JPS5820549A - Fluid pressure controller of vehicle brake system - Google Patents
Fluid pressure controller of vehicle brake systemInfo
- Publication number
- JPS5820549A JPS5820549A JP11753381A JP11753381A JPS5820549A JP S5820549 A JPS5820549 A JP S5820549A JP 11753381 A JP11753381 A JP 11753381A JP 11753381 A JP11753381 A JP 11753381A JP S5820549 A JPS5820549 A JP S5820549A
- Authority
- JP
- Japan
- Prior art keywords
- piston
- hydraulic pressure
- liquid chamber
- pressure reducing
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/26—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Hydraulic Control Valves For Brake Systems (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は車両ブレーキ系に用いる液圧制御装置の改良に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a hydraulic pressure control device used in a vehicle brake system.
一般に車両制動時における前・後輪ブレーキ力の配分比
は、前−後輪にかかる荷重の関係から前輪に比べて後輪
側を低くすることが車輪ロック防止の上で望ましいとさ
れ、このことからブレーキ液圧の上昇に関連して後輪ブ
レーキ装置への伝達液圧の上昇を所定の液圧値の状りか
ら折点被圧制御させる所謂f a /−シ曹二ング型の
パルプ機構が提供されている。In general, when braking a vehicle, it is considered desirable to make the rear wheels lower than the front wheels due to the relationship between the loads applied to the front and rear wheels in order to prevent wheel locking. This is a so-called f a /-shi double-ring type pulp mechanism that controls the increase in hydraulic pressure transmitted to the rear wheel brake device from a predetermined hydraulic pressure value in relation to the increase in brake hydraulic pressure. is provided.
そして、仁の折点減圧制御の制御特性を車両の荷重積載
状態勢に合わせて理岬的な配分比に近似させる九;め1
、例えば折点値の可!R機構(G・(ルプ醇)を設ける
など種々の工夫のも必が多く提供されている。Then, the control characteristics of the corner point depressurization control are approximated to the Rimisaki distribution ratio according to the load loading state of the vehicle.
, for example, the break point value is possible! Various ideas such as the provision of an R mechanism (G.
ところで従来よシ知られるこの種の液圧制御装置は、ブ
レーキ液圧の昇圧時の制御、換言すればブレーキ作動時
の液圧制御をその制御すべき対象としているが、他方ブ
レーキ解放時の液圧減圧の特性は通常外圧時とは異なる
特性を示のが普通であシ、後輪ブレーキ圧の降下が遅れ
て操作状態によっては後輪ロックを招く虞れがあった。By the way, this type of hydraulic pressure control device, which has been known in the past, is intended to control when the brake fluid pressure increases, in other words, to control the hydraulic pressure when the brake is applied. The characteristics of pressure reduction usually exhibit characteristics different from those of normal external pressure, and there is a risk that the drop in rear wheel brake pressure will be delayed and the rear wheels will lock depending on the operating conditions.
本発明紘このような液圧減圧制御の過程についても、後
輪側のブレーキ液圧がマスクシリンダの液圧降下に比べ
て遅れることによって生ずる仁とのある難点を解消し、
ブレーキ液圧の上昇拳下降の特性線を略近似させて−ま
しい制動制御を得るようにし、ンものであ)、具体的に
本発明の要旨はマスクシリンダに通ずる入力液室に小な
る液圧受圧面積A1で臨むと共に、車両後輪ブレーキ装
置に通ずる出力液室に大なる液圧受圧面積A、で臨むこ
とによシ、これら両液室からの異なる液圧力作用を受け
て移動しうるよう設けられ、ρ為つこれら両液室を連通
する流路の形成された制御ピストンと、この制御ピスト
ンに戦力液室方向へ・のバネ力FMを付勢するよう配設
された折点スプリングと、゛前記制御ピストンの入力液
室に臨む流路開口に対向して配設され、皺制御ピストン
の入力液室側への一定量移動時に前配流路の開口を閉じ
る弁体と、前記入力液室に小なる液圧受圧面積ム1で臨
むと共に、出力液室に大なる液圧受圧面積A4で臨む仁
とによシこれら両液室からの異なる液圧力作用を受けて
移動しうるよう設けられた減圧ピストンと、この減圧ピ
ストンに出力液室方向へのバネ力F、を付勢するよう配
設され六ホールドスプリングとを備え、前記各液圧受圧
面積およびバネ力を次式〇)、(ロ)の関係に設定した
ことを特徴とする車2両ブレーキ系の液圧制御1装置。The present invention also solves a certain difficulty in the process of hydraulic pressure reduction control, which is caused by the fact that the brake hydraulic pressure on the rear wheel side lags behind the drop in hydraulic pressure in the mask cylinder.
