Nothing Special   »   [go: up one dir, main page]

JPS58155667A - Molten-carbonate fuel cell - Google Patents

Molten-carbonate fuel cell

Info

Publication number
JPS58155667A
JPS58155667A JP57037971A JP3797182A JPS58155667A JP S58155667 A JPS58155667 A JP S58155667A JP 57037971 A JP57037971 A JP 57037971A JP 3797182 A JP3797182 A JP 3797182A JP S58155667 A JPS58155667 A JP S58155667A
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
self
alkali
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57037971A
Other languages
Japanese (ja)
Inventor
Masahito Takeuchi
将人 竹内
Hideo Okada
秀夫 岡田
Shigeru Okabe
岡部 重
Hiroshi Hida
飛田 紘
Munehiko Tonami
戸波 宗彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57037971A priority Critical patent/JPS58155667A/en
Publication of JPS58155667A publication Critical patent/JPS58155667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the mechanical strength and the electrolyte-holding ability of a molten-carbonate fuel cell, and prevent any cracks or deformations from being generated in the fuel cell by packing an electrolyte into the spaces of a self-supporting base body at least the surface layer of which consists of an alkali-proof non-conductive matter. CONSTITUTION:The surface of a metallic self-supporting base body is coated with an alkali-proof non-conductive matter. Then, the spaces of the self-supporting base body are packed with an alkali-proof non-conductive minute powder which is used as both an electrolyte and an electrolyte-holding member. In carrying out such a packing, either a method of immersing the base body in a homogeneous slurry prepared from the minute powder, or a method of pressing a paste prepared from the minuter powder into the base body is adopted. Here, it is preferred that the minute powder is packed as densely as possible. As a material for the self-supporting base body, ceramics is usually used, and an alkali-proof non-conductive member such as magnesia or lithium aluminate is preferred.

Description

【発明の詳細な説明】 本発明は溶融炭酸塩型燃料電池に係シ、特にアルカリ炭
酸基電解質を保持してなる電解質体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molten carbonate fuel cell, and particularly to an electrolyte body containing an alkali carbonate electrolyte.

電解質体にはマトリックス型とペースト型の両方式があ
シ、前者は多孔質セラミックス焼結体に電解質を保持し
てなる電解質体でろシ、後者は電解質と耐アルカリ性耐
熱性微粉末の混合物を成形してなる電解質体である。し
かし、従来技術の電−解一質体は下記の点で十分に満足
し得るものとは言えない。
There are both matrix type and paste type electrolyte bodies.The former is an electrolyte body that holds electrolyte in a porous ceramic sintered body, and the latter is a molded mixture of electrolyte and alkali-resistant heat-resistant fine powder. It is an electrolyte body made of However, the electrolytic monolithic bodies of the prior art are not fully satisfactory in the following respects.

l)製造過程における亀裂の発生。l) Occurrence of cracks during the manufacturing process.

2)電池運転中の熱サイクルによる亀裂の発生。2) Cracks occur due to thermal cycles during battery operation.

3)電池運転の経過に伴う熱的変形(特にペースト型電
解質体において)。
3) Thermal deformation as the battery operates (especially in paste-type electrolyte bodies).

本発明の目的は、上記従来技術の欠点を解消して、機械
的強度が優れ、かつ電解質保持力が扁く、亀裂の発生や
変形がなく、クロスオーバがなく、高い電池性能を発揮
し得る新規な電解質体を用いる溶融炭酸塩型燃料電池を
提供することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a battery that has excellent mechanical strength, low electrolyte retention, no cracking or deformation, no crossover, and can exhibit high battery performance. An object of the present invention is to provide a molten carbonate fuel cell using a novel electrolyte body.

