JPS58198591A - Method and apparatus for concentrating methane - Google Patents
Method and apparatus for concentrating methaneInfo
- Publication number
- JPS58198591A JPS58198591A JP8228682A JP8228682A JPS58198591A JP S58198591 A JPS58198591 A JP S58198591A JP 8228682 A JP8228682 A JP 8228682A JP 8228682 A JP8228682 A JP 8228682A JP S58198591 A JPS58198591 A JP S58198591A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- methane
- pressure
- tower
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Drying Of Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
現在、炭鉱などのガス抜きメタンの利用は自家発電、暖
房などの自家消費、また一部都市ガスに供給している場
合もある。発電に利用する場合はメタン濃度が50%以
下になると発電効率が低下し、また都市ガスに利用する
場合もメタン濃度が低下すると、高カロリーガスを混合
しカロリー調整を行わなければならない。従ってこれら
炭鉱排ガスの30〜40チ程度のメタンガスを濃縮して
利用率を向上させることは貴重なエネルギー資源の有効
利用の面から重要であり、簡易な低コストのメタン濃縮
装置が注目されている。DETAILED DESCRIPTION OF THE INVENTION At present, degassed methane from coal mines and the like is used for private power generation, private consumption such as heating, and in some cases is supplied to city gas. When used for power generation, power generation efficiency decreases when the methane concentration falls below 50%, and when used for city gas, when the methane concentration decreases, it is necessary to adjust the calorie content by mixing high-calorie gas. Therefore, improving the utilization rate by concentrating 30 to 40 inches of methane gas from these coal mine exhaust gases is important from the perspective of effective use of valuable energy resources, and simple, low-cost methane concentrators are attracting attention. .
一方混合ガスの濃縮1分離法としては従来の深冷分離法
があるが、この方法では高純度のガスがえられるという
利点はあるが、莫大な電力や設備が必要となるので簡易
なメタン濃縮法として経済性の面で実用的でない。また
吸着剤を用いて加圧1
一減圧をくり返しガス分離を行う方法はPSA(プレノ
シャースウイングーアドソープション)法と呼ばれ、そ
の操作法も種々考案されており、空気の酸素、窒素分離
を代表例に、空気中の水分除去、その他のガス精製に用
いられ実用化されている。しかし公知のPSA法の加圧
状能でガスを捕導入原ガスに対する製品ガスの回収率を
低下させる欠点がある。空気中の酸素と窒素の分離を例
にとれば導入された原料空気中の酸素に対して製品酸素
の回収率は20〜65%と低い。またこれら公知のPS
A法で炭鉱排ガス(30〜40%メタン。On the other hand, the conventional cryogenic separation method is a method for concentrating and separating mixed gases, but although this method has the advantage of producing high-purity gas, it requires a huge amount of electricity and equipment, so it is not suitable for simple methane concentration. It is economically impractical as a law. In addition, the method of separating gases by repeating pressurization and depressurization using an adsorbent is called the PSA (prenosher swing adsorption) method, and various operating methods have been devised. It has been put into practical use for removing moisture from the air and purifying other gases, with nitrogen separation being a typical example. However, the known PSA method has the disadvantage of reducing the recovery rate of product gas with respect to the raw gas that captures gas due to its pressurized ability. Taking the separation of oxygen and nitrogen in the air as an example, the recovery rate of product oxygen is as low as 20 to 65% relative to the oxygen in the introduced raw material air. Also, these known PS
Method A produces coal mine exhaust gas (30-40% methane).
12〜14%酸素 48〜56チ窒素)のメ、タン濃縮
を図ろうとする場合にも上記の短所があられれ。The above-mentioned disadvantages also occur when attempting to concentrate methane (12-14% oxygen, 48-56% nitrogen).
さらにガス中に存在する微量の水分、二酸化炭素のため
濃縮効率が低下して、実用性に乏しくなる。Furthermore, trace amounts of moisture and carbon dioxide present in the gas reduce the concentration efficiency, making it impractical.
しかも吸着圧を10kgZα2(絶対圧)以上で操作す
るとコンプレッサーの動力費が増大し、装置の保守管理
もむづかしくりる。このよ恒な理由から空気−メタン系
混合ガスのPSA法によるメタン濃゛縮の実用装置はま
だ出現していない。Moreover, if the adsorption pressure is operated at 10 kgZα2 (absolute pressure) or higher, the power cost of the compressor will increase and the maintenance of the device will be difficult. For this reason, a practical device for concentrating methane using the PSA method for air-methane mixed gas has not yet appeared.
本発明は北海道長方部地区に産出する天然ゼオライト吸
着剤のうちクリノプチロライトが窒素に比しメタンの吸
着速度が非常に遅い特異な吸着特性を示すことを知り、
この特性を活し、公知のPSA法の原理を応用し、真空
から所定圧、所定圧から大気圧付近までの濃縮、捕集操
作を常に非平衡圧状態で圧変動させる非平衡圧操作法と
真空再生を交互に反復させることによりメタン回収率の
向上、塔の小型化を図る。さらにメタン濃縮に悪影響を
及ばず水分、二酸化炭素を除去する前処理塔を付加して
炭鉱排ガスの低濃度メタンガスを都市ガス用などの燃料
として十分使用可能な50〜60%程度に濃縮するだめ
の実用装置として企図したものである。The present invention was based on the knowledge that among the natural zeolite adsorbents produced in the Nagatabu area of Hokkaido, clinoptilolite exhibits unique adsorption characteristics in that the adsorption rate of methane is extremely slow compared to nitrogen.
