Nothing Special   »   [go: up one dir, main page]

JPS58142301A - Optical member made of synthetic resin - Google Patents

Optical member made of synthetic resin

Info

Publication number
JPS58142301A
JPS58142301A JP57024300A JP2430082A JPS58142301A JP S58142301 A JPS58142301 A JP S58142301A JP 57024300 A JP57024300 A JP 57024300A JP 2430082 A JP2430082 A JP 2430082A JP S58142301 A JPS58142301 A JP S58142301A
Authority
JP
Japan
Prior art keywords
synthetic resin
optical member
silica
layer
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57024300A
Other languages
Japanese (ja)
Other versions
JPS6213641B2 (en
Inventor
Koji Sato
孝二 佐藤
Hiroshi Kawahara
川原 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Tokyo Optical Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP57024300A priority Critical patent/JPS58142301A/en
Publication of JPS58142301A publication Critical patent/JPS58142301A/en
Publication of JPS6213641B2 publication Critical patent/JPS6213641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To increase the adhesive strength of an antireflection film to a synthetic resin substrate layer by interposing an org. hard film contg. inorg. fine- grained silica having silanol groups between the antireflection film and the substrate layer. CONSTITUTION:An org. hard film contg. inorg. fine-grained silica or a deriv. thereof having silanol groups and 20-500Angstrom average grain size such as inorg. fine-grained silica grafted on the bonding component of the hard film is interposed between an antireflection film and a synthetic resin substrate layer. The condensation product of polyol with alkyl-etherified methylolmelamine is used as the bonding component of the hard film. The preferred silica has about 3-8 silanol groups per 100Angstrom <2> on the average.

Description

【発明の詳細な説明】 本発明は合成樹脂製光学レンズなどの一&奴樹脂製光宇
部材に関するものであり、特に反射防止膜を有する合成
樹脂製光学部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a synthetic resin optical member such as a synthetic resin optical lens, and more particularly to a synthetic resin optical member having an antireflection film.

合成樹脂製の光学部材たとえば光学レンズは、眼鏡用レ
ンズや光学機器用レンズとして使用されている。合成樹
脂材料としては、ジエチレングリコール・ビスアリルカ
ーボネート糸桐脂。
Optical members made of synthetic resin, such as optical lenses, are used as lenses for spectacles and lenses for optical equipment. Synthetic resin materials include diethylene glycol bisallyl carbonate and paulownia resin.

アクリル糸樹脂,ボリカーボネート糸賀脂,スチレン系
樹脂,セルロース糸樹脂,その他の透明性に優れた樹脂
が用いられるが、眼鏡用レンズの材料としては%にジエ
チレングリコール・ビスアリルカーボネート(商品名@
 CR3911)の単独重合体や共重合体が主として使
用されている。表面に反射防止膜を有する合成樹脂製光
学部材はよく知られている。反射防止膜は通常無機質酸
化物、フッ化物、その他の無機−質を真空蒸着やスパッ
タリングなどの方法で光学部材表面に多層状に膜形成し
て得られる。反射防止膜を有する合成樹脂製光学部材に
おいて、いまだ充分に解決されていない問題の1つは、
反射防止膜と合成樹脂基材との付着強度が充分でないと
いう点であシ、他の1つは反射防止膜の耐久性や耐摩耗
性などの物性が充分でないという点である。
Acrylic thread resin, polycarbonate thread resin, styrene resin, cellulose thread resin, and other resins with excellent transparency are used, but diethylene glycol bisallyl carbonate (trade name @
CR3911) homopolymers and copolymers are mainly used. Synthetic resin optical members having an antireflection film on their surfaces are well known. The antireflection film is usually obtained by forming a multilayer film of an inorganic oxide, fluoride, or other inorganic substance on the surface of an optical member by a method such as vacuum deposition or sputtering. One problem that has not yet been fully resolved in synthetic resin optical components with anti-reflection coatings is:
One problem is that the adhesion strength between the antireflection film and the synthetic resin base material is insufficient, and the other problem is that the antireflection film does not have sufficient physical properties such as durability and abrasion resistance.

一方、合成樹脂製光学部材の材料としての大きな問題は
、その表III硬度系ガラスに比べて低く、耐久性や耐
摩耗性が劣るという点にある。
On the other hand, a major problem with synthetic resin optical members as materials is that their hardness is lower than Table III glass, and their durability and abrasion resistance are inferior.

