Nothing Special   »   [go: up one dir, main page]

JPS58178241A - Light scattering type counter for floating particles - Google Patents

Light scattering type counter for floating particles

Info

Publication number
JPS58178241A
JPS58178241A JP57060679A JP6067982A JPS58178241A JP S58178241 A JPS58178241 A JP S58178241A JP 57060679 A JP57060679 A JP 57060679A JP 6067982 A JP6067982 A JP 6067982A JP S58178241 A JPS58178241 A JP S58178241A
Authority
JP
Japan
Prior art keywords
particles
aerosol
electric field
axial center
field focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57060679A
Other languages
Japanese (ja)
Other versions
JPH0226737B2 (en
Inventor
Tamio Hoshina
星名 民雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP57060679A priority Critical patent/JPS58178241A/en
Publication of JPS58178241A publication Critical patent/JPS58178241A/en
Publication of JPH0226737B2 publication Critical patent/JPH0226737B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • G01N2015/1422Electrical focussing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To increase an amount of measured sample per unit space by a counter wherein a simple means for charging and focusing of the electric field is provided and aerosol is caused to pass through the means. CONSTITUTION:At the time when aerosol introduced from an inlet 11b passes through the corona discharge region produced by a needle electrode 12 and a corona discharge electrode 13, negative ions deposite onto particles in the aerosol so that the particles are charged with negative polarity. These charged particles pass then through electric field focusing electrodes 15, 17 where they undergo a focusing force to be moved toward the axial center of a passing flow. More specifically, those particles locating at the point P and going to move in the direction of A undergo a combined force of a coulomb force and an air current at the point D, so that they move toward the axial center C following the illustrated path. Similarly, those particles going to move from the point P' in the direction of B are focused toward the axial center. Thus, since the particles in the aerosol discharging through an outlet 17a are focused near the axial center, it is required for a light beam irradiating the aerosol to have a width enough to irradiate the axial center part. As a result, it becomes possible to increase the nozzle size using the prior optical system.

Description

【発明の詳細な説明】 この発明は、光散乱式浮遊粒子計数装置に関するもので
あり、さらに詳しくいうと、ビーム状の光線中に測ろう
とするエアロゾルを通過させ、個々の粒子による散乱光
を光電変換器でとらえ、電気信号として検出、計数する
光散乱式浮遊粒子計数装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light scattering type suspended particle counter, and more specifically, an aerosol to be measured is passed through a beam of light, and the light scattered by individual particles is collected by photoelectronics. This relates to a light scattering type suspended particle counter that captures particles using a converter, detects them as electrical signals, and counts them.

光散乱式浮遊粒子計数装置においては、試料空気流の幅
W^と光ビームの幅Wt、とが、WA <WL  の関
係を保つ必要がある。これは、ノズルから噴出される試
料空気中の粒子全個数を数え落しなく検出するために必
要な条件である。したがって、短時間に大量の試料空気
について粒子の計数するには、幅の大きな光ビームが必
要となり、光源および光学系が大形、高価になるという
障害に直面さざるを得ない。
In the light scattering type suspended particle counter, the width W^ of the sample airflow and the width Wt of the light beam need to maintain the relationship WA < WL. This is a necessary condition for detecting the total number of particles in the sample air ejected from the nozzle without missing a count. Therefore, in order to count particles in a large amount of sample air in a short period of time, a wide light beam is required, and the light source and optical system must be large and expensive.

この発明は、以上の事情に鑑みてなされたものであシ、
簡単々装置を付加することによって、短時間に大量の試
料空気について測定できる光散乱式浮遊粒子計数装置を
提供することを主な目的とするものである。
This invention was made in view of the above circumstances.
The main purpose of this invention is to provide a light scattering type suspended particle counting device that can measure a large amount of sample air in a short time by simply adding other devices.