Taking advantage of this characteristic and applying the principle of the well-known PSA method, we have created a non-equilibrium pressure operation method in which the concentration and collection operations are constantly varied in a non-equilibrium pressure state from vacuum to a predetermined pressure and from a predetermined pressure to near atmospheric pressure. By repeating vacuum regeneration alternately, we aim to improve the methane recovery rate and downsize the tower. Furthermore, by adding a pre-treatment tower that removes moisture and carbon dioxide without adversely affecting methane concentration, it is possible to concentrate low-concentration methane gas from coal mine exhaust gas to about 50-60%, which can be used as fuel for city gas etc. It was intended as a practical device.
第1図により本発明の詳細な説明する。天然ゼオライト
吸着剤を充填した濃縮塔A、A塔と同じ吸着剤を充填し
、かつA塔より小さな容積(V1〜1/目の容積)の脱
二酸化炭素塔B、加圧吸着−熱再生で、操作される除湿
塔C5,大気圧吸着−熱再生で操作される除湿塔C2を
用意し、C2及びC2塔で除湿した空気−メタン系混合
ガスをB塔を通してA塔の下部より圧入すると、B塔で
は原ガスに含捷れる二酸化炭素が除去され、A塔では天
然ゼオライト吸着剤粒子内における窒素、酸素、メタン
の拡散速度の差により塔内空隙部のガス組成が塔上部で
メタン濃度が高くなるような濃度勾配が形成される。塔
内圧が所定圧に々っだ時にパルプV、を閉じV、、V、
を開けてA、B塔内を減圧する。その初期にメタン濃度
の高いガスを放出する。このガスを濃縮メタンガスとし
てタンクに捕集する。A。The present invention will be explained in detail with reference to FIG. Concentration tower A packed with natural zeolite adsorbent, decarbonization tower B packed with the same adsorbent as tower A but with a smaller volume than tower A (volume of V1 to 1/th), pressurized adsorption-thermal regeneration , a dehumidification tower C5 is operated, and a dehumidification tower C2 is operated by atmospheric pressure adsorption and thermal regeneration. When the air-methane mixed gas dehumidified in the C2 and C2 towers is injected from the bottom of the A tower through the B tower, In the B tower, carbon dioxide contained in the raw gas is removed, and in the A tower, the gas composition in the voids in the tower changes due to the difference in the diffusion rate of nitrogen, oxygen, and methane in the natural zeolite adsorbent particles, and the methane concentration in the upper part of the tower changes. An increasing concentration gradient is formed. When the internal pressure of the tower reaches a predetermined pressure, the pulp V is closed, V, , V,
Open the A and B towers to reduce the pressure inside them. At the beginning, gas with high methane concentration is released. This gas is collected in a tank as concentrated methane gas. A.
B塔内圧の降下と共に放出ガスのメタン濃度は低下する
が塔内圧が大気圧になった時点でB塔、A塔の各中間部
に接続された排気管の■11及びv12を開は真空ポン
プ5,4で真空再生する。このように加圧吸着(ガス導
入)−ガス捕集−真空再生をくり返してメタン濃縮を行
うが、ガス捕集工程において捕集時間(あるいは捕集圧
範囲)を調節することにより任意の濃度のメタンガスを
えることが出来るが、濃度を高めるとメタン回収率が低
下も好ましい。50%以下で原ガスよりメタン濃度の高
いガスは回収管8を通して原ガスタンクに回収し、原ガ
スの損失を防止する操作を付加することもある。このよ
うに加圧状態から大気圧造の減圧過程で製品ガスを捕集
、あるいは回収することにより系外へのガス放出を防止
し、導入原ガスに対する濃縮メタンガスの回収率を増大
させるように改善されたメタン濃縮法を提供するもので
ある。The methane concentration of the released gas decreases as the internal pressure of the B tower decreases, but when the internal pressure of the tower reaches atmospheric pressure, the vacuum pump opens the exhaust pipes Perform vacuum regeneration in steps 5 and 4. In this way, methane concentration is performed by repeating pressure adsorption (gas introduction) - gas collection - vacuum regeneration, but by adjusting the collection time (or collection pressure range) in the gas collection process, it is possible to achieve an arbitrary concentration. Although methane gas can be obtained, it is also preferable that the methane recovery rate decreases as the concentration increases. Gas having a methane concentration higher than that of the raw gas by 50% or less is recovered into the raw gas tank through the recovery pipe 8, and an operation may be added to prevent loss of the raw gas. In this way, by collecting or recovering the product gas from a pressurized state during the depressurization process of atmospheric forging, the gas is prevented from being released outside the system, and improvements have been made to increase the recovery rate of concentrated methane gas relative to the raw gas introduced. The present invention provides a method for concentrating methane.
さらに加圧工程(ガス導入、濃縮工程)で真空から大気
圧造のガス導入に加圧ガスを用いることはコンプレッサ
ーの動力費を増大させ不都合である。Furthermore, using pressurized gas to introduce gas from vacuum to atmospheric pressure in the pressurization process (gas introduction, concentration process) increases the power cost of the compressor, which is inconvenient.
