JPS58175329A - Light source switching system of optical repeater - Google Patents
Light source switching system of optical repeaterInfo
- Publication number
- JPS58175329A JPS58175329A JP57057376A JP5737682A JPS58175329A JP S58175329 A JPS58175329 A JP S58175329A JP 57057376 A JP57057376 A JP 57057376A JP 5737682 A JP5737682 A JP 5737682A JP S58175329 A JPS58175329 A JP S58175329A
- Authority
- JP
- Japan
- Prior art keywords
- light source
- circuit
- signal
- error
- optical repeater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/03—Arrangements for fault recovery
- H04B10/032—Arrangements for fault recovery using working and protection systems
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Semiconductor Lasers (AREA)
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、光中継器の光源である半導体レーザの高信頼
化に適用される光源冗長構成における光源切替方式に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light source switching method in a light source redundant configuration that is applied to increase the reliability of a semiconductor laser that is a light source of an optical repeater.
従来、光フアイバ中継伝送方式において、光中継器に光
源を複数個設置して、現用の温度安定化された半導体レ
ーザの閾値電流を監視し、所定の閾値電流以上に閾値電
流が上昇したとき、レーザが劣化し−たとみなし、予備
の光源に切替える方式が知られている。閾値電流の上昇
は、光源の劣化を知る1つの要素であるが、閾値電流の
上昇と、光フアイバ伝送路における光伝送特性の劣化と
は必ずしも対応するとは限らない。例えば、光源の分光
スペクトルが広がると、伝送媒体として単一モード光フ
ァイバを使う伝送系では、光ファイバの波長分散の影響
が現われ、伝送特性を劣化させる。半導体レーザの分光
特性の劣化と光源の閾値の上昇とは、一般に相関がない
ため、従来の方式では、伝送路の特性が半導体レーザの
分光特性の広がりにより劣化したにもかかわらず、光源
の切替えが行われないことになる。逆に、例えば、半導
体レーザの漏れ電流が増えて、閾値電流がある程度上昇
したにもかかわらず、正常な光源としての機能を十分に
有する場合、従来の方式では予備光源に切替わるという
過剰予防の恐れがある。Conventionally, in optical fiber relay transmission systems, multiple light sources are installed in an optical repeater to monitor the threshold current of a current temperature-stabilized semiconductor laser, and when the threshold current rises above a predetermined threshold current, A known method is to assume that the laser has deteriorated and switch to a backup light source. Although an increase in threshold current is one factor for determining deterioration of a light source, an increase in threshold current does not necessarily correspond to deterioration in optical transmission characteristics in an optical fiber transmission line. For example, when the optical spectrum of a light source widens, in a transmission system that uses a single mode optical fiber as a transmission medium, the influence of wavelength dispersion of the optical fiber appears, degrading the transmission characteristics. There is generally no correlation between the deterioration of the spectral characteristics of the semiconductor laser and the increase in the threshold of the light source. Therefore, in conventional methods, the light source cannot be switched even though the characteristics of the transmission path have deteriorated due to the broadening of the spectral characteristics of the semiconductor laser. will not be carried out. On the other hand, for example, if the leakage current of a semiconductor laser increases and the threshold current rises to a certain extent, but it still functions as a normal light source, the conventional method would switch to a backup light source as an over-prevention measure. There is a fear.