The characteristic line of the rise and fall of brake fluid pressure is approximately approximated to obtain desirable braking control. By facing the pressure-receiving area A1 and facing the output liquid chamber leading to the rear wheel brake system of the vehicle with a large hydraulic pressure-receiving area A, it is possible to move under the different hydraulic pressure effects from these two liquid chambers. A control piston is provided as shown in FIG. and ``a valve body disposed opposite to the flow passage opening facing the input liquid chamber of the control piston and closing the opening of the front distribution passage when the wrinkle control piston moves a certain amount toward the input liquid chamber side; It faces the liquid chamber with a small hydraulic pressure receiving area M1, and faces the output liquid chamber with a large hydraulic pressure receiving area A4, so that it can move under the different hydraulic pressure effects from these two liquid chambers. A pressure reducing piston is provided, and six hold springs are arranged so as to bias the pressure reducing piston with a spring force F in the direction of the output liquid chamber. A hydraulic pressure control device for a two-vehicle brake system, characterized in that it is set to the relationship of (b).
にある。It is in.
以下本発明を図面に示す実施例に基づいて説明するが、
本例は車両ブレーキ系を独立2系に区分した二重配管型
に適用した場合の本のを示している。The present invention will be explained below based on embodiments shown in the drawings.
This example shows a book in which the vehicle brake system is applied to a double piping type in which the vehicle brake system is divided into two independent systems.
図において1はパルプがディであh、2−3−4.5.
6は閉塞側の小径部から開放側に向って順次同心大径を
なすように段付に形成されたシリンダであシ、最大径の
シリンダ6に続くネジ部7には開放端を閉塞するプラグ
8が螺合同着されている。In the figure, 1 indicates the pulp, 2-3-4.5.
Reference numeral 6 denotes a stepped cylinder with concentric larger diameters from the small diameter part on the closed side toward the open side, and a threaded part 7 following the cylinder 6 with the largest diameter has a plug for closing the open end. 8 is screwed together.
9はシリンダ5.6に段付滑合された7エイルセイ7ピ
メトン、10はこの7エイ鴬七イフピストン9の内筒シ
リンダ部91に滑合された第1減圧ピストン、11は7
エイルセイ7ピストン9の内筒シリンダ部9bおよびパ
ルプがディlのシリンダ3に滑合された第2減圧ピスト
ンであシ、これらフェイルセイフピストン9、@1−第
2減圧ピストン10*11の構成、作動にらいそは後述
する。Reference numeral 9 indicates a 7-air seal 7 pimeton which is slidably fitted to the cylinder 5.6, 10 is a first pressure reducing piston which is slidably fitted to the inner cylinder portion 91 of the 7-air piston 9, and 11 is a 7
The inner cylinder part 9b of the fail-safe piston 9 and the pulp are the second pressure reducing pistons that are slidably fitted to the cylinder 3 of the fail-safe piston 9, @1-second pressure reducing piston 10*11, The operation method will be explained later.
12はMl減圧ピストンlOの段付内筒シリン710m
、10bK段付滑合された制御ピストンであシ、その大
径端はA系の出力液室am (後輪ブレーキ装置に連通
)に臨み、小径端はA系の入力液室ax (マスクシ
リンダに連通)に臨んでいる。そしてこの制御ピストン
12には大e小径端の両側を接続する液流路121が形
成されておシ、その液流路121の入力液室9への開口
紘後記弁体13と協働する弁座12bをなすように設け
られている。14は制御ピストン12に出力液室a雪方
向へのバネ力を付勢する制御スプリングであシ、該制御
ピストン12に組付けられたスプリング座15と、キャ
ップ状の頭部に弁体13を係止するスプリングM116
の脚部との間に張設されている。17はホールドスゲリ
ングであ〕、前記制御ピストン12の弁座12bに対向
されるように配設される弁体13を、キャップ状のスプ
リング座1′6の頭部から突出した状態に係止させてい
る軽荷重のものである。12 is a stepped inner cylinder cylinder 710m with Ml decompression piston lO
, 10bK stepped sliding-fit control piston, the large diameter end of which faces the A system's output fluid chamber am (communicated with the rear wheel brake system), and the small diameter end facing the A system's input fluid chamber ax (mask cylinder). (Communication) This control piston 12 is formed with a liquid flow path 121 that connects both sides of the large and small diameter ends, and the opening of the liquid flow path 121 to the input liquid chamber 9 is a valve that cooperates with the valve body 13 described later. It is provided so as to form a seat 12b. Reference numeral 14 denotes a control spring that applies a spring force to the control piston 12 in the direction of the output liquid chamber a, and includes a spring seat 15 assembled to the control piston 12 and a valve body 13 mounted on a cap-shaped head. Locking spring M116
It is stretched between the legs of the Reference numeral 17 denotes a hold sgelling, which locks the valve body 13, which is disposed so as to face the valve seat 12b of the control piston 12, in a state protruding from the head of the cap-shaped spring seat 1'6. It is a light load type.