この間勉を解決す・るため、通常は基材表面に硬質被膜
を形成する方法が採用されている0硬質被膜としては有
機質系硬質被膜と無機質系硬質被膜が知られているが、
被膜形成の容易さや経済性からみて有機質系硬質被膜が
M利と劣見られており、この有機質系硬質被膜を形成し
りる被覆塗料(以下被覆組成物という)として数多くの
特許が出願されている。
In order to solve this problem, a method of forming a hard coating on the surface of the substrate is usually adopted. Organic hard coatings and inorganic hard coatings are known as hard coatings.
Organic hard coatings are considered inferior in terms of ease of film formation and economic efficiency, and many patents have been filed for coating paints (hereinafter referred to as coating compositions) that form organic hard coatings. .

前記反射防止膜を有する合成樹脂製光学部材における2
つの問題点の内、後者の問題点は基材と反射防止膜との
間に硬質被膜を設けることくより解決されると考えられ
る。反射防止膜は極めて薄いものであり、その耐久性や
耐摩耗性はその反射防止膜の下の硬質被膜のそれら物性
に影響され、基材表内に直接形成された反射防止膜と比
べて耐久性や耐摩耗性が向上すみ。しかしながら、前記
2つの問題の内の前者、即ち反射防止膜の付着強度はそ
れが付着する材料のwi類に大きく影響される。従来、
光学部胸の基材表面に直接反射防止膜を形成する場合に
はその基材材料と反射防止go付着強度についての検討
が行なわれていた。しかしながら、硬質被膜と反射防止
膜の付着強度についての検討は充分性なわれてはいなか
った。本発明者らは、種々の硬質被膜を有する合成樹脂
製光学部材について反射防止膜を形成してその付着強度
や物性を測定した。有機質系硬質被膜を形成しうる被覆
組成物の多く紘アルー會ジシランの加水分解物を硬質化
成分として含んでいる。しかし、アル;キシシランの加
水分解物を硬質化成分として含む有機系硬質被膜上に形
成し九反射防止属は実用に耐えうる横変の付着強度を有
していなかった。そこで他の硬質化成分を含む有機質系
硬質被膜について種々の研究検討を行つ九結果シツノー
ル基を有する無機質微粒状シリカまたはその誘導体を硬
質化成分として含む有機質系硬質被膜が反射防止膜と優
れた付着強度を示す仁とを見い出した。この硬質化成分
を含む有機質系硬質被朧紘単に反射防止膜に対して高い
付着強度を有するのみならず、硬質被膜本来の性質も優
れておシ、従って耐久性や耐摩耗性・などにおいても何
ら問題となるものではないつ本発明は上記特定の硬質化
成分を含む有機質系硬質被膜を反射防止膜層と基体合成
樹脂層の関に有する反射防止膜を有する合成樹脂製光学
部材であシ、即ち、#!mK反射紡止展を有する合成樹
脂基材部材において、反射防止膜層と合成樹脂基材層と
の間に平均粒!!0−100ムのシラノール基を有する
無機質微粒状シリカあるいはそ01il導体を含む有機
質系硬質被膜を設は九ことを特徴とする合成樹脂製光学
部材である。
2 in the synthetic resin optical member having the antireflection film
Of the two problems, the latter problem is thought to be solved by providing a hard coating between the base material and the antireflection film. The anti-reflective coating is extremely thin, and its durability and abrasion resistance are affected by the physical properties of the hard coating underneath the anti-reflective coating, making it less durable than an anti-reflective coating formed directly on the surface of the base material. Improved durability and wear resistance. However, the former of the above two problems, that is, the adhesion strength of the antireflection film is greatly influenced by the characteristics of the material to which it is adhered. Conventionally,
When forming an antireflection film directly on the surface of the base material of the optical part, studies have been conducted on the base material and the adhesion strength of the antireflection layer. However, the adhesion strength between the hard coating and the antireflection coating has not been sufficiently investigated. The present inventors formed antireflection coatings on synthetic resin optical members having various hard coatings, and measured the adhesion strength and physical properties of the antireflection coatings. Many coating compositions capable of forming organic hard coatings contain a hydrolyzate of silane as a hardening component. However, the anti-reflection coating formed on an organic hard coating containing a hydrolyzate of al; Therefore, we conducted various research studies on organic hard coatings containing other hardening components, and the results showed that organic hard coatings containing inorganic fine particulate silica or its derivatives as hardening components have excellent antireflection coatings. We have discovered that the bond exhibits adhesion strength. The organic hard coating containing this hardening component not only has high adhesion strength to the anti-reflection coating, but also has excellent properties as a hard coating, and therefore has excellent durability, abrasion resistance, etc. Although this does not pose any problems, the present invention is an optical member made of a synthetic resin having an antireflection film having an organic hard coating containing the above-mentioned specific hardening component between the antireflection film layer and the base synthetic resin layer. , i.e. #! In a synthetic resin base member with mK reflective spinning expansion, an average particle size between the antireflection film layer and the synthetic resin base layer! ! This is an optical member made of synthetic resin, characterized in that it is provided with an organic hard coating containing inorganic fine particulate silica having 0 to 100 μm of silanol groups or a silica conductor.