したがってガス導入を2系列にし、真空から大気圧造の
ガス導入を大気圧のガスを導入し、大気圧以上のガス導
入にのみ加圧ガスを用いるようにしてコンプレッサーの
動力費を軽減するように改善された装置を提供するもの
である。また本発明のA、B塔に充填する吸着剤として
選定した天然ゼオラ、イト吸着剤のメタン、窒素、酸素
の吸着特性から塔内圧を5kg/Crn2(絶対圧)以
上にしてもメタン濃度2回収率の増加は顕著でなくコン
プレッサーの動力費を増大させるのみである。このよう
な理由から濃縮塔内における所定圧の上限は5 k1M
m2程度が好ましい。このように比較的低圧の操作条件
であることも拳法の利点である。Therefore, we decided to reduce the power cost of the compressor by using two lines for gas introduction, introducing gas at atmospheric pressure from vacuum to atmospheric pressure, and using pressurized gas only for introducing gas above atmospheric pressure. An improved device is provided. Furthermore, due to the methane, nitrogen, and oxygen adsorption properties of the natural zeola and nitride adsorbents selected as the adsorbents to be filled in the A and B columns of the present invention, methane concentration of 2 can be recovered even if the column internal pressure is increased to 5 kg/Crn2 (absolute pressure) or higher. The increase in rate is not significant and only increases the cost of powering the compressor. For this reason, the upper limit of the predetermined pressure in the concentration column is 5 k1M.
About m2 is preferable. This relatively low pressure operating condition is also an advantage of Kenpo.
次に真空再生工程は本発明では特に重要である真空再生
操作によってA塔では吸着剤から窒素。Next, in the vacuum regeneration step, which is particularly important in the present invention, nitrogen is removed from the adsorbent in the A column by a vacuum regeneration operation.
酸素の脱着、B塔で主に二酸化炭素の脱着が行われるが
A、B塔に充填する天然ゼオライト吸着剤の窒素、酸素
、二酸化炭素に対する吸着は大気圧以下の低圧範囲で顕
著な吸着を示し、大気圧以上の高圧範囲では吸着の増加
は少ない。即ち大気圧以下の真空領域でガスの脱着が顕
著に行われ、真空度を高くする程再生には好都合である
。A、B塔共] Omm (水銀柱)以下の真空が好ま
しい。また窒素、酸素に比して二酸化炭素の吸着力が太
きいためA、B塔を直結し1台の真空ポンプで一定時間
で両塔の吸着剤を再生することは不可能である。Desorption of oxygen and carbon dioxide are mainly carried out in tower B, but the natural zeolite adsorbent packed in towers A and B exhibits remarkable adsorption of nitrogen, oxygen, and carbon dioxide in the low pressure range below atmospheric pressure. , the increase in adsorption is small in the high pressure range above atmospheric pressure. That is, gas desorption occurs significantly in a vacuum region below atmospheric pressure, and the higher the degree of vacuum, the more convenient it is for regeneration. Both towers A and B] A vacuum of 0 mm (mercury column) or less is preferable. Furthermore, since the adsorption power of carbon dioxide is greater than that of nitrogen and oxygen, it is impossible to directly connect towers A and B and regenerate the adsorbent in both towers in a fixed period of time using one vacuum pump.
このような理由からA塔に比して小さく設計されたB塔
とA塔間に設置したバルブv4を閉じA、B塔を個別に
真空再生し、一定時間で両塔の再生が完了するように改
善された装置を提供するものである。なおり塔の容積は
A塔に比べ、小さい程再生には良い結果を与えるが、原
ガスの二酸化炭素量、1サイクルのA塔へのガス導入量
などで決められる。炭鉱排ガスの場合二酸化炭素量は2
%程度であるのでB塔はA塔の1/ 〜1/で十分であ
る。For this reason, the valve v4 installed between the B tower and the A tower, which is designed to be smaller than the A tower, is closed and the A and B towers are vacuum regenerated individually, so that the regeneration of both towers is completed in a certain amount of time. The purpose of this invention is to provide an improved device. The smaller the volume of the screening tower compared to the A tower, the better the results for regeneration, but it is determined by the amount of carbon dioxide in the raw gas, the amount of gas introduced into the A tower in one cycle, etc. In the case of coal mine exhaust gas, the amount of carbon dioxide is 2
%, it is sufficient for the B column to be 1/1 to 1/1 of the A column.
また本発明のA、B塔に充填する吸着剤は窒素。Further, the adsorbent filled in the A and B towers of the present invention is nitrogen.
二酸化炭素とメタンの吸着特性の差が太きいものほど好
ましく2本条件に適応するものとして天然ゼオライト(
北海道長万部産)を選定した。本ゼオライト山X線回析
結果からクリノプチロライトに属しく以下吸着剤をクリ
ノプチロライトと記す)、珪酸6804%、酸化アルミ
ニウム11.66チ、酸化チタン003%、酸化鉄28
12%、酸化マンガン004%、酸化マグネシウム06
2%、酸化カルシウム2.24%、酸化ナトリウム28
8%、酸化カリウム214%、付着水510%、結晶水
5.36%の組成を有するもので、これを破砕、精粒後
水洗して粒子表面の粉体を除去しくあるいは造粒して)
。The larger the difference in the adsorption characteristics of carbon dioxide and methane, the better the natural zeolite (natural zeolite) is suitable for the two conditions.
