a bad environment, dust in the air may adhere to the pins of components such as integrated circuits, causing short circuits. Furthermore, when used in an environment where corrosive gas exists, unexpected accidents have occurred in which the pin portion corrodes due to the corrosive gas, becomes thinner, and eventually disappears.

このような問題を解決する一方策として、プリント基板
及び基板上に搭載された部品へのコーティング剤が研究
され、環境に強いコーティング剤も開発されている。し
かし、コーテイング膜が厚く固いものであるために部品
交換ができないなど(2) 実用上の欠点を有しており必ずしも最良のものではない
As a way to solve these problems, research has been conducted into coating agents for printed circuit boards and components mounted on the substrate, and coating agents that are environmentally resistant have also been developed. However, it is not necessarily the best because it has practical drawbacks, such as the inability to replace parts because the coating film is thick and hard.

以上のように現場又は−設電気室において使用される電
子装置では、ファンなどによって直接部品表面に風を当
て冷却直接強制風冷方式は信頼性の面から問題視されて
いる。
As described above, in electronic devices used on-site or in an electrical room, the direct forced air cooling method, in which air is directly applied to the surface of components using a fan or the like, is viewed as problematic in terms of reliability.

直接風冷方式における上述の問題点を解決するのに間接
冷却方式がある。間接冷却方式はプリント板をアルミ材
などで構成された箱体内に収納し、この箱体にファンな
どによって風を当て冷却するものである。しかし、この
間接冷却方式は一般に箱体内に熱伝導率の悪い空気が存
在しているために冷却効率の悪いものとなっている。ま
た、他の解決方式としてファンを使わないで放熱きせる
ファンレス自冷方式がある。この自冷方式は部品実装密
度を下げ、部品表面から自然対流によって放熱させるも
のであるが、しかし、部品の放熱面積には限りがあシ、
特に消費電力の大きい部品では放熱を充分に成し得ない
のが実状である。自冷方式は本質的に部品が自然対流に
おける空気抵抗となシ対流を妨げていること、又自然対
流による空気の流れが各部品面を一様に流れないなどが
冷却効率の悪い理由である。また、自冷方式ではファン
を使っていないので、部品に対して直接強い風が当るこ
とはないが、部品が大気に対して直接触れているので、
周囲環境からの塵埃の蓄積などはさけられないものとな
る。
An indirect cooling method is available to solve the above-mentioned problems in the direct air cooling method. In the indirect cooling method, the printed circuit board is housed in a box made of aluminum or the like, and the box is cooled by blowing air through the box using a fan or the like. However, this indirect cooling method generally has poor cooling efficiency because air with poor thermal conductivity exists inside the box. Another solution is a fanless self-cooling system that dissipates heat without using a fan. This self-cooling method lowers the component mounting density and radiates heat from the component surface by natural convection, but there is a limit to the heat dissipation area of the component.
Particularly in the case of components with large power consumption, the actual situation is that sufficient heat dissipation cannot be achieved. In the natural cooling method, cooling efficiency is poor because the components essentially create air resistance in natural convection and prevent convection, and the air flow due to natural convection does not flow uniformly over each component surface. . In addition, since the natural cooling method does not use a fan, the parts are not exposed to strong wind directly, but the parts are in direct contact with the atmosphere.
Accumulation of dust from the surrounding environment becomes unavoidable.

本発明は上記点に対処して成されたもので、その目的と
するところは環境の悪いところでも電子部品を故障させ
ることなく放熱を良好に行える電子部品の冷却装置を提
供することにある。。
The present invention has been made in response to the above-mentioned problems, and its purpose is to provide a cooling device for electronic components that can efficiently dissipate heat without causing failure of the electronic components even in a bad environment. .

本発明の特徴とするところは、電子部品を装着したプリ
ント板の片面あるいは両面に配置される放熱板のプリン
ト板対向面に熱伝導率が良く弾力性のある平板状のゲル
状伝熱媒体を粘着させておき、このゲル状伝熱媒体が少
なくとも電子部品の発熱部と密着するように構成し、部
品の発生熱をゲル状伝熱媒体を介して効率よく放熱板に
伝え放熱させるようにしたことにある。
A feature of the present invention is that a flat gel-like heat transfer medium with good thermal conductivity and elasticity is provided on the opposite surface of the printed board of the heat sink disposed on one or both sides of the printed board on which electronic components are mounted. The gel-like heat transfer medium is made to adhere to at least the heat-generating part of the electronic component, so that the heat generated by the component is efficiently transferred to the heat sink through the gel-like heat transfer medium and radiated. There is a particular thing.