本発明の目的は、上記の問題を避けるため、対向する光
中継器に伝送路の符号誤り率を測定し、所定の誤り率以
上となると誤り信号を発生する部分と、誤り検出信号に
よって予備光源に切替える部分をそれぞれもたせ、両党
中継器間を誤り検出信号を伝送する媒体で結ぶことによ
って、光端局装置からの誤り検出信号列によって光源の
劣化を伝送路符号誤り率特性より判別し、符号誤り率の
多い中継区間の送信部の現用光源を、待機中の予備光源
に切替える方式を提供することにある。伝送路の符号誤
り率の監視に関しては、端局装置より複数の光中継器の
うち1つの光中継器を標定し、信号を被測定光中継器に
おいて折り返し、介在線あるいは下り伝送路を介して誤
り率を測定する方式が従来より知ら−れているが、各光
中継器に対し光中継器を標定し、信号を折り返し制御す
るための遠隔制御信号が必要となり、各光中継器の符号
誤り率の測定は順次行われるため、長距離光海底ケーブ
ル方式のような多数の光中継器を有する伝送系では、長
い測定時間を要するという欠点がある。An object of the present invention is to measure the code error rate of the transmission line in the opposing optical repeater, and detect a part that generates an error signal when the error rate exceeds a predetermined error rate, and a backup light source using an error detection signal, in order to avoid the above problems. By connecting the repeaters of both parties with a medium that transmits error detection signals, deterioration of the light source can be determined from the transmission line code error rate characteristics based on the error detection signal train from the optical terminal equipment, and It is an object of the present invention to provide a system for switching a working light source of a transmitting section in a relay section with a high code error rate to a standby standby light source. Regarding the monitoring of the bit error rate of a transmission line, the terminal equipment locates one optical repeater among multiple optical repeaters, returns the signal at the optical repeater under test, and transmits the signal via an intervening line or downlink transmission line. A method for measuring the error rate has been known for some time, but it requires a remote control signal for locating the optical repeater and controlling the return of the signal for each optical repeater. Since the rate measurements are performed sequentially, there is a drawback that a long measurement time is required in a transmission system having a large number of optical repeaters, such as a long-distance optical submarine cable system.
本発明の構成では、符号誤り率に要する信号系列は1つ
で済み、各光中継器内に誤り車側定回路を内蔵している
ため時間的な並列測定が可能となり、測定時間が大幅に
短縮されるため、上記の問題は解決される。With the configuration of the present invention, only one signal sequence is required for the bit error rate, and since each optical repeater has a built-in error-side constant circuit, temporally parallel measurements are possible, and the measurement time is significantly reduced. Since it is shortened, the above problem is solved.
以下図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.
第1図は、符号誤り車側定に使用される従来から用いら
れている位相検出方式の原理を示す図であり、この方式
を利用して、符号誤り率の測定を行う。以下、第1図を
用いて、位相検出方式の原理について説明する。位相検
出方式は、2値打号系列が、送信側の変換回路及び受信
側の逆変換回路を経ると、もとの正符号系列かその補符
号系列となり、伝送路で発生する誤りによって、符号系
列が交互に入れ換わることを利用する。この原理を応用
して、マーク率か7でない符号列を一定の繰返し周期(
1/2f、)で補符号変換、すなわちマーク率変調を行
い、グリコードして伝送路に送ると・受信9111 O
デ°−′出力91正符号タ゛1・補符号 1
列が交互に入れ換わる出力が得られ、出力信号はマーク
率変調されているため、信号の直流成分は周期f、で偏
位し、低域f波器を経ると、繰返し周期が1/2f1の
信号波形が得られる。伝送路に誤りパルスが発生すると
、デコーダ出力の符号系列が反転し、低域f波器を通過
した信号の位相の反転が生じ、誤り発生の有無がわかる
。FIG. 1 is a diagram showing the principle of a conventional phase detection method used to determine code errors on the vehicle side, and this method is used to measure the code error rate. The principle of the phase detection method will be explained below with reference to FIG. In the phase detection method, when a binary code sequence passes through a conversion circuit on the transmitting side and an inverse conversion circuit on the receiving side, it becomes the original positive code sequence or its complementary code sequence. Take advantage of the fact that they alternate. Applying this principle, a code string whose mark rate is not 7 can be repeated at a constant repetition period (
1/2f, ), performs complementary code conversion, that is, mark rate modulation, and sends it to the transmission path after being glycoded.・Reception 9111 O
De°-' output 91 plus sign 1/complementary sign 1
An output in which the columns are alternated is obtained, and the output signal is mark rate modulated, so the DC component of the signal deviates with a period f, and after passing through a low-frequency f wave generator, the repetition period becomes 1/2f1. A signal waveform of is obtained. When an error pulse occurs on the transmission path, the code sequence of the decoder output is inverted, and the phase of the signal that has passed through the low-frequency f-wave generator is inverted, so it can be determined whether or not an error has occurred.