(Oshamambu, Hokkaido) was selected. From the X-ray diffraction results of this zeolite mountain, the adsorbent belonging to clinoptilolite (hereinafter referred to as clinoptilolite), 6804% silicic acid, 11.66% aluminum oxide, 003% titanium oxide, 28% iron oxide
12%, manganese oxide 004%, magnesium oxide 06
2%, calcium oxide 2.24%, sodium oxide 28
It has a composition of 8% potassium oxide, 214% potassium oxide, 510% attached water, and 5.36% crystallized water, which is crushed, refined and washed with water to remove the powder on the particle surface, or granulated)
.
400〜500℃で加熱活性化して使用する。加熱温度
が500℃以上になると結晶構造の破壊が起り不都合で
ある。It is used after being heated and activated at 400-500°C. If the heating temperature exceeds 500° C., the crystal structure will be destroyed, which is disadvantageous.
次に各基を複塔化してガス導入を連続化する場合の実用
装置の構成を第2図、及びその操作手順を第3図により
説明する。A、A’はクリノプチロライトを充填したメ
タン濃縮塔、B、B’は濃縮塔と同じ吸着剤を充填し、
濃縮塔の砦〜稀の容積をもつ脱二酸化炭素塔+ C1+
C1’ + C2+ C2’はシリカゲルを充填した
除湿塔でC1,C12は加圧吸着−熱再生で操作され+
C21C2’は同じく大気圧吸着−熱再生で操作され
る。2はコンプレッサー、4,5は真空ポンプ、■1〜
■14は自動弁などにより構成され、 A、 A’、
B、 B’は共に真空から大気圧造のガス導入工程(第
1工程)、大気圧から所定圧(5kg/i )迄の加圧
導入工程(第2工程)、所定圧(5kg/cm’ )か
ら大気圧付近までのガス捕集工程(第3工程)、大気圧
以下の真空再生工程(第4工程)の圧変動を連続的に操
り返す。そして
第1ステツプではA、Bは第2工程、 A’ 、 B’
は第1工程が行われ。Next, the configuration of a practical device in which each unit is made into multiple towers for continuous gas introduction will be explained with reference to FIG. 2 and its operating procedure with reference to FIG. 3. A and A' are methane concentration towers filled with clinoptilolite, B and B' are filled with the same adsorbent as the concentration tower,
Concentration tower fortress ~ Carbon dioxide removal tower with rare capacity + C1+
C1' + C2+ C2' is a dehumidification tower filled with silica gel, and C1 and C12 are operated by pressurized adsorption and thermal regeneration.
C21C2' is also operated with atmospheric pressure adsorption-thermal regeneration. 2 is a compressor, 4 and 5 are vacuum pumps, ■1~
■14 consists of automatic valves, etc. A, A',
Both B and B' refer to the gas introduction step from vacuum to atmospheric pressure (first step), the pressure introduction step from atmospheric pressure to a predetermined pressure (5 kg/i) (second step), and the predetermined pressure (5 kg/cm'). ) to near atmospheric pressure (third step) and vacuum regeneration step (fourth step) below atmospheric pressure. And in the first step, A and B are in the second step, A' and B'
The first step is performed.
第2ステツプではA、Bは第3工程、 A’ 、 B’
は第1工程が行われ。In the second step, A and B are in the third step, A' and B'
The first step is performed.
第3ステツプではA、Bは第4工程、 A’ 、 B’
は第2工程が行われ。In the third step, A and B are in the fourth step, A', B'
The second step is performed.
第4ステツプではA、Bは第1工程、 A’ 、 B’
は第3工程が行われるように操作される。即ちパルプ操
作で説明すると。In the fourth step, A and B are the first step, A' and B'
is operated so that the third step is carried out. In other words, let's explain it in terms of pulp operation.
まずコンプレツサー2で加圧した空気−メタン系混合ガ
スをC8を通して除湿し加圧タンク9に導入しておく。First, the air-methane mixed gas pressurized by the compressor 2 is dehumidified through the C8 and introduced into the pressurized tank 9.
第1ステツプではパルプV、 、 V3. V4゜V、
1. V、4を開けl ■21 Vll + VQ I
VIQを閉じBからA塔に加圧タンク9の加圧ガスを
導入する。同時に大気圧のA1.BI塔は真空ポンプ4
.5で真空再生される。第2ステツプではパルプv、
、 v3. v、3. v、4゜を閉じ、 v2. v
、 、 v、 、 v8. v、を開は所定圧のA、B
塔を大気圧付近まで減圧し、放出するガスを捕集タンク
3に捕集する。同時に真空再生されたB′。In the first step, pulp V, , V3. V4゜V,
1. Open V, 4 l ■21 Vll + VQ I
VIQ is closed and pressurized gas from pressurized tank 9 is introduced from B to tower A. At the same time, atmospheric pressure A1. BI tower has vacuum pump 4
.. 5 is vacuum regenerated. In the second step, pulp v,
, v3. v, 3. v, close 4°, v2. v
, , v, , v8. v, opening is at a predetermined pressure A, B
The tower is depressurized to near atmospheric pressure, and the released gas is collected in a collection tank 3. At the same time, B' was vacuum regenerated.