本発明の要点は、少なくともその表層が非導電性、かつ
耐アルカリ性物質からなる自己支持性基体の空隙に電解
質が充填、保持されてなる電解質体を溶融炭酸塩型燃料
電池用電解質体として用いることである。
The gist of the present invention is to use an electrolyte body, in which an electrolyte is filled and held in the voids of a self-supporting substrate whose surface layer is non-conductive and made of an alkali-resistant material, as an electrolyte body for a molten carbonate fuel cell. It is.

さらに好ましくは上記自己支持性基体の空隙に電解質を
保持する丸めの耐アルカリ性微粉末を共存せる状態で電
解質が保持される電解質体を用いるのがよい。
More preferably, it is preferable to use an electrolyte body in which the electrolyte is retained in the presence of round alkali-resistant fine powder that retains the electrolyte in the voids of the self-supporting substrate.

ここで言う自己支持性基体とは、その骨格が連続してつ
ながシ、空隙を有してなる構造体で、その代表的な例は
ハニカム状傳造体、三次元網状構造体である。空隙率は
70%外上であるのがよく、電解質のイオン伝導体とし
ての役割を効果的に発揮できるようになる。
The self-supporting substrate referred to herein is a structure whose skeleton is continuously connected and has voids, and typical examples thereof are a honeycomb-like structure and a three-dimensional network structure. The porosity is preferably 70% or more, so that the electrolyte can effectively play its role as an ion conductor.

自己支持性基体の材質は通常セラミックス製の材料が用
いられる。例えば、マグネシア、アルミン酸リチウムな
どの耐アルカリ性で非導電性の材料が好ましい。基材の
少なくとも表層をチタニア。
The self-supporting substrate is usually made of ceramic material. For example, alkali-resistant and non-conductive materials such as magnesia and lithium aluminate are preferred. At least the surface layer of the base material is titania.

ジルコニア、コージェライト、ムライトなどのアルカリ
炭酸塩に対して安定な物質に変換すれば好適な自己支持
性基体として用いることができる。
If it is converted to a substance stable against alkali carbonates such as zirconia, cordierite, or mullite, it can be used as a suitable self-supporting substrate.

また、本発明の範囲にはいる自己支持性基体として、金
14製の自己支持性基体も用いることができる。この場
合にはその表層を耐アルカリ性、かつ非導電性の物質で
被覆しておくが、あるいはその少なくとも表層を耐アル
カリ性、かつ非導電性の物質に変換することによって適
用される。
Additionally, self-supporting substrates made of gold-14 can also be used as self-supporting substrates within the scope of the present invention. In this case, the surface layer is coated with an alkali-resistant and non-conductive substance, or at least the surface layer is coated with an alkali-resistant and non-conductive substance.

その代表的な例として自己支持性基体が実質的にアルミ
ニウムよpできており、その少なくとも表層が酸化され
てアルミナに変換されている基体、さらに好ましくはこ
れlチウム化処理してアルミン酸リチウムに変換されて
いる基体を用いる方法がある。
A typical example is a substrate in which the self-supporting substrate is substantially made of aluminum, and at least the surface layer of the substrate is oxidized to convert into alumina, and more preferably, this substrate is treated with lithium to form lithium aluminate. There is a method using a converted substrate.

また、酸化クロム(CrtOn)などの非導電性材料を
上目d金属製自己支持性基体の表層に被覆して用いるこ
ともできる。
It is also possible to use a non-conductive material such as chromium oxide (CrtOn) by coating the surface layer of the self-supporting metal substrate.

本発明の特徴とするところは、自己支持性基体の優れ九
機械的fillを利用している点であり、該自己支持性
基体は’[%買体の芯材として役割を発揮して、製造時
若しくは電池運転中の熱丈イクルによる亀裂の発生はほ
とんど皆無にし得ることであり、また熱的変形もみられ
ない。
A feature of the present invention is that it utilizes an excellent mechanical fill of a self-supporting base, and the self-supporting base plays a role as a core material of the body, The generation of cracks due to heating cycles or during battery operation can be almost completely eliminated, and no thermal deformation is observed.