寸だ、この発明の目的は、エアロゾル中の粒子を強制的
に帯電させ、円筒の軸中心に電気力線の方向を向けた電
界中にこの帯電粒子を通過させ、当初均等にエアロゾロ
中に分散していた粒子を円筒の軸近辺に集中させること
により、従来の光学系を大形化しないで、短時間に大量
のエアロゾルを測定できる光散乱式浮遊粒子計数装置を
得ることである。
The purpose of this invention is to forcibly charge the particles in the aerosol, pass these charged particles through an electric field whose lines of electric force are directed at the center of the axis of the cylinder, and initially disperse them evenly in the aerosol. The purpose of the present invention is to obtain a light-scattering type suspended particle counting device that can measure a large amount of aerosol in a short time without increasing the size of a conventional optical system by concentrating the particles that were previously used in the cylinder near the axis of the cylinder.

以下、図面を参照してこの発明を説明する。The present invention will be described below with reference to the drawings.

第1図は、この発明の模式図でちり、ノズルから発出さ
れ、粒子が負に荷電されたエアロゾル1をシリンダ状の
電界集束電極2a、2b中を通過させる。そうするとエ
アロゾル1中の粒子は円筒状の流れの軸近辺の領域3に
集まる。4は粒子を含まない空気流の領域である。
FIG. 1 is a schematic diagram of the present invention, in which an aerosol 1 emitted from a dust nozzle and having negatively charged particles is passed through cylindrical electric field focusing electrodes 2a and 2b. Particles in the aerosol 1 then gather in a region 3 near the axis of the cylindrical flow. 4 is a region of airflow that does not contain particles.

第2図は、この発明の一実施例であり、絶縁物でなるノ
ズル11の中心軸に沿って針電極12を絶縁部材11a
に支持して配設する。llbはエアロゾルの流入口でお
る。ノズル11の下端にはシリンダ状のコロナ放電電極
13を同軸的に結合し、さらに、その下方に円筒状の絶
縁物14、第1の電界集束用電極15、絶縁物16およ
び第2の電界集束用電極17を順次、同軸的に結合、配
設する。針電極12とコロナ放電電極13間にはコロナ
放電電源18を接続し、第1、第2の電界集束用電極1
5.17間には電界集束用電源19を接続する。17a
はエアロゾル流出口である。
FIG. 2 shows an embodiment of the present invention, in which the needle electrode 12 is connected to the insulating member 11a along the central axis of the nozzle 11 made of an insulating material.
be supported and placed. llb is the aerosol inlet. A cylindrical corona discharge electrode 13 is coaxially connected to the lower end of the nozzle 11, and below it a cylindrical insulator 14, a first electric field focusing electrode 15, an insulator 16, and a second electric field focusing electrode are connected. The electrodes 17 are sequentially and coaxially connected and arranged. A corona discharge power source 18 is connected between the needle electrode 12 and the corona discharge electrode 13, and the first and second electric field focusing electrodes 1
An electric field focusing power source 19 is connected between 5 and 17. 17a
is the aerosol outlet.