A′塔にはC2で除湿された大気圧の原ガスを導入する
。第3ステツプではパルプv2. v4. v、 、
v、を閉じT V、 、 V、、 、 V、2を開けて
大気圧(7)A、B塔を個別に真空再生する。同時に大
気圧のB′からA′塔へは加圧タンク9から所定圧まで
加圧ガスを導入する。Raw gas at atmospheric pressure, which has been dehumidified with C2, is introduced into the A' tower. In the third step, pulp v2. v4. v, ,
V, is closed and TV, , V, , , V, 2 is opened to atmospheric pressure (7) and the A and B columns are individually vacuum regenerated. At the same time, pressurized gas is introduced from the pressurized tank 9 to a predetermined pressure from the atmospheric pressure B' to the A' column.
第4ステツプではパルプVl + VB + VH+
VH2を閉じ■2゜v、 、 v4. v、 、 v、
o、を開けA′塔から放出されるガスをタンク3に捕集
し、 A’ 、 B’塔は大気圧付近まで減圧される。In the fourth step, pulp Vl + VB + VH+
Close VH2 ■2゜v, , v4. v, , v,
The gas released from the A' tower is collected in the tank 3 by opening the A' and B' towers, and the pressure of the A' and B' towers is reduced to near atmospheric pressure.
同時に真空再生されたA、B塔にはC2で除湿された大
気圧のガスが大気圧造導入される。次にまだ第1ステツ
プにもどり各ステップを順次くり返す。なおパルプの開
閉はタイマーによる自動開閉装置によって行うが、各ス
テップ時間の設定は、塔の最適ガス流量を選定し、各工
程が設定時間内に所定圧変動をするように塔を設計して
決められる。1例をあげれば第1.第3ステツプは12
0秒、第2.第3ステツプは20秒のように設定される
。Atmospheric pressure gas dehumidified in C2 is introduced into the A and B towers which have been vacuum-regenerated at the same time. Then, return to the first step and repeat each step in sequence. The opening and closing of the pulp is performed by an automatic opening/closing device using a timer, but the setting of each step time is determined by selecting the optimal gas flow rate of the tower and designing the tower so that each process has a specified pressure fluctuation within the set time. It will be done. One example would be number 1. The third step is 12
0 seconds, 2nd. The third step is set as 20 seconds.
次に実施例によって本発明の詳細な説明する。Next, the present invention will be explained in detail by way of examples.
実施例1
径30朋×高さ500龍の濃縮塔に2.3〜2.8 m
に一精粒し、水洗後450℃で2時間加熱活性化したク
リノプチロライト280Iを充填し、真空ポンプで塔内
を5龍(水銀柱)に減圧する。ついで塔下部より1.3
11Anin (標準状態)の流速で塔内が3に12(
絶対圧)になる迄低濃度メタンガス(メタン44チ、窒
素44%、酸素12チの調整ガス)を導入し。Example 1 2.3 to 2.8 m in a concentration tower with a diameter of 30 mm and a height of 500 mm.
Clinoptilolite 280I, which had been finely milled, washed with water, and activated by heating at 450°C for 2 hours, was charged, and the pressure inside the tower was reduced to 5 mercury columns using a vacuum pump. Then from the bottom of the tower 1.3
At a flow rate of 11 Anin (standard state), the inside of the column changes from 3 to 12 (
Low concentration methane gas (adjusted gas of 44% methane, 44% nitrogen, and 12% oxygen) was introduced until the absolute pressure was reached.
ついでガス導入を止め、塔上部を開放し、その時放出す
るガスをタンクに捕集する。ついで塔内を真空再生する
。この操作を1時間くり返しく20サイクル程度)捕集
したガス組成をガスクロマトグラフィで定量した。なお
この試験を捕集ガス量を変化させて行い、メタン濃度と
回収率の関係を求めた。Then, the gas introduction is stopped, the upper part of the tower is opened, and the gas released at that time is collected in a tank. Then, the inside of the tower is regenerated under vacuum. This operation was repeated for 1 hour for about 20 cycles) The composition of the collected gas was determined by gas chromatography. This test was conducted by varying the amount of collected gas to determine the relationship between methane concentration and recovery rate.
その結果メタン濃度44%を60%に濃縮した場合1回
収率は88%、また64%に濃縮した場合は回収率73
%であった。また本試験に合成ゼオライ)4A、5A、
天然ゼオライトのモルデナイトなどを吸着剤として用い
た場合窒素と同程度にメタン吸着も起りメタン濃縮は出
来なかった。As a result, when the methane concentration was concentrated from 44% to 60%, the recovery rate was 88%, and when it was concentrated to 64%, the recovery rate was 73%.
%Met. In addition, synthetic zeolites) 4A, 5A,
When a natural zeolite such as mordenite was used as an adsorbent, methane adsorption occurred to the same extent as nitrogen, making it impossible to concentrate methane.