また、本発明の他の特徴とするところは、上記自己支持
性基体の空隙に耐アルカリ性、かつ非導電性の微粉末を
充填させることにより著しく電解質保持力が向上し、し
たがってパブ′ル耐圧が高くなり、クロスオーバ現象が
防止でき、かつ電ys質の電極その他の構成部材への異
常流出が抑制され、安定した電池性能を継持てきること
である。
Another feature of the present invention is that by filling the voids of the self-supporting substrate with alkali-resistant and non-conductive fine powder, the electrolyte retention ability is significantly improved, and therefore the bubble withstand voltage is increased. The cross-over phenomenon can be prevented, and the abnormal outflow of electrolyte to the electrodes and other components can be suppressed, so that stable battery performance can be maintained.

自己支持性基体の空隙に電解質及び電解質保持材である
耐アルカリ性、非導電性微粉末を充填する方法としては
、微粉末t−q質なスラリーとして含浸、浸漬する方法
、またペースト状にして圧入する方法などが採られるが
、微粉末はなるべく緻密に充填されているのが好ましい
Methods for filling the voids of the self-supporting substrate with alkali-resistant, non-conductive fine powder, which is an electrolyte and electrolyte holding material, include impregnation and immersion as a slurry of fine powder t-q, and press-fitting in the form of a paste. However, it is preferable that the fine powder be packed as densely as possible.

充#74後に該微粉末を焼結することもよい。It is also possible to sinter the fine powder after charging #74.

このようにして得られた電解質保持体に、電解質である
アルカリ炭酸塩を溶融含浸して電解質体を得る。
The electrolyte holding body thus obtained is melted and impregnated with an alkali carbonate as an electrolyte to obtain an electrolyte body.

他の方法として、耐アルカリ性、非導電性微粉末と電解
質を混合した状態で同時に含浸するととも可能である。
Another method is to simultaneously impregnate alkali-resistant, non-conductive fine powder and electrolyte in a mixed state.

アルカリ炭酸塩の含有量は40〜70体槓%が好ましい
The content of alkali carbonate is preferably 40 to 70% by weight.

以下、本発明の内容を実施例を挙げてさらに具体的に説
明する。
Hereinafter, the content of the present invention will be explained in more detail with reference to Examples.

実施例1 目開き3m+肉厚0.5 ws +正方形の開孔部を有
するアルミ/酸リチウム製ハニカム構造体を100wX
100■×厚さ2mの形状に切り出して自己支持性基体
とした。
Example 1 An aluminum/lithium oxide honeycomb structure with a mesh opening of 3 m + wall thickness of 0.5 ws + square openings was heated to 100 wX
A self-supporting substrate was cut out into a shape of 100 cm x 2 m thick.

電解質保持材として平均粒径1μmのアルミン酸リチウ
ム5Qwt%に炭酸リチウムと炭酸カリウムの混合炭#
R塩(62:38、モル比)t−11解質として50重
量%言んでなる電解質体材料に水を加えてペースト状と
し、これを上記自己支持性基体内にプレス圧入した、こ
れを150Cで2時間乾燥後、さらに530 C(06
度で上記混合炭酸塩をこれに溶融言浸して電解質体を4
fc。
Mixed carbon of 5Qwt% lithium aluminate, lithium carbonate and potassium carbonate with an average particle size of 1 μm as an electrolyte holding material #
R salt (62:38, molar ratio) t-11 An electrolyte body material containing 50% by weight of solute was added with water to form a paste, and this was press-fitted into the above self-supporting substrate. After drying for 2 hours at 530 C (06
Melt and immerse the above mixed carbonate in this at a temperature of 4°C to form an electrolyte body.
fc.

この自己支持性基体の空隙には32gの電解質体材料が
保持された。
32 g of electrolyte material was held in the voids of this self-supporting substrate.