上記無機質微粒状シリカを硬質化成分として含む有機質
系硬質被膜と反射防止膜との付着強度が為い理由は明確
なものではない。しかし、前記アルコキシシランの加水
分解物を硬質化成分として含む有機質系硬質被膜と比較
すれば、次のような理由が推測される。本発明における
シラノール基な有する無機質微粒状シリカあるいはその
誘導体の表面は次のような構造・を有していると考えら
れる。
The reason why the adhesion strength between the organic hard coating containing the inorganic fine particulate silica as a hardening component and the antireflection coating is poor is not clear. However, when compared with organic hard coatings containing the alkoxysilane hydrolyzate as a hardening component, the following reasons can be surmised. The surface of the inorganic fine particulate silica or its derivatives having silanol groups in the present invention is considered to have the following structure.

ムは水素原子あるいは有機残基なとであシ、特に有機質
系硬質被膜の樹脂成分の残基である。
The element may be a hydrogen atom or an organic residue, particularly a residue of a resin component of an organic hard coating.

これらについては後に詳しく説明する。一方、アル;キ
シシラン、たとえばRm−81(OR/)4−。
These will be explained in detail later. On the other hand, Al;xysilane, such as Rm-81(OR/)4-.

(m:1〜3の整数、RおよびR′はアルキル基)の加
水分解物は次のような構造を有していると考えられる。
The hydrolyzate of (m: an integer of 1 to 3, R and R' are alkyl groups) is thought to have the following structure.

この加水分解物はシラノール基あるいは8l−0−Aで
表わされる官能基をほとんど含んでいないか、たとえあ
ったとしても極くわずかしか含んでいない。ところで、
R−Eli結合とEli−0−81結合はシフノール基
のO−HIIM合および8l−O−ムの0−ム結合と比
較−して高い結合エネルギーを有している。従って、R
−81間あるいは8l−0−81間の結合を開裂するに
は高いエネルギーか必要であシ、これら結合を開裂して
その部分を活性化する仁とは比較的困難である。これら
前提のもとに、硬質被膜上に真空蒸着やスパッタリング
などの方法で反射防止膜を形成する場合を考えると、反
射防止層を形成する材料の分子・原子・イオン・ラジカ
ルなどが硬質被J[表面に!Ii固に付着するためには
硬質被膜狭面が活性化される仁とが必要であると考えら
れる。硬質表面の活性化の丸めのエネルギーはそれら分
子・原子・イオン・ラジカルあるいは電子や光等によっ
て供給されるが、上記のように活性化され易い表面はど
反射防止層を形成する材料の付着強度が高くなると考え
られる。従って、本発明における5l−0−ム結合を有
する無機質微粒状シリカ鉱活性化され易いものであシ、
それ故それを含む硬質被膜は反射防止層と強固に付着す
ると思われる。
This hydrolyzate contains little, if any, silanol groups or functional groups represented by 8l-0-A. by the way,
The R-Eli bond and the Eli-0-81 bond have higher bond energy compared to the O-HIIM bond of the Schifnol group and the O-me bond of the 8l-O-me. Therefore, R
High energy is required to cleave the bond between -81 or 8l-0-81, and it is relatively difficult to cleave these bonds and activate that part. Based on these assumptions, if we consider the case where an antireflection film is formed on a hard coating by a method such as vacuum evaporation or sputtering, molecules, atoms, ions, radicals, etc. of the material forming the antireflection layer will be absorbed by the hard coating. [On the surface! It is thought that in order to adhere firmly to Ii, it is necessary to activate the narrow surface of the hard coating. The rounding energy for activation of a hard surface is supplied by molecules, atoms, ions, radicals, electrons, light, etc., but as mentioned above, the adhesion strength of the material that forms the anti-reflection layer on surfaces that are easily activated is considered to be higher. Therefore, in the present invention, the inorganic fine particulate silica mineral having a 5l-0-me bond is easily activated.
A hard coating containing it is therefore expected to adhere strongly to the antireflection layer.

