Nothing Special   »   [go: up one dir, main page]

JPS58182835A - Treatment of substrate for thin film transistor - Google Patents

Treatment of substrate for thin film transistor

Info

Publication number
JPS58182835A
JPS58182835A JP6580782A JP6580782A JPS58182835A JP S58182835 A JPS58182835 A JP S58182835A JP 6580782 A JP6580782 A JP 6580782A JP 6580782 A JP6580782 A JP 6580782A JP S58182835 A JPS58182835 A JP S58182835A
Authority
JP
Japan
Prior art keywords
grain boundary
diffused
atoms
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6580782A
Other languages
Japanese (ja)
Inventor
Keiji Kobayashi
啓二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP6580782A priority Critical patent/JPS58182835A/en
Publication of JPS58182835A publication Critical patent/JPS58182835A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve the electric characteristics of a polycrystalline material by performing grain boundary segregation, diffusion and particle growth at the same time by a method wherein atoms different from those of the polycrystalline material are diffused into a crystal grain boundary resulting in annealing. CONSTITUTION:When the atoms having atom radius different from that of a polycrystal, e.g. H2, He, O, etc. are diffused from a surface layer part, they are diffused to the inside at the grain boundary, and thus change the electric characteristics of the grain boundary. On the other hand, the particle growth is performed by laser annealing, etc., and accordingly the crystal growth is related with the improvement of element mobility. The use of this substrate enables to manufacture a MOS transistor insulated each other. In the figure, the numeral 21 represents a P type Si thin film base material, 22 a grain boundary region wherein oxygen is diffused, 23 a grain boundary region wherein oxygen is not diffused, 24 an N type diffused region, 25 glass or ceramics substrate, 26 an SiO2 evaporated film, and 27 a gate electrode.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は多結晶材料の表面の結晶粒界に材料の原子とは
異る原子半径をもつ原子を拡散させた後、−回収上のア
ニールを行い、前記二種類の原子とは異った原子を多結
晶材料中に拡散させ、結晶粒界の電気特性を改善し、移
動度の高い薄膜トランジスタを得るための半導体基板の
処理方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention involves diffusing atoms having an atomic radius different from that of the material into the grain boundaries on the surface of a polycrystalline material, and then performing annealing for recovery. The present invention relates to a semiconductor substrate processing method for diffusing atoms different from the above two types of atoms into a polycrystalline material to improve the electrical properties of grain boundaries and obtain a thin film transistor with high mobility.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来多結晶を用いた電気装置は電解コンデンサ、セラミ
ックコンデンサ、抵抗器など受動素子に多いが能動素子
にはあまり見当らない。半導体セラミックスコンデンサ
に於ては、結晶粒界に沿って異種原子を拡散させて絶縁
層とし、誘導率の大きいコンデンサをつくったり、実効
誘電体厚みの小さなコンデンサをつくったりしている。
Conventional electrical devices using polycrystals are often found in passive devices such as electrolytic capacitors, ceramic capacitors, and resistors, but they are rarely found in active devices. In semiconductor ceramic capacitors, different atoms are diffused along the grain boundaries to form an insulating layer to create capacitors with high dielectric constant or with small effective dielectric thickness.

不純物は粒界及びバルク結晶にも拡散し、粒界偏析の効
果は少い。また特に結晶粒径を大きく成長させるという
ことはなく、これをツー 用いて作製した薄膜トランジスタの特性は嵐<。
Impurities also diffuse into grain boundaries and bulk crystals, and the effect of grain boundary segregation is small. In addition, the crystal grain size is not particularly grown to a large size, and the characteristics of thin film transistors fabricated using this method are as good as Arashi.

電界効果移動度は多結晶81基−片〜2−/v・濃であ
る。
The field effect mobility is between 81 polycrystalline groups and 2-/v.concentration.