第2図は、本発明に用いられる位相検出方式による符号
誤りパルスを計数する系の一実施例であり、第2図の動
作を説明するため、第2区名部の波形を示す第3図を用
いて、符号誤り率を測定するときの動作を説明する。な
お、第2図の各部に示すイ〜への記号は、第3図のイ〜
への各波形の存在している場所を示すものである。マー
ク率i以外の第3図イのような2値打号列発生回路1か
らの出力を、ゲート2により誤り車側定時間に対応した
時間T開き、周波数五を有する矩形波発生回路3の出力
と排他的OR回路4により、第3図口に示すようにマー
ク率変調を行い、プリコーダ5により符号変換し、その
出力は、マーク率iの信号系列となる。光信号に変換さ
れ、光伝送路を通過し、再び電気信号に変換された受信
信号は、T−フリップフロップに対応するデコーダ6に
よルスが発生すると正符号、補符号の反転が生じ、低域
f波器7とシュミット回路8を通過した出力波形は第3
図ホに示すようになり、この出力と、9の時間t−1/
2f1の遅延を有する遅延i$9を通過した波形との9
の否定OR回路出力は、第3図へのようになり、誤りパ
ルスの発生に対応して、<ルスが得られる。誤り検出信
号が送信されている時間Tでは、低域r波器7からは、
flの周波数成分を持つ信号が発生するためサービス時
の信号系列と区別され、これを周“波数f、に同調した
r波回路11により抽出し、この出力によりゲー目2を
開き、否定OR回路10から出力される誤り検出ノ々ル
スを、計数回路13によって計数を開始させる。ゲート
回路12は、誤り検出用信号が送信されている時間T開
き、誤りパルスの発生回数が計数され、信号が断になる
とr波回路11の出力は零となり、ゲート回路12か閉
じられ、計数回路13をリセットする。符号誤り車側定
時間Tにおける計数回路出力(Qo、 Ql、 Q2.
−” 、QN−1)により、誤り率が測定されるため、
この出力を利用して定められた誤り率以上であるかどう
かの判定が行われる。FIG. 2 shows an embodiment of a system for counting code error pulses using the phase detection method used in the present invention. To explain the operation of FIG. 2, FIG. 3 shows the waveform of the second section. The operation when measuring the bit error rate using . In addition, the symbols for I~ shown in each part of Fig. 2 are the same as I~ in Fig. 3.
This shows where each waveform exists. The output from the binary number sequence generation circuit 1 as shown in FIG. The exclusive OR circuit 4 performs mark rate modulation as shown at the beginning of FIG. 3, and the precoder 5 performs code conversion, and its output becomes a signal sequence with a mark rate i. When a received signal is converted into an optical signal, passes through an optical transmission line, and is converted back into an electrical signal, when a loss occurs in the decoder 6 corresponding to the T-flip-flop, the positive sign and complementary sign are inverted, and the received signal becomes low. The output waveform that has passed through the frequency range f wave generator 7 and the Schmitt circuit 8 is the third waveform.
As shown in Figure E, this output and the time t-1/9
9 with the waveform passed through delay i$9 with a delay of 2f1
The output of the NOR circuit is as shown in FIG. 3, and in response to the occurrence of an error pulse, <Rus is obtained. At time T when the error detection signal is being transmitted, the low-band r-wave generator 7 outputs
Since a signal with a frequency component of fl is generated, it is distinguished from the signal sequence during service, and this is extracted by the r-wave circuit 11 tuned to the frequency f, and this output opens gate 2, and the negative OR circuit The counting circuit 13 starts counting the error detection pulses output from the gate circuit 10.The gate circuit 12 counts the number of occurrences of error pulses during the time period T during which the error detection signal is being transmitted, and counts the number of error pulses that the signal has generated. When the signal is disconnected, the output of the r-wave circuit 11 becomes zero, the gate circuit 12 is closed, and the counting circuit 13 is reset.The counting circuit output (Qo, Ql, Q2.
-”, QN-1), the error rate is measured by
This output is used to determine whether the error rate is equal to or higher than a predetermined error rate.
第4図は、本発明に用いられる光中継再生回路を誤り測
定回路の゛−構成例を示すブロック図で、R7は片方向
の光中継再生回路であり、14は受光素子、増幅器及び
AGC(自動利得制御)回路を含む光・電気変換回路、
15は波形等化回路、16は識別再生回路、17はタイ
ミング抽田回路、18は信号断検出回路、19は光源駆
動回路、Eは符号誤り率測定回路、加は誤り検出信号発
生回路、21はAND回路である。FIG. 4 is a block diagram showing an example of the configuration of an optical repeater reproducing circuit and an error measuring circuit used in the present invention. optical/electrical conversion circuits, including automatic gain control) circuits;
15 is a waveform equalization circuit, 16 is an identification/reproduction circuit, 17 is a timing extraction circuit, 18 is a signal disconnection detection circuit, 19 is a light source drive circuit, E is a code error rate measurement circuit, and 21 is an error detection signal generation circuit. is an AND circuit.