以下、本発明を第1図〜第6図に示す一実施例において
詳細に説明する。
Hereinafter, the present invention will be explained in detail with reference to an embodiment shown in FIGS. 1 to 6.

第1図〜第6図において、1はプリント基板で、−面に
電子部品2が装着され、他面にはピン部分が突出してい
る。】aはプリント基板の接栓部であるプリント板1の
両面に放熱板3a、3bが配置されている。放熱板3a
、3bは発熱の大きい部品の近傍の熱を放熱板全面に効
率よく伝導させて均一化するために熱伝導率のよいアル
ミ板や銅板などによって形成されている。放熱板3a。
1 to 6, reference numeral 1 denotes a printed circuit board, with electronic components 2 mounted on the negative side and pins protruding from the other side. ]A is a connecting part of a printed circuit board, and heat sinks 3a and 3b are arranged on both sides of a printed board 1. Heat sink 3a
, 3b are made of an aluminum plate, a copper plate, or the like having good thermal conductivity in order to uniformly conduct heat in the vicinity of a component that generates a large amount of heat to the entire surface of the heat sink plate. Heat sink 3a.

3bは複数個の締付ねじ8によってサポート4a。3b is supported by a plurality of tightening screws 8.

4bに固定される。サポート4a、、4bにはプリント
基板1を案内し固定するための溝部5a。
4b. The supports 4a, 4b have grooves 5a for guiding and fixing the printed circuit board 1.

5bl有している。サボー)4a、4bが放熱板3 a
 、、 3 bと段差がついているのは第1図に示すプ
リント基板ユニツl−P Uを装置に挿入する際のガイ
ドとして利用するためである。5a、5bは放熱板3a
、3bのプリント基板対向面に平板状に形成し粘着され
たゲル状伝熱媒体で、熱伝導率に優れ、部品に押付けた
時に部品をいためないよう可撓性を有する。ゲル状伝熱
媒体6a、6’bとしては例えばンリコンゲルが用いら
れる。ゲル状伝熱媒体5a、5bはプリント基板1に装
着された電子部品2の熱を効率良く放熱板3a、3bに
伝えるためのもので、第3図に示すように常に電子部品
2に密着するような厚さに構成される。放熱板3bに粘
着形成されているゲル状伝熱媒体6bには第4図のよう
に圧縮変形時の逃げ溝7が設けられている。9はフロン
トパネルでプリント基板1と一体に結合されている。
It has 5bl. Sabo) 4a and 4b are heat sinks 3a
, 3b and 3b are provided to be used as a guide when inserting the printed circuit board unit 1-PU shown in FIG. 1 into the device. 5a and 5b are heat sinks 3a
, 3b is a gel-like heat transfer medium formed into a flat plate and adhered to the facing surface of the printed circuit board, and has excellent thermal conductivity and is flexible so as not to damage the parts when pressed against them. As the gel-like heat transfer medium 6a, 6'b, for example, rincon gel is used. The gel-like heat transfer media 5a, 5b are for efficiently transmitting the heat of the electronic component 2 mounted on the printed circuit board 1 to the heat sinks 3a, 3b, and are always in close contact with the electronic component 2, as shown in FIG. It is made up of such a thickness. The gel-like heat transfer medium 6b adhesively formed on the heat sink 3b is provided with escape grooves 7 during compressive deformation, as shown in FIG. Reference numeral 9 denotes a front panel which is integrally connected to the printed circuit board 1.

第6図は第1図に示すプリント板ユニツhPUを複数個
並設して構成した電子装置の一部を示す斜視図である。
FIG. 6 is a perspective view showing a part of an electronic device constructed by arranging a plurality of printed board units hPU shown in FIG. 1 in parallel.

図において各々のプリント基板ユニットPUは空隙10
を設けて並設されておシ、この空隙8を実線矢印の如く
空気が流れうるように構成されている。空気の流れは自
然対流でもファンなどによる空気の流れでも良く、いず
れにしても冷却効果はより一層向上する。
In the figure, each printed circuit board unit PU has a gap 10
are arranged in parallel with each other, and are configured so that air can flow through this gap 8 as shown by the solid line arrow. The air flow may be by natural convection or by a fan or the like, and in either case, the cooling effect will be further improved.