実施例2
径60龍×高さ2000 mmの濃縮塔に実施例1と同
法で活性化した3、 7 kgのクリノプチロライトを
充填し、炭鉱排ガス(メタン40.0%、窒素443チ
、酸素120%、二酸化炭素2.5%、水分1,2%)
をシリカゲルを充填した塔(径60×高さ300+++
m)で水分を除去しく0.001%迄) 151/、f
i (標準状態)の流速で導入し、実施例1に記載した
と同じ操作をくり返す試験を行った。なおパルプの開閉
はガス導入時間120秒、ガス捕集時間15秒、ガス回
収時間5秒、真空再生時間120秒に設定したパルプ自
動開閉装置による自動操作で行ったが、この時間設定で
塔内圧上限は4に9A−rrL2(絶対圧)、下限は1
0朋(水銀柱)の条件である。Example 2 A concentration tower with a diameter of 60 mm and a height of 2000 mm was filled with 3.7 kg of clinoptilolite activated in the same manner as in Example 1, and coal mine exhaust gas (40.0% methane, 443% nitrogen) was charged. , oxygen 120%, carbon dioxide 2.5%, moisture 1.2%)
A column filled with silica gel (diameter 60 x height 300+++
m) to remove moisture up to 0.001%) 151/, f
A test was conducted by repeating the same operation as described in Example 1, introducing the sample at a flow rate of i (standard condition). The opening and closing of the pulp was performed automatically using a pulp automatic opening/closing device set to a gas introduction time of 120 seconds, a gas collection time of 15 seconds, a gas recovery time of 5 seconds, and a vacuum regeneration time of 120 seconds. Upper limit is 4 to 9A-rrL2 (absolute pressure), lower limit is 1
The condition is 0 (mercury column).
その結果、脱二酸化炭素基がない場合は原ガスメタン濃
度40チを55%に濃縮してメタン回収率は50%であ
ったが、クリノプチロライトを充填した脱二酸化炭素基
(径60×高さ300 mrtr )を付加し、二酸化
炭素を0.25%迄除去することにより、同じ濃縮率で
メタン回収率90チにすることが出来、10’O時間以
上にわたって同じメタン濃度。As a result, when there was no carbon dioxide removal group, the raw gas methane concentration of 40 cm was concentrated to 55%, and the methane recovery rate was 50%. By adding 300 mrtr) and removing carbon dioxide to 0.25%, a methane recovery rate of 90 cm can be achieved at the same concentration rate, and the same methane concentration over 10'O hours.
回収率を維持することが出来た。さらに二酸化炭素を0
1%程度に除去することにより濃度1回収率の上昇は望
める。また、ガス導入管を加圧系と大気圧系の2系列に
することによりコンプレッサーの電力費を2割程度節減
できた。We were able to maintain the recovery rate. Furthermore, carbon dioxide is reduced to 0
By removing it to about 1%, it is possible to increase the concentration 1 recovery rate. In addition, by using two lines of gas inlet pipes, one for the pressurized system and one for the atmospheric pressure system, we were able to reduce the electricity cost of the compressor by about 20%.
上記の如くクリノプチロライトを充填した濃縮塔に、除
湿、脱二酸化炭素の前処理塔を設置したメタン濃縮装置
により簡易な方法で炭鉱排ガスのような低濃度メタン−
空気系混合ガスを燃料として十分使用可能な50〜60
%に効率よく濃縮でき貴重な資源の有効利用が図られる
。As mentioned above, the methane concentrator, which has a concentrator filled with clinoptilolite and a pretreatment column for dehumidification and carbon dioxide removal, can easily produce low-concentration methane such as coal mine exhaust gas.
50 to 60, which can fully use air-based mixed gas as fuel
%, making effective use of valuable resources possible.
第1図は本発明の方法を実施するだめの原理を示す説明
図、第2図は本発明を実施する実用装置の系統図、第3
図は実用装置の工程説明図である。
符号 A、A’:濃縮塔、B、B’:脱二酸化炭素基+
CI+ C1′+ C2+ C2’ :除湿塔。
l:大気圧の原ガスタンク、2:コンプレッサー。
3:大気圧のガス捕集タンク、4.5:真空ポンプ。
6:°大気圧ガス導入管、7:加圧ガス導入管。
8:ガス回収管、9:加圧タンク、10.11:真空タ
ンクl V、〜V2.:自動弁
↑2(21
1!JJ 回
1 、−、−、−
8FIG. 1 is an explanatory diagram showing the principle of implementing the method of the present invention, FIG. 2 is a system diagram of a practical device for implementing the present invention, and FIG.