本発WAK>ケル平均粒IK2 o−s o o it
Dシラノール基を有する微粒状シリカはコロイダルシリ
カとも呼ばれ、安定な水分散液あるいは種々の溶剤に分
散し大安定な分散液として市販されている。この微粒状
シリカはfl#t’球形の粒子であ夛、七のlR藺に1
00平方!#i!Rシ約3〜8個、通常は約3〜4個の
シフノール基を有しているといわれている。まえ、微粒
状シリカの分散液は主に水ガラスをイオン交換法部によ
り調整して得られるものであシ、微粒状シリカは有機質
成分を含まないものである。光学特性を考慮すると、よ
シ好ましい微粒状シリカの平均粒径は1o−zsouで
ある。被覆組成物はこの微粒状シリカの分散液を使用し
て製造される。
Original WAK>Kell average grain IK2 o-s o o it
Particulate silica having a D-silanol group is also called colloidal silica, and is commercially available as a stable aqueous dispersion or a very stable dispersion that can be dispersed in various solvents. This fine-grained silica consists of fl#t' spherical particles;
00 square! #i! It is said that R has about 3 to 8, usually about 3 to 4, Schifnol groups. The dispersion of finely divided silica is mainly obtained by adjusting water glass using an ion exchange process, and the finely divided silica does not contain any organic components. Considering the optical properties, the average particle diameter of the finely divided silica is preferably 1 o-zsou. A coating composition is produced using this dispersion of finely divided silica.

市販の分散媒は通常水であるが、有機溶媒であるのもあ
る。溶媒置換などによシ水分散液よ)有機溶媒分散液と
することができ、同様に分散媒の種類を変えることもで
きる。被覆組成物を製造する場合、好ましい分散媒は水
と有機溶媒であシ、特に有機溶媒が好ましい。有機溶媒
としては、アルプール、嶽化水嵩、エステル、エーテル
、ケトン、その他のものが使用でき、釘にメタノール、
エタノール、イソプロパツール。
Commercially available dispersion media are usually water, but may also be organic solvents. It can be made into an organic solvent dispersion (from an aqueous dispersion) by solvent substitution, and the type of dispersion medium can be changed in the same way. When producing the coating composition, preferred dispersion media are water and organic solvents, with organic solvents being particularly preferred. Examples of organic solvents that can be used include alpur, esters, ethers, ketones, and others;
Ethanol, isopropanol.

ブタノール、2−エトキシエタノール、その他の炭素数
1〜4の1価アルコールが適幽である@有機質系硬質被
膜は上記硬質化成分を含む合成樹脂などの結合成分から
なっている。被覆組成物はこの結合成分中硬化によ)結
合成分となシうる成分を含む。結合成分は通常合成樹脂
であるので、被覆組成物はこの合成樹脂は勿論、付加重
合中線重合などの重合により合成樹脂となシうる成分を
含んでいてもよい。合成1#脂あるいは合成樹脂となシ
うる成分としては、通常の呼び方に従えば(金成機脂と
なる前の成分汎合物であっても「−一・樹脂」と呼ぶこ
とが通例である。例としては種々の熱硬化性樹脂がある
)たとえば、メラミン系樹脂、エポキシ系樹脂。
The organic hard coating, in which butanol, 2-ethoxyethanol, and other monohydric alcohols having 1 to 4 carbon atoms are suitable, is made of a binding component such as a synthetic resin containing the above-mentioned hardening component. The coating composition includes a component that can be converted into a bonding component (by curing) in this bonding component. Since the bonding component is usually a synthetic resin, the coating composition may contain not only this synthetic resin but also a component that can be converted into a synthetic resin by polymerization such as addition polymerization or midline polymerization. As a component that can be used as a synthetic 1# resin or a synthetic resin, according to the usual name (even if it is a component composite before becoming a synthetic resin, it is customary to call it "-1 resin". Examples include various thermosetting resins) such as melamine resins and epoxy resins.