以上の構成により、流入口11bからエアロゾルが、針
電極12とコロナ放電電極13で形成するコロナ放電領
域を通過する際、エアロゾル中の粒子に陰イオンが付着
して粒子は負に帯電する。この帯電粒子は、続いて電界
集束用電極15.17中を通過して流れの軸中心に集束
する力を受ける。この集束作用を第3図によってさらに
詳しく述べると、点PにあってAの方向に向って運動し
ていた粒子と は、D点からクーロフカ1空気流との合成力が作用して
図示の軌跡をたどり軸中心Oに向かう。この場合、粒子
の賀歌にもとづく慣性力も作用するが、無視する。点y
からB方向に向かう粒子も同様にして軸中心へ集束する
。これらはいずれも流れの軸中心から離れようとする粒
子についてであるが、軸と平行もしくは軸中心に向かう
方向の粒子も鍔輪軸中心に集束する。かようにして流出
口17aから流出するエアロゾルは、軸中心近辺に粒子
が集束しているので、エアロゾルを照射する光ビームの
幅は軸中心部を照射するに足りればよいことになる。し
たがって従来の光学系を用いてノズル径を増大すること
が可能となる。
With the above configuration, when the aerosol passes through the corona discharge region formed by the needle electrode 12 and the corona discharge electrode 13 from the inlet 11b, anions adhere to the particles in the aerosol and the particles are negatively charged. The charged particles then pass through the field focusing electrodes 15, 17 and are subjected to a force that focuses them on the flow axis. To describe this focusing effect in more detail with reference to Figure 3, a particle that was at point P and was moving in the direction of A will move along the trajectory shown in the figure due to the combined force of the Kulovka 1 air flow from point D. to the axis center O. In this case, the inertial force based on the particle's hymn also acts, but we ignore it. point y
Particles heading in the direction B are similarly focused toward the center of the axis. These are all about particles that are moving away from the center of the axis of the flow, but particles that are parallel to the axis or in a direction toward the center of the axis also converge at the center of the collar axis. Since the particles of the aerosol flowing out from the outlet 17a are concentrated near the center of the shaft, the width of the light beam for irradiating the aerosol needs to be sufficient to irradiate the center of the shaft. Therefore, it is possible to increase the nozzle diameter using a conventional optical system.

以上のように、この発明によれば、簡単な帯電および電
界集束手段を設け、その中にエアロゾルを通すことによ
り、単位時間当りの測定試料量を増大することができる
As described above, according to the present invention, the amount of sample to be measured per unit time can be increased by providing a simple charging and electric field focusing means and passing the aerosol therethrough.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の模式図、第2図はこの発明の一実施
例の要部縦断面図、第3図は同じく動作説明図である。 11  ノズル、Ila  絶縁物、llb  流入口
、12・針電極、13  コロナ放電電極、14−・絶
縁物、15、】7 電界集束用電極、16  絶縁物、
17a  ・流出口。 特許出願人  リオン株式会社
FIG. 1 is a schematic diagram of the present invention, FIG. 2 is a longitudinal sectional view of a main part of an embodiment of the present invention, and FIG. 3 is a diagram illustrating the operation. 11 nozzle, Ila insulator, llb inlet, 12 needle electrode, 13 corona discharge electrode, 14 insulator, 15]7 electric field focusing electrode, 16 insulator,
17a - Outlet. Patent applicant Rion Co., Ltd.

Claims (1)

【特許請求の範囲】 (])  ビーム状の光線中に試料エアロゾルを通過さ
せ前記試料エアロゾル中の粒子による散乱光を光電変換
器でとらえ電気信号として検出、計数する装置におい、
て、前記試料エアロゾルを噴出させるノズルと前記尤ビ
ームとの間に、前記粒子を負に帯電させる帯電手段と、
負に帯電した前記粒子をクーロン力により前記エアロゾ
ルの軸中心部に東東する電界集束手段を備えてなること
を特徴とする光散乱式浮遊粒子計数装置。 (2)帯電千1ジが、ノズル中心に配設された針電極と
、前記ノズル下端に結合されたシリンダ状のコロナ枚市
電唯と、前記針電極と前記コロナ放電電極間に接続され
たコロナ放電電源でなる特許請求の範囲第1項記載の光
散乱式浮遊粒子計装置。 (3)電界集束手段が、絶縁物を介して結合されたシリ
ンダ状の第1、第2の電界集束用電極と、この第1、第
2の電界集束用電極間に接続された電界集束用電源でな
る特許請求の範囲第1項記載の光散乱式浮遊粒子計数装
置。
[Scope of Claims] (]) An apparatus for passing a sample aerosol in a beam-like light beam and capturing scattered light by particles in the sample aerosol with a photoelectric converter and detecting and counting it as an electrical signal,
a charging means for negatively charging the particles between the nozzle for ejecting the sample aerosol and the potential beam;
A light scattering type suspended particle counting device comprising an electric field focusing means that directs the negatively charged particles toward the axial center of the aerosol by Coulomb force. (2) A charged electrode is connected to a needle electrode arranged at the center of the nozzle, a cylindrical corona strip connected to the lower end of the nozzle, and a corona connected between the needle electrode and the corona discharge electrode. The light scattering suspended particle meter according to claim 1, which comprises a discharge power source. (3) The electric field focusing means includes cylindrical first and second electric field focusing electrodes coupled via an insulator, and an electric field focusing device connected between the first and second electric field focusing electrodes. A light scattering type suspended particle counting device according to claim 1, which comprises a power source.
JP57060679A 1982-04-12 1982-04-12 Light scattering type counter for floating particles Granted JPS58178241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57060679A JPS58178241A (en) 1982-04-12 1982-04-12 Light scattering type counter for floating particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060679A JPS58178241A (en) 1982-04-12 1982-04-12 Light scattering type counter for floating particles