The figure is a process explanatory diagram of a practical device. Code A, A': Concentration column, B, B': Decarbonization group +
CI+ C1'+ C2+ C2': Dehumidification tower. 1: Raw gas tank at atmospheric pressure, 2: Compressor. 3: Atmospheric pressure gas collection tank, 4.5: Vacuum pump. 6: ° atmospheric pressure gas introduction pipe, 7: pressurized gas introduction pipe. 8: Gas recovery pipe, 9: Pressurized tank, 10.11: Vacuum tank lV, ~V2. : Automatic valve ↑2 (21 1! JJ times 1, -, -, - 8
Claims (1)
−メタン系混合ガスを除湿塔と脱二酸化炭素基で前処理
した後、天然ゼオライト吸着剤を充填し、かつ真空再生
した濃縮塔の下部より所定圧1で導入させ、同塔内圧が
所定圧に達すると直ちにガス導入を止め、上部を開放し
て大気圧付近まで減圧し、この間に放出するガスを濃縮
メタンガスとして捕集し、大気圧に達するとガ・ス放出
を止め。 真空に減圧して天然ゼオライト吸着剤を再生し。 上記濃縮塔における非平衡圧操作法によるメタン濃縮、
捕集操作と真空再生の操作を交互に反復させることを特
徴とするメタン濃縮法と装置。 (2)天然ゼオライト吸着剤を充填した濃縮塔と同塔と
同じ吸着剤を充填し、かつ同塔より小さな容積をもつ脱
二酸化炭素基をそなえ、その間にパルプを設置して9両
塔を連通自在とし、さらに除湿塔で除湿された空気−メ
タン系混合ガスの脱二酸化炭素基から濃縮塔への導入(
加圧工程)を真空から大気圧までのガス導入(第1工程
)と大気圧から所定圧までの加圧導入(第2工程)に分
け。 減圧工程を所定圧から大気圧までのガス捕集(第3工程
)と大気圧以下に減圧する真空再生(第4工程)に分け
、第1工程から第3工程までは両塔を直結して操作し、
第4工程のみ両塔を分離して操作することを特徴とする
特許請求の範囲第1項記載のメタン濃縮法と装置。 131 空気−メタン系混合ガスの脱二酸化炭素基へ
の導入を加圧系と大気圧系の二系列にしてコンプレッサ
ーの動力費の軽減を図る機構とすることを特徴とする特
許請求の範囲第1項または第2項記載のメタン濃縮法と
装置。 (1)脱二酸化炭素基、濃縮塔に充填する天然ゼオライ
ト吸着剤のうち1本発明に適するものとして選定したク
リノプチロライトを用いることを特徴とする特許請求の
範囲第1項または第2項記載のメタン濃縮法と装置。[Claims] (11) Air-methane mixed gas containing moisture and carbon dioxide, such as coal mine exhaust gas, is pretreated in a dehumidification tower and carbon dioxide removal group, then filled with natural zeolite adsorbent, and vacuum regenerated. The gas is introduced from the lower part of the condensation tower at a predetermined pressure of 1, and as soon as the internal pressure of the tower reaches the predetermined pressure, the gas introduction is stopped, the upper part is opened and the pressure is reduced to near atmospheric pressure, and the gas released during this time is captured as concentrated methane gas. The gas is collected and stops releasing gas when it reaches atmospheric pressure.The natural zeolite adsorbent is regenerated by reducing the pressure to vacuum.Methane concentration using the non-equilibrium pressure operation method in the above concentration tower,
A methane concentration method and device characterized by alternately repeating a collection operation and a vacuum regeneration operation. (2) A concentrating column filled with natural zeolite adsorbent and a decarbonization group filled with the same adsorbent as the same column and with a smaller volume than the same column, with pulp installed between them to connect the nine columns. Furthermore, the air-methane mixed gas dehumidified in the dehumidifying tower is introduced from the carbon dioxide group to the concentrating tower (
The pressurization process) is divided into gas introduction from vacuum to atmospheric pressure (first process) and pressurization introduction from atmospheric pressure to a predetermined pressure (second process). The pressure reduction process is divided into gas collection from a predetermined pressure to atmospheric pressure (third step) and vacuum regeneration to reduce the pressure to below atmospheric pressure (fourth step), and from the first step to the third step, both towers are directly connected. operate,
The method and apparatus for concentrating methane according to claim 1, characterized in that only the fourth step is operated with both columns separated. 131 Claim 1 characterized in that the system is a mechanism for introducing the air-methane mixed gas into the carbon dioxide removal group in two systems, a pressurized system and an atmospheric pressure system, to reduce the power cost of the compressor. The method and apparatus for concentrating methane according to item 1 or 2. (1) Claims 1 or 2, characterized in that clinoptilolite selected as one suitable for the present invention among the natural zeolite adsorbents packed in the concentration column to remove carbon dioxide groups is used. Methane concentration method and apparatus described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8228682A JPS58198591A (en) | 1982-05-14 | 1982-05-14 | Method and apparatus for concentrating methane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8228682A JPS58198591A (en) | 1982-05-14 | 1982-05-14 | Method and apparatus for concentrating methane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58198591A true JPS58198591A (en) | 1983-11-18 |
JPS6310760B2 JPS6310760B2 (en) | 1988-03-09 |
Family
ID=13770275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8228682A Granted JPS58198591A (en) | 1982-05-14 | 1982-05-14 | Method and apparatus for concentrating methane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58198591A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02281096A (en) * | 1989-04-24 | 1990-11-16 | Seibu Gas Kk | Carbon dioxide and moisture remover for methane-enriched mixed gas |
WO2008053680A1 (en) * | 2006-10-31 | 2008-05-08 | Osaka Gas Co., Ltd. | Inflammable gas concentration device and inflammable gas concentration method |
WO2009014109A1 (en) * | 2007-07-25 | 2009-01-29 | Osaka Gas Co., Ltd. | System for processing combustible gas and method for processing combustible gas |