本発明の一実施例は以上の構成となっているため電子部
品2から発生した熱はゲル状伝熱媒体5a、6bl介し
て放熱板3a、3bに伝えられる。放熱板3a、31〕
の面積は電子部品2をプリント基板1に装着する際に間
隔を必要とする関係上から部品表面積の総和より数倍大
きなものとなる。したがって、放熱を良好に行うことが
できる。
Since one embodiment of the present invention has the above-described configuration, heat generated from the electronic component 2 is transmitted to the heat sinks 3a and 3b via the gel-like heat transfer media 5a and 6bl. Heat sinks 3a, 31]
The area is several times larger than the total surface area of the components due to the spacing required when mounting the electronic components 2 on the printed circuit board 1. Therefore, heat can be dissipated well.

その上、放熱板3a、3bは熱伝導率が良いもので形成
されているために局部的に発熱の大きい部品が存在して
も全面にわたって温度分布が均一化される。このため、
発熱の大きい部品について考えると、等測的に放熱面積
が非常に大きくなったことになり、極めて放熱効果の良
いものとなる。
Furthermore, since the heat sinks 3a and 3b are made of a material with good thermal conductivity, even if there are parts that generate a large amount of heat locally, the temperature distribution can be made uniform over the entire surface. For this reason,
When considering a component that generates a large amount of heat, the heat dissipation area becomes very large isometrically, resulting in an extremely good heat dissipation effect.

また、放熱板3a、3bからの放熱は第6図に示すよう
にその側面から自然対流によってなされるが、従来の自
冷方式に比べ放熱板3a、3bの放熱面は円滑にできて
いるために空気の流れに対する抵抗が少なくなり、同一
条件なら風速と放熱量が大きくなるので冷却効率が一段
と向上する。
In addition, heat radiation from the heat sinks 3a and 3b is done by natural convection from their sides as shown in Figure 6, but compared to the conventional self-cooling system, the heat sink surfaces of the heat sinks 3a and 3b are made smoother. The resistance to air flow is reduced, and under the same conditions, the wind speed and amount of heat dissipated are increased, further improving cooling efficiency.

一方、本発明では部品2が直接大気に露出することがな
いので、悪環境でも部品に塵埃が蓄積することもなく、
また、腐食性ガスによりピン部分が腐食されることもな
くなる。
On the other hand, in the present invention, since the component 2 is not directly exposed to the atmosphere, dust does not accumulate on the component even in bad environments.
Further, the pin portion will not be corroded by corrosive gas.

更に、本発明においてはゲル状伝熱媒体6 a+6bを
放熱板3a、3bに粘着して形成しプリント基板とは別
工程において成形が可能である。このため、例えばプリ
ント基板上にゲル状伝熱媒体を充填して形成する方式な
どと較べると、成型時の樹脂の洩れ止め作業性がよくな
り、簡単に製作できる。
Furthermore, in the present invention, it is possible to form the gel-like heat transfer medium 6a+6b by adhering it to the heat sinks 3a and 3b, and to mold it in a separate process from that of the printed circuit board. Therefore, compared to, for example, a method in which a printed circuit board is filled with a gel-like heat transfer medium, workability for preventing resin leakage during molding is improved and manufacturing is easier.

以上説明したように、本発明は電子部品の発生熱を熱伝
導率の良いゲル状伝熱媒体を介して放熱板に伝へ放熱さ
せており、電子部品がゲル状伝熱媒体で覆われるため環
境が悪くとも電子部品を故障させることなく放熱を良好
に行うことができる。
As explained above, the present invention radiates heat generated by electronic components to a heat sink through a gel-like heat transfer medium with good thermal conductivity, and since the electronic components are covered with the gel-like heat transfer medium, Even in a bad environment, heat can be efficiently dissipated without causing failure of electronic components.

なお、上述の実施例はプリント基板の両面に放熱板を配
置しているが、腐食性ガスの問題がない場合、さらには
ピン部分の発熱が小さい場合などはプリント基板の部品
装着面側にのみ放熱板を配置し、その間にゲル状伝熱媒
体を介在させるようにしても良いのは勿論である。
Note that in the above embodiment, heat sinks are placed on both sides of the printed circuit board, but if there is no problem with corrosive gas, or if the heat generated by the pins is small, heat sinks may be placed only on the component mounting side of the printed circuit board. Of course, a heat sink may be arranged and a gel-like heat transfer medium may be interposed therebetween.