18.18はシールリング%19は入力液室11をマス
クシリンダ(図示せず)と接続する入力ポート、20は
同人力液室1Mを前輪側ブレーキ装置(図示せず)K接
続する出方ポート、21は出力液室a嘗を後輪側ブレー
キ装置(図示せず)に接続する出力/−)である。18. 18 is a seal ring % 19 is an input port that connects the input fluid chamber 11 with a mask cylinder (not shown), 20 is an output port that connects the human power fluid chamber 1M to the front wheel brake system (not shown) K , 21 is an output (-) that connects the output liquid chamber a to the rear wheel brake device (not shown).
このような構成のA基液圧制御機構において、いま第1
減圧ピストン10を固定的なものとみなして出力液圧の
特性を考えると、車両制動時にマスクシリンダから入力
液室a1に液圧が伝えられると、この入力液圧Palは
出カポ−)20を介して前輪ブレーキ装置(図示せり)
、に直接伝えられ、また制御ピストン12の流路12m
を通じて出方液蔓a l 、−次いで出カポ−)21T
h介して後輪ブレーキ装置(図示せず)に伝えられる。In the A base hydraulic pressure control mechanism with such a configuration, the first
If we consider the characteristics of the output hydraulic pressure with the decompression piston 10 as a fixed thing, when the hydraulic pressure is transmitted from the mask cylinder to the input liquid chamber a1 during vehicle braking, this input hydraulic pressure Pal will be Front wheel brake system (not shown)
, and the flow path 12m of the control piston 12.
21T
h to the rear wheel brake system (not shown).
ここで制御ピストン12の大e小径端の断面積をA雪
、A1 (ム■〉ム1)、制御スゲリング14のバネ力
を1重とすると、
P0〜F/A@−ム、・・・−・(1)なるPoを液圧
折点としてこの後は
一一一ム1/ム冨(く1)・・・−・ω)なる低り上昇
率で出力液室P0の上昇が行なわれるととkなる。すな
わち、制御ピストン12が軸方向の液圧作用力の差に基
づいて折点スプリング14に抗し図の右方に移動し、流
路12mの開口の弁座12bが弁体13に当合して#流
路12mの連通を閉じ、入力液圧P、□の上昇に伴なっ
て制御ピストン12が軸方向の往復動を繰シ返しながら
出力液圧Palの緩かな上昇を行なわせることになるの
である。第2図の液圧制御特性線図における突lI(ハ
)はこの特性線を示している。Here, the cross-sectional area of the large and small diameter ends of the control piston 12 is defined as A.
, A1 (mu ■〉mu 1), assuming that the spring force of the control sgel ring 14 is one force, then P0~F/A@-mu,... (1) With Po as the hydraulic pressure breaking point, from here on If the output liquid chamber P0 is raised at a low rate of rise of 111mu1/mufu (ku1...-.omega.), then k. That is, the control piston 12 moves to the right in the figure against the corner spring 14 based on the difference in the hydraulic pressure acting force in the axial direction, and the valve seat 12b at the opening of the flow path 12m comes into contact with the valve body 13. # Closes the communication of the flow path 12m, and as the input hydraulic pressure P and □ increase, the control piston 12 repeatedly reciprocates in the axial direction, causing the output hydraulic pressure Pal to gradually increase. It is. In the hydraulic pressure control characteristic diagram of FIG. 2, the curve lI (c) indicates this characteristic line.