次に動作原理を説明する。誤り検出用信号が端局装置か
ら送信され、中継器Rに到達すると、14の光・電気変
換回路で電気信号に変換され、16の識別再生回路によ
り得られる再生出力信号をEの誤り率測定回路により誤
りパルスが検出され、ある一定個数以上の誤りパルスが
検出されると、加の誤り検出信号発生回路から信号が出
力され、誤り検出信号を伝送する媒体を介して1中継区
間前の中継器に伝送し、光源切替回路Sを経由して光源
LDで予備光源との切替えに利用する。Next, the operating principle will be explained. When the error detection signal is transmitted from the terminal equipment and reaches repeater R, it is converted into an electrical signal by 14 optical-to-electrical conversion circuits, and the reproduced output signal obtained by 16 identification and reproduction circuits is used to measure the error rate of E. When an error pulse is detected by the circuit, and a certain number of error pulses or more are detected, a signal is output from an additional error detection signal generation circuit, and a signal is output from the relay section one relay section earlier via the medium that transmits the error detection signal. The light is transmitted to the light source, and is used by the light source LD to switch between the backup light source and the backup light source via the light source switching circuit S.
誤りを検出した光中継器以降の後段の光中継器に、符号
誤りが伝搬して誤り検出信号が発生されないように、加
の誤り検出信号発生回路出力を21のAND回路に加え
ることによって、後段の光中継器に信号を伝送するのを
停止させるか、あるいは、後段の光中継器に誤りパルス
を含んだ信号を伝送し、1中継区間後の光中継器から伝
送された誤り検出信号出力と、加の誤り検出信号発生回
路の出力を比較することにより、光源の切替え誤りを防
止すれば良い。In order to prevent the code error from propagating to the optical repeater in the subsequent stage after the optical repeater that detected the error and generate an error detection signal, the output of the additional error detection signal generation circuit is added to the AND circuit 21. Either stop transmitting the signal to the optical repeater in the next stage, or transmit a signal containing an error pulse to the optical repeater in the subsequent stage, and output the error detection signal transmitted from the optical repeater after one repeating interval. By comparing the outputs of the additional error detection signal generation circuits, it is sufficient to prevent the light source switching error.
第5図a、b、cは、本発明において、誤り横用の情報
を1中継区間前の光中継器に伝送する3種の方式の原理
を説明するために必要な伝送系を示す図で、M 、 r
x4’は端局装置、R,、Iち、・・・・・・lRoは
光中継器、’II + ””” + Rlk−1+ R
lk + ””” + Rlnは往路の光中継器回路、
R21,・・・・・・+ R2に−1+ R2k ’・
・・・・・、R2nは復路の光中継器回路、lは光フア
イバ伝送路、1、Cは往路の符号誤り率測定回路、Sは
光源切替回路である。Figures 5a, b, and c are diagrams showing transmission systems necessary to explain the principles of three types of systems for transmitting error information to an optical repeater one relay section before in the present invention. ,M,r
x4' is the terminal equipment, R,, I......lRo is the optical repeater, 'II + """ + Rlk-1+ R
lk + “”” + Rln is the outgoing optical repeater circuit,
R21,...+ R2 -1+ R2k'・
..., R2n is an optical repeater circuit on the return path, l is an optical fiber transmission line, 1 and C are code error rate measuring circuits on the outgoing path, and S is a light source switching circuit.