Publications (2)

Publication Number Publication Date
JPS58178241A true JPS58178241A (en) 1983-10-19
JPH0226737B2 JPH0226737B2 (en) 1990-06-12

Family

ID=13149241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060679A Granted JPS58178241A (en) 1982-04-12 1982-04-12 Light scattering type counter for floating particles

Country Status (1)

Country Link
JP (1) JPS58178241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622971A1 (en) * 1987-11-10 1989-05-12 Cerisy Sa DEVICE FOR COUNTING DISCRETE SUSPENSION ELEMENTS IN A FLUID MEDIUM
WO2016096521A1 (en) * 2014-12-17 2016-06-23 Robert Bosch Gmbh Device for detecting particles in an exhaust gas of a combustion machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622971A1 (en) * 1987-11-10 1989-05-12 Cerisy Sa DEVICE FOR COUNTING DISCRETE SUSPENSION ELEMENTS IN A FLUID MEDIUM
WO1989004118A1 (en) * 1987-11-10 1989-05-18 Cerisy S.A. Device for counting discrete elements in suspension in a fluid medium
WO2016096521A1 (en) * 2014-12-17 2016-06-23 Robert Bosch Gmbh Device for detecting particles in an exhaust gas of a combustion machine

Also Published As

Publication number Publication date
JPH0226737B2 (en) 1990-06-12

Similar Documents

Publication Publication Date Title
US7416902B2 (en) Method and apparatus for airborne particle sorting
US3853750A (en) Method and device for the collection of particles in a gas with particle-size separation
GB2533466A (en) Air cleaning device
US6827761B2 (en) Particle concentrator
US6881246B2 (en) Collecting device for suspended particles
JP2011245429A (en) Electrostatic precipitator
JP2006505397A (en) Electrostatic precipitator
US4449159A (en) Focusing electrodes for high-intensity ionizer stage of electrostatic precipitator
US4769609A (en) Measurement of ultra-fine particles utilizing pulsed corona signals
Lear et al. Charged droplet scrubbing for fine particle control
JPS58178241A (en) Light scattering type counter for floating particles
JPWO2006098397A1 (en) Electrostatic concentration collector for ultrafine particles and submicron particle remover used therefor
US20090188390A1 (en) Electrostatic precipitator
SU820647A3 (en) High intensity gas ionizer
US2949167A (en) Electrostatic precipitator
JP2562557B2 (en) Electric dust collector charging method
WO2017195723A1 (en) Particle charging device
GB2195204A (en) Measuring instrument of ultra- fine particles
SU559726A1 (en) Inertia-electrostatic dust concentrator
JPS5817665B2 (en) I can&#39;t wait to see what&#39;s going on.
JP2006087967A (en) Dust collecting apparatus
JPS60172365A (en) Discharge wire for dust precipitator
JPH0522183B2 (en)
JPS6031545B2 (en) Diverted flow type electrostatic precipitator
JPS61466A (en) Electric dust collecting method