次ぎにブレーキ讐一時の液圧減圧特性を考えると、第1
減圧ピストン12が前述のように固定的であると仮定す
ると、ブレーキ解放に伴い、入力液圧Pat h降下す
るが、このことKよって制御ピストン12と弁体13に
よる入−出力液室間の連通状態に変化はなく、これら両
室’jsalの間は遮断されたままとなっている。Next, considering the hydraulic pressure reduction characteristics during brake friction, the first
Assuming that the pressure reducing piston 12 is fixed as described above, the input hydraulic pressure Path falls as the brake is released. There is no change in the condition, and the two chambers 'jsal remain blocked.
従う子制御ピストン12紘、役付の肩部が第1減圧ピ・
トンlOの段付内筒の肩−に係止して停止されるまで移
動し、この後入力液圧が出力液圧よ〕も降下した時点で
弁体13に作用する差圧力がホールドスプリング17の
バネ力を上(ロ)ると出力液室a、と入力液室1重の連
通が行なわれ、出力液圧P、、O降下が得られることに
なる。このようなことから、プレーヤ解放時には出力液
圧の減圧特性は入力液圧の充分な降下が行なわれるまで
殆どり、1なわれることがない結果となるのである。The subordinate control piston 12 has a shoulder with a role of the first pressure reducing piston.
The valve body 13 moves until it is stopped by being stopped by the shoulder of the stepped inner cylinder, and then the differential pressure acting on the valve body 13 is applied to the hold spring 17. When the spring force is increased (b), the output liquid chamber a and the input liquid chamber are communicated with each other in a single layer, and a drop in the output liquid pressure P, , O is obtained. For this reason, when the player is released, the pressure reduction characteristic of the output hydraulic pressure remains at almost 1 until the input hydraulic pressure is sufficiently lowered.
なお、このような構成において入力液圧の降下時に制御
ピストンが出力液室の容積を拡大させる方向に移動する
ことから、制御ピストンの断面積を充分大きくとるよう
にすることも考えられるが、このよう、な形式では外圧
時の制御41特性のために折点スグリ、ングのバネ力を
極めて大きくシなければならないし、装置も大盤になる
などの不都合がある。In addition, in such a configuration, since the control piston moves in the direction of expanding the volume of the output liquid chamber when the input hydraulic pressure decreases, it is possible to make the cross-sectional area of the control piston sufficiently large. In this type, the spring force of the bending point must be extremely large due to the control characteristics at the time of external pressure, and there are disadvantages such as the need for a large-sized device.
そこで本発明においては、制御ピストン12とは独立し
てブレーキ解放時における出力液室の容積拡大にのみ機
能する1gl減圧ピストンlOを設けて、ブレーキ液圧
減圧時の出力液圧の緘;圧制御特性を昇圧時の特性線と
出来るだけ近似させるようにして出力液圧の減圧遅れを
解消させているのである。Therefore, in the present invention, a 1gl pressure reducing piston 1O is provided which functions only to expand the volume of the output fluid chamber when the brake is released, independently of the control piston 12, to control the output fluid pressure when the brake fluid pressure is reduced; The delay in reducing the output hydraulic pressure is eliminated by making the characteristics as close as possible to the characteristic line during pressure increase.
このための構成について述べると、第1減圧ピストン1
0は、前述した制御ピストン12との間のシールリング
18と、7エイルセイフピストン9との間に介在された
シールリング22と、更にシリンダ6との間に介iされ
たピストン力、f23とによって、入・出力液室a1
、alに対し前者に対し小なる液圧受圧面積で臨むよう
夫々、A4 * As (AI>A4 )で臨み、通
常はバネ力F、のホールドスプリング24によって出力
液室a雪方向に抑圧偏倚されている。そして仁の第1減
圧ピストン10はメレーキ作動時には轢ヰし、ブレーキ
解放時には出力本家1諺の容積を拡大するように速やか
に移動するように、その両端側の液圧受圧面積A、、A
4と、ホールドスゲリング24のバネ力F、を前記中、
(1)式の関係において次のよ1うに定めればよい。To describe the configuration for this purpose, the first pressure reducing piston 1
0 is the piston force exerted between the seal ring 18 between the aforementioned control piston 12, the seal ring 22 interposed between the safe piston 9, and the cylinder 6, and f23. Depending on the input/output liquid chamber a1
, al are faced with A4*As (AI>A4) so that the area of receiving hydraulic pressure is smaller than that of the former, and the output liquid chamber a is normally suppressed and biased in the snow direction by the hold spring 24 with a spring force of F. ing. The first decompression piston 10 is designed so that it runs over when the brake is activated, and moves quickly to expand the output volume when the brake is released.