〔発明の目的〕[Purpose of the invention]

本発明の目的は結晶粒界に多結晶材料とは異る原子を拡
散させ、アニールを行うことによって、従来にない粒径
の大きな半導体材料を得、これを用いて作製した薄膜ト
ランジスタの電界効果移動度が80〜120d/Vse
cにも達するための多結晶半導体基板の処理方法を提供
するにある。
The purpose of the present invention is to diffuse atoms different from those in polycrystalline materials into the grain boundaries and perform annealing to obtain a semiconductor material with an unprecedentedly large grain size, and to achieve field-effect migration of thin film transistors fabricated using this material. Degree is 80-120d/Vse
An object of the present invention is to provide a method for processing a polycrystalline semiconductor substrate so as to reach even the highest temperature.

〔発明の概要〕[Summary of the invention]

本発明は、例えば基板としてSl  ウニ%−、ガラス
等が選ばれ、この上に多結晶シリコンが減圧CVD法に
よって堆積される。この基板に、キャリアガスとともに
水素、ヘリウム、酸素等を高温(例えば600℃)で送
り、粒界偏析させる。これをレーザー、電子線、熱、な
どでアニールし、後に不純物原子としてP、 B、 A
8  などをイオン注入する。イオン注入後加熱しても
よい。
In the present invention, for example, a substrate such as Sl, glass, or the like is selected, and polycrystalline silicon is deposited thereon by a low pressure CVD method. Hydrogen, helium, oxygen, etc. are sent to this substrate together with a carrier gas at a high temperature (for example, 600° C.) to cause grain boundary segregation. This is annealed using laser, electron beam, heat, etc., and later P, B, and A are formed as impurity atoms.
8 etc. is ion-implanted. Heating may be performed after ion implantation.

〔発明の効果〕〔Effect of the invention〕

本発明によると、多結晶シリコンの粒子が10μm以上
にも成長し、これを用いて作製した薄膜トランジスタの
電界効果移動度が120i / V・冠にもなりうる。
According to the present invention, polycrystalline silicon particles grow to a size of 10 μm or more, and the field effect mobility of a thin film transistor manufactured using the polycrystalline silicon particles can be as high as 120 i/V·cap.

〔発明の実施例〕[Embodiments of the invention]

第1図は基板の上に堆積された多結晶シリコンの断面を
示す。lは結晶粒、2は粒界拡散層、3は未拡散の粒界
である。4はバルク多結晶の拡散層である。このように
多結晶とは異る原子半径をもつ原子例えばH2、He 
、 O等を表層部から拡散させると粒界では内部にまで
拡散し、粒界の電気特性を変化させる。一方粒子の成長
はレーザーアニール等で行われ、結晶成長は素子の移動
度の向上につながる。この基板を用いると第2図で示さ
れたように互に絶縁されたMO8I−ランジスタが製作
可能である。21はP型Sl  薄膜母体、22は酸素
を拡散した粒界領域、23は酸素の拡散していない粒界
領域、24はn型拡散領域、25はガラス又はセラミッ
クス基板、26はSiO,蒸着膜、27はゲート電極で
ある。レーザーアニールのレーザー出力はIOW、処理
後の多結晶シリコンの平均粒径は10μm1素子の電界
効果移動度は120cj/V・気にも適した。
FIG. 1 shows a cross section of polycrystalline silicon deposited on a substrate. 1 is a crystal grain, 2 is a grain boundary diffusion layer, and 3 is an undiffused grain boundary. 4 is a bulk polycrystalline diffusion layer. In this way, atoms with different atomic radii from polycrystals, such as H2, He
When , O, etc. are diffused from the surface layer, they diffuse inside the grain boundaries, changing the electrical characteristics of the grain boundaries. On the other hand, particle growth is performed by laser annealing or the like, and crystal growth leads to improved device mobility. Using this substrate, it is possible to produce mutually insulated MO8I transistors as shown in FIG. 21 is a P-type Sl thin film matrix, 22 is a grain boundary region where oxygen is diffused, 23 is a grain boundary region where oxygen is not diffused, 24 is an n-type diffusion region, 25 is a glass or ceramic substrate, and 26 is a SiO, vapor deposited film. , 27 are gate electrodes. The laser output for laser annealing was IOW, and the average grain size of polycrystalline silicon after treatment was 10 μm, and the field effect mobility of one element was 120 cj/V.