フェノール系樹脂、アルキッド系樹脂、アクリル系樹脂
、ポリウレタン系樹脂、ブチツール系樹脂などがある。
There are phenolic resins, alkyd resins, acrylic resins, polyurethane resins, butytool resins, etc.

より好ましい合成掬脂Fi偵粒状シリカのシラノール基
と結食しうる水酸基。
A more preferred synthetic silica is a hydroxyl group that can coagulate with the silanol group of the granular silica.

アルカノール基、カルボン酸基などの官能基を有する成
分を含む合成樹脂でTo〉、たとえばメ9々ン系樹脂、
エポキシ畢樹脂、ヒト四キシアクリレートを使用し九ア
クリル系樹脂、ブチラール樹脂などがある。
A synthetic resin containing a component having a functional group such as an alkanol group or a carboxylic acid group, such as a methane-based resin,
There are epoxy resins, acrylic resins using human tetraxacrylate, butyral resins, etc.

特に好ましい被覆組成物は、メチ四−ル基の一部〜全部
がアルキルエーテル化され九メチ・四−ルメラζン、多
価アルコール、前記無機質微粒状シリカ、および溶剤の
少くとも4威分を含む鬼のである@特に、微粒状シリカ
と多価アルコールを、または微粒状シリカ、多価アルコ
ール、およびアルキルエーテル化メチ四−ルメ5Pミン
とを予備縮合して得られる成分を會む被覆組成物が好ま
しい。予備縮合によシ黴粒状シリカのシラノール基が多
価]、・でルコールと反応し、ま九アルキルエーテル化
メチ四−ルメツ電ンを用いた場合はこれと多価アルコー
ル、微粒状シリカと結合し九多価アルコール、あるいは
微粒状シリカのシラノール基とが反応し予備縮合物が生
成する。勿論、予備縮合を行なわない場合であっても、
被覆組成物の硬化の際にこれらの反応が起る。前記81
−0−ムで表わされる基、のムは、好ましくは多価アル
コール秦基あるいは皺多−アルコール熾基とアル中ルエ
ーテル化メチロールメツζンが反応して生成する残基で
ある。
A particularly preferred coating composition is one in which some to all of the methyl groups are alkyl etherified, and at least four of the following are present: In particular, a coating composition that combines components obtained by precondensing finely divided silica and a polyhydric alcohol, or finely divided silica, a polyhydric alcohol, and an alkyl etherified methyl-4-Pmine. is preferred. Through precondensation, the silanol groups of the moldy particulate silica react with the alcohol at the polyhydric level, and when alkyl etherified methane is used, this is combined with the polyhydric alcohol and the fine particulate silica. The polyhydric alcohol or the silanol groups of the finely divided silica react to form a precondensate. Of course, even if precondensation is not performed,
These reactions occur during curing of the coating composition. Said 81
The group represented by -0- is preferably a residue produced by the reaction of a polyhydric alcohol group or a polyalcohol group with alkyl-etherified methylolmethane.

多価アルプール残基はさらに他t)9ラノール基と反応
していてもよく、を九ムがアルキルエーテル化メチ闘−
ルメラ電ンとシラノール基が反応した残基である場合も
あると考えられる。このように、微粒状シリカがそのシ
ラノール基によシ緒合成分である合成樹脂にグラフトさ
れていることが嵐好な硬質被膜を得る丸めに轡に好まし
い。同11に1他の結合成分046合においてもその中
に書まれる微粒状シリ★はその結合酸分にグツ7トされ
ていることが好ましい。
The polyvalent Alpool residue may further be reacted with other 9-ranol groups, and the 9 groups are alkyl etherified methane groups.
It is thought that there may be cases where the residue is a reaction between a lumella electron and a silanol group. As described above, it is preferable for fine-grained silica to be grafted onto the synthetic resin, which is a synthetic component, by its silanol groups in order to obtain a smooth hard coating. Also in 11-1 and 046 other bonding components, it is preferable that the fine particles written therein are tightly bound to the bonding acid content.