4 and the spring force F of the holdsgeling 24 in the above,
In relation to equation (1), it may be determined as follows.
ただしδ鳳は正の定数であシ、ブレーキ液圧減圧時に第
1減圧ピ、ストン10の移動が直ちに生ずるよう可及的
小なる値であることが望ましく、またδ、は零又は正の
定数であシ、制御ピストン12とM1減圧ピストン10
の一体的な移動を行なわせることから、δ宜ヰ0である
ことが実用上は望ましいものである。However, δ is a positive constant, and it is desirable that the value is as small as possible so that the first pressure reducing piston and piston 10 move immediately when the brake fluid pressure is reduced, and δ is zero or a positive constant. Ashi, control piston 12 and M1 pressure reducing piston 10
It is practically desirable for δ to be 0 in order to allow the unitary movement of δ.
以上の構成は、図面に示した実施例の二重配管型液圧制
御装置における一系側の液圧制御機構に・′:
ついて述べておυ、この説明から明らかな如く、四構成
はそのまま一系統型の液圧制御軸装置としても適用でき
ることは明らかであろう。The above configuration is described for the hydraulic pressure control mechanism on the first system side of the double piping type hydraulic control device of the embodiment shown in the drawing.As is clear from this explanation, the four configurations can be used as they are. It is obvious that the present invention can also be applied as a single-system hydraulic control shaft device.
次ぎに前記実施例におけるもう一系側の受動型液圧制御
機構について説明すると、図において25は1g2減圧
ピストン11に形成されたバランスシリンダ111に滑
合されているバランスシリンダであル、その一端は前記
出力液室・□−に突出して制御ピストン12の端部と対
向され、フェイルセイフクリツノ26を介して軸方向の
醋反限界が設定されてbる。iた他端はB系側の入力液
室す、を挿通して第2減圧ピストン11の解放先端側の
出力液室す、に突出し、この第2減圧ピストン11の解
放先端に形成した弁座11bと協働して入・出力液室す
、、’b、の間を連通、遮断する開閉弁部を構成してい
る。なお27はバランスピストン25をA系側に軽く押
圧するセットスプリングである。Next, the passive hydraulic pressure control mechanism of the other system in the above embodiment will be explained. In the figure, 25 is a balance cylinder that is slidably fitted to the balance cylinder 111 formed on the 1g2 pressure reducing piston 11, and one end of the balance cylinder 25 is slidably fitted to the balance cylinder 111 formed on the 1g2 pressure reducing piston 11. protrudes into the output liquid chamber □- and is opposed to the end of the control piston 12, and an axial reaction limit is set via the fail-safe knob 26. The other end of the second pressure reducing piston 11 is inserted into the input liquid chamber on the B system side and protrudes into the output liquid chamber on the released tip side of the second pressure reducing piston 11, and has a valve seat formed at the released tip of the second pressure reducing piston 11. In cooperation with 11b, it constitutes an on-off valve section that communicates and shuts off communication between the input and output liquid chambers S, 'b. Note that 27 is a set spring that lightly presses the balance piston 25 toward the A system side.
このような構成において、バランスピストン25は−A
−B両系の出力液室*@hb@に同面積で臨み、また第
2減圧ピストン11も同様に両系の出力液室*@@bH
に同面積で臨むこと・にょシ、A系側の出力液室1鵞の
上昇6下降に一致してB糸側出力液室す、の液圧上昇6
下降が得られることになるのである。In such a configuration, the balance piston 25 is -A
-B The output liquid chambers of both systems *@hb@ have the same area, and the second pressure reducing piston 11 also faces the output liquid chambers of both systems *@@bH
・As the output liquid chamber on the A system side rises and falls with the same area, the liquid pressure in the B yarn side output liquid chamber rises.
This will result in a decline.
なお、27はB未入力液室b1を同系マスクシリンダに
接続する入力ポート、28は同人力液室b1をB糸側前
輪ブレーキ装置に接続する出力−−)、29は出力液室
す、をB糸側後輪ブレーキ装置に接続する出力ポートで
ある。In addition, 27 is an input port that connects the B non-input liquid chamber b1 to the same type of mask cylinder, 28 is an output that connects the same person's power liquid chamber b1 to the B yarn side front wheel brake device, and 29 is an output liquid chamber. This is an output port connected to the B yarn side rear wheel brake device.