US8932387B2 (en) | 2010-01-26 | 2015-01-13 | Osaka Gas Co., Ltd. | Enrichment system for combustible gas |
US8940081B2 (en) | 2010-01-26 | 2015-01-27 | Osaka Gas Co., Ltd. | Combustible gas enrichment apparatus |
US9944575B2 (en) | 2013-03-04 | 2018-04-17 | Osaka Gas Co., Ltd. | Methane gas concentration method |
US10124287B2 (en) | 2014-06-27 | 2018-11-13 | Osaka Gas Co., Ltd. | Gas concentration method |
FR3108524A1 (en) * | 2020-03-27 | 2021-10-01 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Attenuation of variations in flow rate, pressure and molar mass on the gaseous effluent of a PSA |
-
1982
- 1982-05-14 JP JP8228682A patent/JPS58198591A/en active Granted
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02281096A (en) * | 1989-04-24 | 1990-11-16 | Seibu Gas Kk | Carbon dioxide and moisture remover for methane-enriched mixed gas |
WO2008053680A1 (en) * | 2006-10-31 | 2008-05-08 | Osaka Gas Co., Ltd. | Inflammable gas concentration device and inflammable gas concentration method |
WO2008053681A1 (en) * | 2006-10-31 | 2008-05-08 | Gas And Power Investment Co., Ltd. | Flammable gas concentration system |
JP5221372B2 (en) * | 2006-10-31 | 2013-06-26 | 大阪瓦斯株式会社 | Combustible gas concentrating apparatus and combustible gas concentrating method |
AU2007315541B2 (en) * | 2006-10-31 | 2011-10-06 | Osaka Gas Co., Ltd. | Flammable gas concentration device and flammable gas concentration method |
AU2007315541B8 (en) * | 2006-10-31 | 2011-10-27 | Osaka Gas Co., Ltd. | Flammable gas concentration device and flammable gas concentration method |
US8262771B2 (en) | 2006-10-31 | 2012-09-11 | Osaka Gas Co., Ltd. | Flammable gas concentration device and flammable gas concentration method |
US8328913B2 (en) | 2006-10-31 | 2012-12-11 | Osaka Gas Co., Ltd. | Flammable gas concentration system |
JP5101615B2 (en) * | 2007-07-25 | 2012-12-19 | 大阪瓦斯株式会社 | Methane gas treatment system and methane gas treatment method |
WO2009014109A1 (en) * | 2007-07-25 | 2009-01-29 | Osaka Gas Co., Ltd. | System for processing combustible gas and method for processing combustible gas |
US8899968B2 (en) | 2007-07-25 | 2014-12-02 | Osaka Gas Co., Ltd. | Combustible gas processing system and combustible gas processing method |
US8932387B2 (en) | 2010-01-26 | 2015-01-13 | Osaka Gas Co., Ltd. | Enrichment system for combustible gas |
US8940081B2 (en) | 2010-01-26 | 2015-01-27 | Osaka Gas Co., Ltd. | Combustible gas enrichment apparatus |
US9944575B2 (en) | 2013-03-04 | 2018-04-17 | Osaka Gas Co., Ltd. | Methane gas concentration method |
US10124287B2 (en) | 2014-06-27 | 2018-11-13 | Osaka Gas Co., Ltd. | Gas concentration method |
FR3108524A1 (en) * | 2020-03-27 | 2021-10-01 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Attenuation of variations in flow rate, pressure and molar mass on the gaseous effluent of a PSA |
Also Published As
Publication number | Publication date |
---|---|
JPS6310760B2 (en) | 1988-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI521056B (en) | Methane recovery method and methane recovery unit | |
EP0016558A1 (en) | Vacuum swing adsorption for air fractionation | |
CN101643209A (en) | Method for purifying and reclaiming carbon dioxide from landfill gas and device thereof | |
CN101691320B (en) | Device for purifying and recycling methane and carbon dioxide from landfill gas | |
EP0232840A2 (en) | Removal of water and carbon dioxide from atmospheric air | |
KR840006617A (en) | Argon Separation Method | |
CN1031358A (en) | Produce the method for high purity oxygen gas by air | |
JPH02281096A (en) | Carbon dioxide and moisture remover for methane-enriched mixed gas | |
CN85103557A (en) | Methane in the pressure swing adsorption method enrichment coal mine mash gas | |
CN101733070A (en) | X-type zeolite separation material and preparation method thereof | |
JPS58198591A (en) | Method and apparatus for concentrating methane | |
WO2017072891A1 (en) | Hydrogen recovery method | |
CN108236829B (en) | From the content of CO2Separation of high purity CO from raw material gas2Method and apparatus | |
CN113184850A (en) | Method and device for purifying high-purity carbon dioxide gas | |
CN114835142B (en) | Method for recovering carbon dioxide from industrial kiln tail gas and producing lithium carbonate | |
JPS6137970B2 (en) | ||
CN110394029A (en) | A kind of coal mine light concentration mash gas pressure-changed adsorption concentrating methane system and device | |
CN1040354A (en) | Pressure swing adsorption process extracts carbonic acid gas from gas mixture | |
CN215161044U (en) | High-purity carbon dioxide gas purification device | |
JPH035845B2 (en) | ||
JPS59227701A (en) | Method for selective concentration and separative purification of hydrogen gas | |
CN111495328A (en) | Ammonia modification method of calcium squarate and application of ammonia modification method in efficient separation of ethylene and ethane | |
CN220238191U (en) | Purifying tail gas recovery and purification device | |
CN216171175U (en) | Recovered C4F7N/CO2Mixed gas separating and purifying device | |
JP2004300035A (en) | Method for separating methane gas and apparatus therefor |