次に、3種の方式について順次説明する。第5図aは、
誤り検出用信号が端局Mより送信され、光中継器R’l
kに到達し、Eの誤り率測定回路で誤りパルスが計数さ
れ、所定の個数以上になると誤り検出信号を発生し、l
′の介在線によって伝送され、1中継区間前の光中継器
R1k−1の光源切替回路を駆動する。第5図すは、光
中継器RIkで発生した誤り検出信号を、変調回路Md
によって光中継器R,に一、を標定するための固有周波
数で変調し、信号断の復路の伝送路を介して伝送し、光
中継器R1に−1の復調回路り。によつ、光中継器R1
kからの信号の到来を検出し、Sの光源切替回路が駆動
される。第5図Cは、異なる波長λ1.λ2を用いた双
方向伝送系であり、端局Mがらの信号は、例えば波長λ
、によって合波分波器MXを経て光フアイバ伝送路で伝
送され、復路の信号は波長λ2によって伝送される。誤
り検ノ扁号は、端局装置から波長λ1によって伝送され
よ中継器R1kにて誤りを検出し、誤りが所定の個数以
上になると、R1にの光中継器に内蔵されたλ1の波長
をもつ光源を駆動し、光ファイーバ伝送路を介してR,
に−1の光中継器に信号を伝送され、光源切替回路Sが
駆動する。Next, three types of methods will be sequentially explained. Figure 5a is
An error detection signal is transmitted from terminal M, and optical repeater R'l
k, the error rate measuring circuit of E counts the error pulses, and when the number exceeds a predetermined value, an error detection signal is generated, and l
', and drives the light source switching circuit of the optical repeater R1k-1 one relay section before. FIG. 5 shows how the error detection signal generated in the optical repeater RIk is transmitted to the modulation circuit Md.
The optical repeater R1 is modulated with a natural frequency for locating the signal, and is transmitted via the return transmission path where the signal is disconnected. Yotsu, optical repeater R1
The arrival of the signal from k is detected, and the light source switching circuit of S is driven. FIG. 5C shows different wavelengths λ1. It is a bidirectional transmission system using λ2, and the signal from the terminal station M has a wavelength of λ2, for example.
, the signal is transmitted via an optical fiber transmission line via a multiplexer/demultiplexer MX, and the return signal is transmitted at wavelength λ2. The error detection signal is transmitted from the terminal equipment using the wavelength λ1. Errors are detected at the repeater R1k. When the number of errors exceeds a predetermined number, the wavelength λ1 built in the optical repeater at R1 is transmitted. R,
The signal is transmitted to the optical repeater 1-1, and the light source switching circuit S is driven.
第5図aの介在線を用いる方式では、主信号伝送路を利
用して誤り検出信号を送る方式に比べて、伝送路信号を
主信号から誤り検出信号に切替えるための回路を特に必
要としないため、電気回路の複雑化から免れるという利
点がある。第5図すの方式では、反対方向の主信号伝送
路を利用するため、他の特殊用途の伝送路を要しないた
め、伝送路の経済化がはかれる。さらに、第5図Cの方
式では、伝送路が1本で済むため、単一モード光ファイ
バケーブルのごとく伝送路コストが高価な場合、一層の
経済化がはかれる。The method using the intervening line shown in Figure 5a does not require a particular circuit to switch the transmission line signal from the main signal to the error detection signal, compared to the method using the main signal transmission line to send the error detection signal. Therefore, there is an advantage that the electric circuit is not complicated. In the method shown in FIG. 5, since the main signal transmission line in the opposite direction is used, no other special purpose transmission line is required, so that the transmission line can be made more economical. Furthermore, since the method shown in FIG. 5C requires only one transmission line, further economicalization can be achieved when the transmission line cost is high, such as in a single mode optical fiber cable.
第6図は、本発明における光源切替回路の一実施回路例
を示す図である。FIG. 6 is a diagram showing an example of an implementation circuit of the light source switching circuit according to the present invention.
Aの端子から、伝送路信号パルスにより、トランジスタ
ql + q2、抵抗r1で構成されるCML(電流切
換型論理)回路を駆動し、Ll ! R21・・・・・
・、LNのN個の半導体レーザのうち、トランジスタQ
4 + Q2 +・・・・・・+QNがONになってい
る1つの半導体レーザをスイッチング動作させる。Bは
半導体レーザ切替制御信号が加えられる端子で、本発明
では、誤り検出信号が使用される。Fはシフトレジスタ
であり、誤り検出信号パルスによって、A7.A2.・
・・・・・。From the terminal A, a transmission line signal pulse drives a CML (current switching logic) circuit composed of transistors ql + q2 and resistor r1, and Ll! R21...
・, Among the N semiconductor lasers of LN, the transistor Q
4 + Q2 +...+QN is turned on and one semiconductor laser is operated for switching. B is a terminal to which a semiconductor laser switching control signal is applied, and in the present invention, an error detection signal is used. F is a shift register, and A7. A2.・
・・・・・・.