吐た、放熱効果を更に良くするには放熱板に冷却フィン
を設けることによって成し得るのは明らかであろう。
It is obvious that the heat dissipation effect can be further improved by providing cooling fins on the heat dissipation plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図は第1
図のA−A’断面図、第3図は第2図におけるB部拡大
図、第4図は放熱板の斜視図、第5図は第1図の組立て
分解斜視図、第6図は本発明による冷却状態の一例を示
す斜視図である。 1・・・プリント基板、2・・・電子部品、3・・・放
熱板、$50 −488−
FIG. 1 is a perspective view showing one embodiment of the present invention, and FIG. 2 is a perspective view showing one embodiment of the present invention.
Figure 3 is an enlarged view of part B in Figure 2, Figure 4 is a perspective view of the heat sink, Figure 5 is an exploded perspective view of Figure 1, and Figure 6 is an exploded perspective view of Figure 1. FIG. 3 is a perspective view showing an example of a cooling state according to the invention. 1... Printed circuit board, 2... Electronic components, 3... Heat sink, $50 -488-

Claims (1)

【特許請求の範囲】[Claims] 1、プリント板に装着された電子部品と、前記プリント
板の片面あるいは両面に配置される放熱板と、該放熱板
のプリント板対向面に粘着して形成される熱伝導率の良
いゲル状伝熱媒体とを備え、前記放熱板をゲル状伝熱媒
体が前記電子部品に密着するように配置し、前記電子部
品の発生熱を前記ゲル状伝熱媒体?介して前記放熱板に
伝え放熱させるようにしたことを特徴とする電子部品の
冷却装置。
1. Electronic components mounted on a printed board, a heat sink disposed on one or both sides of the printed board, and a gel-like conductor with good thermal conductivity formed by adhering to the surface of the heat sink that faces the printed board. the heat sink is arranged so that the gel-like heat transfer medium is in close contact with the electronic component, and the heat generated by the electronic component is transferred to the gel-like heat transfer medium. A cooling device for electronic components, characterized in that heat is transmitted to the heat sink and radiated through the heat sink.
JP12078981A 1981-08-03 1981-08-03 Cooler for electronic part Pending JPS5821900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12078981A JPS5821900A (en) 1981-08-03 1981-08-03 Cooler for electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12078981A JPS5821900A (en) 1981-08-03 1981-08-03 Cooler for electronic part

Publications (1)

Publication Number Publication Date
JPS5821900A true JPS5821900A (en) 1983-02-08

Family

ID=14795033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12078981A Pending JPS5821900A (en) 1981-08-03 1981-08-03 Cooler for electronic part

Country Status (1)

Country Link
JP (1) JPS5821900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852646A (en) * 1987-06-16 1989-08-01 Raychem Corporation Thermally conductive gel materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545573A (en) * 1977-06-15 1979-01-17 Nippon Electric Co Low heat resistance multiitip multiilayer film wiring board
JPS5434185U (en) * 1977-08-11 1979-03-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545573A (en) * 1977-06-15 1979-01-17 Nippon Electric Co Low heat resistance multiitip multiilayer film wiring board
JPS5434185U (en) * 1977-08-11 1979-03-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852646A (en) * 1987-06-16 1989-08-01 Raychem Corporation Thermally conductive gel materials

Similar Documents

Publication Publication Date Title
US9282681B2 (en) Dissipating heat during device operation
US5513070A (en) Dissipation of heat through keyboard using a heat pipe
US7839643B1 (en) Heat spreader for memory modules
US8837151B2 (en) Memory modules including compliant multilayered thermally-conductive interface assemblies
US6315038B1 (en) Application of pressure sensitive adhesive (PSA) to pre-attach thermal interface film/tape to cooling device
US20010036061A1 (en) Apparatus for Liquid cooling of specific computer components
JPH10215094A (en) Device for eliminating heat from pc card array
US20050039879A1 (en) Heat transmission member and an electronics device using the member
JP2008541490A (en) Thermal lamination module
US10558247B2 (en) Thermally conductive and vibration damping electronic device enclosure and mounting
US10079042B2 (en) Thermally conductive and vibration damping electronic device enclosure and mounting
JP2001111237A (en) Multilayer printed board and electronic apparatus
JPH08204070A (en) Electronic part cooling structure
JPS5821900A (en) Cooler for electronic part
JPS5895896A (en) Cooler for electronic part
JPS60220954A (en) Cooling device for integrated circuit element
JPS58188188A (en) Printed circuit board heat sink structure
JPS58101447A (en) Cooler for electronic part
JPS5821899A (en) Cooler for electronic part
US20070030657A1 (en) Circuit board with a cooling architecture
JPH07111378A (en) Packaging structure of double-sided packaging board
JPH09115279A (en) Magnetic disk device and electronic device mounting the same
JPS58101497A (en) Cooler for electronic part
JPH09114552A (en) Electronic device
JPS624349A (en) Method of cooling semiconductor component