以上述べた如く、本発明よシなる車両ブレーキ系の液圧
制御装置は、第2図の破#(ロ)で示すような昇圧時の
特性(イ)線に近似した液圧減圧特性を、比較的簡単な
る構成によって得ることができ、このような液圧制御に
よって後輪ブレーキ液圧降下の遅れによる後輪口、りの
難点は解消され、−その実用上の利益は大なるものであ
る。As described above, the vehicle brake system hydraulic pressure control device according to the present invention has a hydraulic pressure reduction characteristic that approximates the pressure increase characteristic line (A) as shown by break # (B) in FIG. This can be achieved with a relatively simple configuration, and this type of hydraulic pressure control eliminates the difficulty of rear wheel opening due to a delay in the drop in rear wheel brake fluid pressure, and its practical benefits are great. .
図面第1図は本発明よシなる液圧制御装置の一実施例を
示す縦断面図、第2図は同装置による液圧上昇・降下の
制御特性線図である。
1:パル2がディ、
2.3,4.5.6:シリンダ、
7:ネジ部、 8:フラグ、9:フェイルセ
イフピストン、
9a:内筒シリンダ部、10:第1減圧ピストン、10
aslOb:段付内筒シリ7ダ、
11 :gz減圧ピストン、
11&:バランスシリンダ、
11b:弁座、 12:制御ピストン、12a
:流路、 12b=弁座、13:弁体、
14:折点スプリング、15.16:スプリング
座、
17:ホールドスゲリング、
18:シールリング、 19:入力ポート、20.2
1:出力ポート、
22:シールリング、 23:ピストンカ、グ、24
:ホールドスプリング、
25:バランスピストン、
26:7エイルセイ7クリツプ、
27:入力ポート、 28.29:出力ポート。FIG. 1 is a longitudinal cross-sectional view showing an embodiment of a hydraulic pressure control device according to the present invention, and FIG. 2 is a control characteristic diagram for increasing and decreasing hydraulic pressure by the same device. 1: Pal 2 is D, 2.3, 4.5.6: Cylinder, 7: Threaded part, 8: Flag, 9: Fail-safe piston, 9a: Inner cylinder cylinder part, 10: First pressure reducing piston, 10
aslOb: Stepped inner cylinder 7, 11: GZ pressure reducing piston, 11&: Balance cylinder, 11b: Valve seat, 12: Control piston, 12a
: flow path, 12b=valve seat, 13: valve body,
14: Breaking point spring, 15.16: Spring seat, 17: Holding ring, 18: Seal ring, 19: Input port, 20.2
1: Output port, 22: Seal ring, 23: Piston force, 24
: Hold spring, 25: Balance piston, 26: 7 Elisei 7 clip, 27: Input port, 28.29: Output port.
Claims (1)
ム1で臨むと共に、車両後輪ブレーキ装置に通ずる出力
液室に大なる液圧受圧面積人讃で臨むことによル、これ
ら両液室からの異なる液圧力作用を受けて移動しうるよ
う設けられ、かっこれら両液室を連通する流路の形成さ
れた制御ピストンと、この制御ピストンに出力液室方向
へのバネ力Fiを付勢するよう配設された折点スフリン
ダと、前記制御ピストンの入力液室に臨む流路開口に対
向して配設され、該制御ピストンの入力液室側への一定
量移動時に前記流路の開口を閉じる弁体と、前記入力液
室に小なる液圧受圧面積ム。 で臨むと共に1出力液室に大なる液圧受圧面積A4で臨
むことによシこれら両液室からの異なる液圧力作用゛・
を受けて移動しうるよう設けられた滅1 圧ピストンと、この減圧ピストンに出力液室方向へのバ
ネ力F、を付勢するよう配設されたホールドスプリング
とを備え、前記各液圧受圧面積およびバネ力を次式fO
,に)の関係に設定したことを特徴とする車両ブレーキ
系の液圧側#装置。[Claims] By facing the input liquid chamber leading to the mask cylinder with a small hydraulic pressure receiving area, and facing the output liquid chamber leading to the rear wheel brake system of the vehicle with a large hydraulic pressure receiving area. A control piston is provided so as to be able to move under the action of different fluid pressures from these two fluid chambers, and a control piston is provided with a flow path that communicates these two fluid chambers. A bending point suffler arranged to bias a spring force Fi, and arranged opposite to a flow path opening facing the input liquid chamber of the control piston, and move the control piston by a certain amount toward the input liquid chamber side. a valve body that sometimes closes the opening of the flow path; and a small hydraulic pressure receiving area in the input liquid chamber. By facing the single output liquid chamber with a large hydraulic pressure receiving area A4, different hydraulic pressure effects from these two liquid chambers can be achieved.