ZN17)!圧しベル調整用のツェナー・ダイオード、
R,’ 、 R+; 、・・・・・・、 R′Nの抵抗
を介してQ、、Q、、・・・・・・IQNのトランジス
タが順次ONにされ、半導体レーザL、。ZN17)! Zener diode for pressure bell adjustment,
The transistors Q, , Q, . . . IQN are sequentially turned on via the resistors R,', R+; , . . . R'N, and the semiconductor laser L,.
L2p・・・・・・、LNの切替えが行われる。A、、
A2.・・曲、ANは光検出素子で、各光検出素子は対
応したり、、R2゜・・・・・・、LNの半導体レーザ
の後方出力信号光を検出し、Cの直流電圧遮断用のコン
デンサ、r6の抵抗を介して、Aの差動増幅器、r、の
抵抗、C′の容量によって積分し、r、の抵抗を介して
VEの基準電圧と比較され、r8の抵抗、q3のバッフ
ァ用トランジスタ、r、の抵抗を介し、D、 、 D2
.・・間、DNのダイオードのうちオンとなっている第
i番目のダイオードより、第1番目のトランジスタQ+
のペースN流によって第i番目の半導体レーザのバイア
ス電流を制御し、出力光が安定化される。半導体レーザ
の閾値電流は個々の素子によって異なるので、R8゜R
2,・・・・・・+−RNの抵抗によってあらかじめ初
期設定し、切替えが行われたとき安定化制御電流の制御
幅を小さくしてお(。各半導体レーザの出力光は、合波
回路により1本の光フアイバ伝送路に集められる。L2p..., LN switching is performed. A...
A2. ..., AN is a photodetection element, and each photodetection element corresponds to, R2゜..., detects the rear output signal light of the semiconductor laser of LN, and detects the rear output signal light of the semiconductor laser of C, and the It is integrated by the differential amplifier of A, the resistance of r, and the capacitance of C' through the resistance of capacitor r6, and is compared with the reference voltage of VE through the resistance of r, the resistance of r8, and the buffer of q3. Through the resistor of the transistor r, D, , D2
.. ..., from the i-th diode that is turned on among the diodes of DN, the first transistor Q+
The bias current of the i-th semiconductor laser is controlled by the pace N current, and the output light is stabilized. The threshold current of a semiconductor laser differs depending on the individual element, so R8°R
2. The control width of the stabilization control current is initialized in advance using the +-RN resistor, and the control width of the stabilization control current is made small when switching is performed. (The output light of each semiconductor laser is are collected into one optical fiber transmission line.
以上、伝送路の符号誤り率より光源の劣化を検出し、予
備の正常な光源に切替える方式につき、これを実現する
ための符号誤り率測定および誤り検出回路、符号誤り率
検出信号の伝送方式、および光源切替回路について説明
した。本発明によれば、従来の半導体レーザ劣化検出方
式では不可能であった半導体レーザの分光特性の劣化の
横用、あるいは過剰な光源切替の予防が防止できるため
、高信頼の光デイジタル伝送系が構成できるという効果
がある。The above describes the method of detecting deterioration of the light source based on the bit error rate of the transmission path and switching to a spare normal light source, the bit error rate measurement and error detection circuit, the bit error rate detection signal transmission method, and and the light source switching circuit. According to the present invention, it is possible to prevent the deterioration of the spectral characteristics of the semiconductor laser or the excessive switching of the light source, which was impossible with the conventional semiconductor laser deterioration detection method, so that a highly reliable optical digital transmission system can be realized. It has the effect of being configurable.
第1図は符号誤り率測定の原理図、第2図は本発明によ
る符号誤りパルス計数回路、第3図は第 1
2図の回路の動作説明図、第4図は本発明による光中継
再生回路、第5図a −cは本発明による誤り検出情報
の伝送方式を示す図、第6図は本発明による光源切替回
路である。
特許出願人
国際電信電話株式会社
特許出願代理人
弁理士 山 本 恵 −Figure 1 is a principle diagram of code error rate measurement, Figure 2 is a code error pulse counting circuit according to the present invention, and Figure 3 is a diagram of the code error rate measurement.