実施例2 100samX 1001aIX厚さ2■の形状の平均
細孔径z5■のアルミニウム襄三次元網状構造体を60
0Cの温度で5時間酸化処理したのち、450Cの@度
で24時間水酸化リチウムと処理して自己支持性基体と
した。
Example 2 An aluminum sleeve three-dimensional network structure having a shape of 100 sam x 1001 a I x thickness 2 cm and an average pore diameter of z 5 cm was
After oxidation treatment at a temperature of 0C for 5 hours, it was treated with lithium hydroxide at 450C for 24 hours to obtain a self-supporting substrate.

これに実施例1と同様の方法で′−解質材料をその空隙
に充填保持して電解質体を得九。
In the same manner as in Example 1, a '-lyte material was filled and held in the voids thereof to obtain an electrolyte body.

この自己支持性基体の空隙には39gの電解質体材料が
保持されたつ 実施例3 実施例1.実施例2で得られ丸亀解質体を用いて率セル
を構成し、電池性症を測定した。
39g of electrolyte material was held in the void of this self-supporting substrate.Example 3 Example 1. A rate cell was constructed using the Marugame solute obtained in Example 2, and battery disease was measured.

多孔質ニッケル焼結板をアノードに、そのリチウム化し
た酸化ニッケル焼結板をカソードとし、アノード側には
50%Ht  N を混合ガスを、カソード1411に
は15%0.−30%Co、−N、混合ガスを供給した
。650Cにおける放電電流密度100 mA/m”時
のセル電圧を測定した結果、前者では0.76V、後者
では0.79Vが得られ、100時間後K>い−’(も
それぞれ0.77 V 、0,80Vであった。
A porous nickel sintered plate is used as an anode, and the lithiated nickel oxide sintered plate is used as a cathode.A mixed gas of 50% HtN is applied to the anode side, and a 15% HtN gas is applied to the cathode 1411. -30% Co, -N, and mixed gas were supplied. As a result of measuring the cell voltage at a discharge current density of 100 mA/m'' at 650C, 0.76 V was obtained for the former, 0.79 V for the latter, and after 100 hours K>I-' (also 0.77 V, respectively). It was 0.80V.

Claims (1)

【特許請求の範囲】 1、 アノード及びカソードと両電極間に配設される電
解質を保持してなる電解質体よシなり、燃料及び酸化剤
がそれぞれアノード側に配設される燃料室及びカソード
側に配設される酸化剤室に供給されることによシ、電気
化学的に発電せる燃料電池において、少なくとも表層が
非導電性、かつ耐アルカリ性物質からなる自己支持性基
体の空隙に電解質が充填されてなる電解質体を用いるこ
とを特徴とする溶融炭酸塩型燃料電池。 2 %軒請求の範囲第1項記載の燃料電池において、少
なくとも表層が非導電性、かつ耐アルカリ性物質からな
る自己支持性基体の空隙にits質及び電解質保持材で
ある微粉本が充填されてなる電解質体を用いることを特
徴とする溶融炭酸塩型燃料電池。 & 特許請求の範囲第1項又は第2項記載の燃料電池に
おいて、該自己支持性基体がセラミックス製のハニカム
状構造体若しくは三次元網状構造体でるることを特徴と
する溶−炭酸基盤燃料電池。 4 %許#′!1求の範1第1項又は第2項記載の燃料
電池において、咳自己支持性基体が金m製のハニカム状
構造体若しくは三次元網状構造体の少なくとも表層が非
導電性、かつ耐アルカリ性物質に変換若しくは被積され
九基体であることt−特徴とする溶融炭酸塩型燃料電池
。 5、特許請求の範囲第4項記載の燃料電池において、咄
記ハニカム状構造体若しくは繭記三次元網状僕遺体が実
質的にアルミニウムよりできておシ、その少なくとも表
層がアルミン酸リチウムに変換さnていることt−特徴
とする溶融炭酸塩型燃料電池。
[Scope of Claims] 1. An electrolyte body containing an electrolyte disposed between an anode and a cathode, and a fuel chamber and a cathode side in which a fuel and an oxidizing agent are respectively disposed on the anode side. By supplying the electrolyte to an oxidizer chamber arranged in A molten carbonate fuel cell characterized by using an electrolyte body made of 2. In the fuel cell according to claim 1, the voids of a self-supporting substrate at least the surface layer of which is non-conductive and made of an alkali-resistant material are filled with fine powder, which is an electrolyte holding material. A molten carbonate fuel cell characterized by using an electrolyte body. & A molten carbonate-based fuel cell according to claim 1 or 2, wherein the self-supporting substrate is a ceramic honeycomb-like structure or a three-dimensional network structure. . 4% allowance#'! Item 1 In the fuel cell according to item 1 or item 2, the self-supporting substrate is a honeycomb-like structure or a three-dimensional network structure made of gold, at least the surface layer of which is non-conductive and alkali-resistant. A molten carbonate fuel cell characterized in that it is converted into or deposited with a nine-substrate structure. 5. In the fuel cell according to claim 4, the honeycomb structure or the three-dimensional mesh structure is substantially made of aluminum, and at least the surface layer thereof is converted to lithium aluminate. A molten carbonate fuel cell characterized by:
JP57037971A 1982-03-12 1982-03-12 Molten-carbonate fuel cell Pending JPS58155667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57037971A JPS58155667A (en) 1982-03-12 1982-03-12 Molten-carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57037971A JPS58155667A (en) 1982-03-12 1982-03-12 Molten-carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPS58155667A true JPS58155667A (en) 1983-09-16