The pressure reducing piston is provided so as to be able to move in response to the received pressure, and a hold spring is provided so as to bias the pressure reducing piston with a spring force F in the direction of the output liquid chamber. The area and spring force are expressed by the following formula fO
A hydraulic pressure side device for a vehicle brake system, characterized in that it is set in the following relationship.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11753381A JPS5820549A (en) | 1981-07-27 | 1981-07-27 | Fluid pressure controller of vehicle brake system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11753381A JPS5820549A (en) | 1981-07-27 | 1981-07-27 | Fluid pressure controller of vehicle brake system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5820549A true JPS5820549A (en) | 1983-02-07 |
Family
ID=14714140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11753381A Pending JPS5820549A (en) | 1981-07-27 | 1981-07-27 | Fluid pressure controller of vehicle brake system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5820549A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6192189U (en) * | 1984-11-22 | 1986-06-14 | ||
JPS62143754A (en) * | 1985-12-19 | 1987-06-27 | Akebono Brake Ind Co Ltd | Hydraulic pressure adjusting valve |
JPS63154069A (en) * | 1986-05-20 | 1988-06-27 | Sanyo Electric Co Ltd | Switching control type power source circuit |
US5169212A (en) * | 1990-12-21 | 1992-12-08 | Ford Motor Company | Reversible proportioning valve |
US5380073A (en) * | 1992-09-25 | 1995-01-10 | Wabco Standard Gmbh | Dual circuit brake valve system |
-
1981
- 1981-07-27 JP JP11753381A patent/JPS5820549A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6192189U (en) * | 1984-11-22 | 1986-06-14 | ||
JPS62143754A (en) * | 1985-12-19 | 1987-06-27 | Akebono Brake Ind Co Ltd | Hydraulic pressure adjusting valve |
JPS63154069A (en) * | 1986-05-20 | 1988-06-27 | Sanyo Electric Co Ltd | Switching control type power source circuit |
US5169212A (en) * | 1990-12-21 | 1992-12-08 | Ford Motor Company | Reversible proportioning valve |
US5380073A (en) * | 1992-09-25 | 1995-01-10 | Wabco Standard Gmbh | Dual circuit brake valve system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4239294A (en) | Motorcycle hydraulic brake system with brake force regulator | |
US4229050A (en) | Brake force regulator for a motorcycle hydraulic brake system | |
US4053186A (en) | Proportional valve apparatus for use in a rear brake system of a vehicle | |
JPS5820549A (en) | Fluid pressure controller of vehicle brake system | |
GB1496511A (en) | Fluid pressure braking systems for vehicles | |
US4116493A (en) | Brake pressure control valve | |
US3768876A (en) | Proportioning valve with load sensing blend back | |
JPS5643054A (en) | Double piping liquid pressure controller | |
US4102551A (en) | Fluid pressure control valve for vehicle braking systems | |
JPS6033697B2 (en) | Brake force correction device | |
JP2772542B2 (en) | Hydraulic proportioning valve | |
JPS6181260A (en) | Hydro booster for anti-skid system | |
JPS621003Y2 (en) | ||
JPS5810671Y2 (en) | Load responsive proportion valve | |
JP3273386B2 (en) | Vehicle brake pressure control device | |
JPS5836609Y2 (en) | Hydraulic pressure control device for two-system control device | |
US4561699A (en) | Brake pressure control device for vehicle braking systems | |
JPS6330595Y2 (en) | ||
JPH0352595Y2 (en) | ||
JPS625964Y2 (en) | ||
JPS5967146A (en) | Actuator for anti-skid system | |
JPS6243347A (en) | Anti-skid controller | |
JPS6216120Y2 (en) | ||
JPS62258846A (en) | Fluid pressure control device responding to speed reduction | |
JPH0127900B2 (en) |