2 is an explanatory diagram of the operation of the circuit, FIG. 4 is an optical repeater regeneration circuit according to the present invention, FIGS. It is a circuit. Patent applicant International Telegraph and Telephone Co., Ltd. Patent application agent Megumi Yamamoto −
Claims (1)
継する光中継器の光源切替方式において、光中継器が伝
送路の符号誤り率を測定し、予め定められる誤り率に達
すると、当該光中継器が誤り信号を隣接する送信側の光
中継器に送り、誤り信号を受信した光中継器は現用の光
源から予備の光源に切替えることを特徴とする、光中継
器の光源切替方式。In a light source switching method for an optical repeater that has active and backup light sources and relays up and down transmission lines, the optical repeater measures the code error rate of the transmission line, and when the error rate reaches a predetermined error rate, A light source switching method for an optical repeater, characterized in that the optical repeater sends an error signal to an adjacent transmitting-side optical repeater, and the optical repeater that receives the error signal switches from the active light source to the backup light source. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57057376A JPS58175329A (en) | 1982-04-08 | 1982-04-08 | Light source switching system of optical repeater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57057376A JPS58175329A (en) | 1982-04-08 | 1982-04-08 | Light source switching system of optical repeater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58175329A true JPS58175329A (en) | 1983-10-14 |
Family
ID=13053873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57057376A Pending JPS58175329A (en) | 1982-04-08 | 1982-04-08 | Light source switching system of optical repeater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58175329A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5504611A (en) * | 1993-06-14 | 1996-04-02 | International Business Machines Corporation | Apparatus for repowering and monitoring serial links |
JPH08304507A (en) * | 1987-10-23 | 1996-11-22 | Fujitsu Ltd | Semiconductor laser quality determination device |
JP2015198712A (en) * | 2014-04-07 | 2015-11-12 | 株式会社ユニバーサルエンターテインメント | Game machine |
-
1982
- 1982-04-08 JP JP57057376A patent/JPS58175329A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08304507A (en) * | 1987-10-23 | 1996-11-22 | Fujitsu Ltd | Semiconductor laser quality determination device |
US5504611A (en) * | 1993-06-14 | 1996-04-02 | International Business Machines Corporation | Apparatus for repowering and monitoring serial links |
US5642217A (en) * | 1993-06-14 | 1997-06-24 | International Business Machines Corporation | Apparatus for repowering and monitoring serial links |
US5673132A (en) * | 1993-06-14 | 1997-09-30 | International Business Machines Corporation | Apparatus for repowering and monitoring serial links |
JP2015198712A (en) * | 2014-04-07 | 2015-11-12 | 株式会社ユニバーサルエンターテインメント | Game machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4313224A (en) | Monitoring system of an optical power in an optical repeater | |
US6215565B1 (en) | Method of and system for diagnosing optical system failures | |
US5822094A (en) | Self-stimulation signal detection in an optical transmission system | |
US7356256B1 (en) | Digital performance monitoring for an optical communications system | |
JP4213218B2 (en) | Monitoring system using optical sidetone as test signal | |
US20050201761A1 (en) | SINGLE FIBER TRANSCEIVER with FAULT LOCALIZATION | |
US5963312A (en) | Optical transmission system fault analysis | |
US4270029A (en) | Selection system for digital signal repeaters | |
US4266183A (en) | Fault locating arrangement for a two-way repeatered transmission link | |
EP1225784A2 (en) | Wavelength routing in a photonic network | |
US6980737B1 (en) | Method and apparatus for rapidly measuring optical transmission characteristics in photonic networks | |
JPS58175329A (en) | Light source switching system of optical repeater | |
US12009951B2 (en) | Optimizing host / module interface | |
Anderson et al. | The SL supervisory system | |
Tomizawa et al. | Error correction without additional redundancy by novel optical receiver with diverse detection | |
Wakabayashi et al. | A design and experimental results of the OS-280M optical submarine repeater circuits | |
US7079764B2 (en) | Fault isolation technique for optical networks | |
JP2508986B2 (en) | Optical amplification repeater system | |
KR100632975B1 (en) | Automatic recovery of optical switch transferred from remote of mobile communication optical repeater and remote of mobile communication optical repeater, Self-diagnosis method of transmission path from remote of mobile communication optical repeater | |
JPS58215838A (en) | Monitoring circuit of optical repeater | |
SU879789A1 (en) | Device for testing operability of digital communication system video generator | |
Li et al. | Asynchronous sampling for Q-factor estimation using sampling pulse with wide pulsewidth | |
Borley et al. | Some design aspects of long-haul digital submarine optical fibre systems | |
JPS5915578B2 (en) | Monitoring method for optical relay transmission lines | |
JPS5853256A (en) | Monitoring system for digital repeating transmission line |