Family

ID=12512444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57037971A Pending JPS58155667A (en) 1982-03-12 1982-03-12 Molten-carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS58155667A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017864A (en) * 1983-07-12 1985-01-29 Matsushita Electric Ind Co Ltd Molten salt fuel cell
JPS6282654A (en) * 1985-10-08 1987-04-16 Hitachi Ltd Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017864A (en) * 1983-07-12 1985-01-29 Matsushita Electric Ind Co Ltd Molten salt fuel cell
JPS6282654A (en) * 1985-10-08 1987-04-16 Hitachi Ltd Fuel cell

Similar Documents

Publication Publication Date Title
JP2002538597A5 (en)
US4943496A (en) Fuel cell, electrode for the cell and method of preparation thereof
JPS58212070A (en) Cathode composite for fusible carbonate fuel battery
JP2008538543A (en) Precursor material infiltration and coating methods
JP3333207B2 (en) Electrochemical alkali metal battery and method for manufacturing the same
US3097115A (en) Catalysts and electrodes for fuel cells
JPH0746610B2 (en) Molten carbonate fuel cell positive electrode and method for producing the same
US5340665A (en) Creep resistant, metal-coated LiFeO2 anodes for molten carbonated fuel cells
JPS58155667A (en) Molten-carbonate fuel cell
KR100294467B1 (en) Process for producing solid electrolyte for sodium-sulfur battery
US4656735A (en) Process for producing an electrolyte retaining matrix of electrical insulating long fibers
JPS58129775A (en) Fuel battery
JPH02821B2 (en)
JPH0241142B2 (en)
JPH08273675A (en) Cell of fuel cell
JPS58128670A (en) Molten salt fuel cell and its manufacture
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
JPS6240822B2 (en)
JPS60170167A (en) Manufacturing method for alkaline cell electrode
JPS58129774A (en) Electrolytic plate for molten salt fuel cell
JPH0272558A (en) Manufacture of fuel cell electrode
RU2069358C1 (en) Process of manufacture of potassium electrochemical cell
JPH0797500B2 (en) Method for manufacturing fuel electrode of molten carbonate fuel cell
JPH0498766A (en) Manufacture of fuel electrode for solid electrolyte fuel cell
JPS60167270A (en) Oxidation electrode for molten salt fuel cell