以上示したように本発明製造法によれば粒界偏析と拡散
、粒子成長を同時に行い、多結晶材料の電気特性を着る
しく改善できるので工業的にすぐれた半導体基板処理方
法ということができる。
As shown above, according to the manufacturing method of the present invention, grain boundary segregation, diffusion, and grain growth can be performed simultaneously, and the electrical properties of polycrystalline materials can be significantly improved, so that it can be said to be an industrially excellent semiconductor substrate processing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の基板処理方法を説明するた
めの図、第2図はその処理基板を用いた素子の一例を示
す図である。 1・・・結晶粒、2・・・粒界拡散層、3・・・未拡散
粒界、4・・・バルク多結晶拡散層。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図
FIG. 1 is a diagram for explaining a substrate processing method according to an embodiment of the present invention, and FIG. 2 is a diagram showing an example of a device using the processed substrate. DESCRIPTION OF SYMBOLS 1... Crystal grain, 2... Grain boundary diffusion layer, 3... Undiffused grain boundary, 4... Bulk polycrystalline diffusion layer. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 多結晶材料の表面の結晶粒界に前記材料の原子とは異る
原子半径の原子を拡散させた後、−回収上のアニールを
行い、@起重種類の原子とは異った不純物原子を多結晶
材料中に拡散させることを特徴とする薄膜トランジスタ
用基板の処理方法。
After diffusing atoms with an atomic radius different from the atoms of the material into the grain boundaries on the surface of the polycrystalline material, annealing is performed to collect impurity atoms different from the type of atoms of the A method for processing a substrate for a thin film transistor, characterized by diffusing it into a polycrystalline material.
JP6580782A 1982-04-20 1982-04-20 Treatment of substrate for thin film transistor Pending JPS58182835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6580782A JPS58182835A (en) 1982-04-20 1982-04-20 Treatment of substrate for thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6580782A JPS58182835A (en) 1982-04-20 1982-04-20 Treatment of substrate for thin film transistor

Publications (1)

Publication Number Publication Date
JPS58182835A true JPS58182835A (en) 1983-10-25

Family

ID=13297662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6580782A Pending JPS58182835A (en) 1982-04-20 1982-04-20 Treatment of substrate for thin film transistor

Country Status (1)

Country Link
JP (1) JPS58182835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943837A (en) * 1987-03-11 1990-07-24 Hitachi, Ltd. Thin film semiconductor device and method of fabricating the same
US5035488A (en) * 1987-06-12 1991-07-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing liquid crystal devices having semiconductor switching elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943837A (en) * 1987-03-11 1990-07-24 Hitachi, Ltd. Thin film semiconductor device and method of fabricating the same
US5035488A (en) * 1987-06-12 1991-07-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing liquid crystal devices having semiconductor switching elements

Similar Documents

Publication Publication Date Title
US5275872A (en) Polycrystalline silicon thin film transistor
US3864817A (en) Method of making capacitor and resistor for monolithic integrated circuits
JPS61159768A (en) Manufacture of field effect transistor
US4868140A (en) Semiconductor device and method of manufacturing the same
JPH04225571A (en) Thin-film transistor
JPS58182835A (en) Treatment of substrate for thin film transistor
JPS62261128A (en) Manufacture of mos type semiconductor device
JPS62124736A (en) Silicon thin-film and manufacture thereof
JPS5917529B2 (en) Manufacturing method of semiconductor device
JPH0272669A (en) Thin film semiconductor device and manufacture thereof
JPS63236310A (en) Semiconductor device and manufacture thereof
JPH03200319A (en) Formation of poly-crystalline silicon
JPS60175452A (en) Manufacture of transistor
JPS63124520A (en) Manufacture of semiconductor device
JPH0255416A (en) Semiconductor device
JPH0281421A (en) Forming method for polycrystalline silicon film
JPH09115922A (en) Manufacture of semiconductor device
JPS631071A (en) Thin-film semiconductor device
RU845678C (en) Method of manufacturing hf p- &&& -p transistors
JPH0488642A (en) Manufacture of thin film transistor
JPH0435019A (en) Thin film transistor
JPS60780A (en) Manufacture of field effect transistor
JPH0255415A (en) Semiconductor device
JPH0350823A (en) Manufacture of semiconductor device
JPH01222432A (en) Manufacture of semiconductor device