上記の臀に好ましい被扱組成−は、微粒状シリカの結合
酸分に対するグラフトが容易であシ、特にあらかじめ予
備縮合を行って、仁のグツ7トを児分に進めておくこと
が適轟である。この會1又紘縮合メチ四−ルメラ建ンO
アルキルエーテル化物も便用すゐことができる。また、
上記の被覆組成物の組成a%に限定される40ではない
が、アル命ルエーテル化メチーールメッ電ン:多価アル
;−ル0グツA−量比が1:αb〜1:2.多価アル;
−多価アル;シルカの重量比がIga1〜1:4である
ことが好ましい。
The preferred composition for the buttocks is that it is easy to graft the bonded acid content of fine particulate silica, and it is especially appropriate to perform precondensation in advance and advance the core to the heel. It is. This meeting is a series of condensed methyl 4-lumen O
Alkyl ether compounds can also be conveniently used. Also,
Although the composition of the above-mentioned coating composition is not limited to 40%, the amount ratio of etherified methane:polyhydric alkali is 1:αb to 1:2. Polyvalent Al;
- It is preferable that the weight ratio of polyvalent alkaline to silica is Iga 1 to 1:4.

被l!組成愉中の溶剤はアルコール、炭化水素。Covered! The solvent in the composition is alcohol and hydrocarbons.

エステル、エーテル、ケトン、ホルムア膚ド。Esters, ethers, ketones, formua.

その他種々のものを使用しうる。たとえば、メタノール
、エタノール、プロパツール、ブチ・k 7 k :f
−ルウ2〜メトキシエタノール、2−エトキシエタノー
ル、!!−ブト命フジエタノールトルエン、ベンゼン、
 M、M−・ジメチルホルムアでドなどが適轟である。
Various other materials can also be used. For example, methanol, ethanol, propatool, buti・k7k:f
-Rou 2~Methoxyethanol, 2-ethoxyethanol,! ! - Buto Life Fuji Ethanol Toluene, Benzene,
M, M-, dimethylformua, etc. are suitable.

この溶剤は微粒状V9力O分散媒として使用し丸もので
あってもよい。
This solvent may be used as a finely divided V9 dispersion medium and may be round.

また、塗膜の乾燥性を高めるためにこれらよ)も低沸点
0@剤、九とえば酢酸エチル、ア七)ン、メチルエチル
ケトン、ブチルセロソルブなどを併用してもよい。被覆
組成物にはさらに他の成分を添加するとともで龜る。九
・とえば硬化触媒、レペリンダ剤、紫外線WkIIiL
剤2着色剤などがある。まえ、他の硬化成分九とえば前
記アル;命シシツンの加水分解物を追加して使用するこ
と庵できる。これ−身は付着強度を高める効果は少いも
のO硬質化成分として紘有効であシ、酋記黴粒状シリカ
との併用によシ付着強度を低減させることなく硬質被覆
の硬さを向上することができると考えられゐ。まえ、有
機質硬質被覆に使用される他の成分、九とえばエボキシ
シツン、不飽和有機シツン、ア(ノシツン。
In addition, in order to improve the drying properties of the coating film, a low boiling point agent such as ethyl acetate, amine, methyl ethyl ketone, butyl cellosolve, etc. may be used in combination with these agents. The coating composition may be further supplemented with other ingredients. 9. For example, curing catalyst, repelinda agent, ultraviolet light WkIIiL
Agent 2 Coloring agent, etc. In addition, other curing ingredients such as the above-mentioned hydrolyzate of alkaline alcohol can be added. Although it has little effect on increasing adhesive strength, it is effective as a hardening component, and when used in combination with granular silica, it improves the hardness of hard coatings without reducing adhesive strength. It is thought that it is possible. There are other ingredients used in organic hard coatings, such as epoxy resin, unsaturated organic resin, and alkali.

その伽の有機ケイ素化金物、アクリル畢重會体中その峰
ツマ−あるいはポリビニルブチツールなどの結金剤成分
を上記被覆組成物に加えることができる。
Binding agent components such as organosiliconized metals, acrylic polymers, or polyvinyl butylene can be added to the coating composition.

上記被覆組成物は、必須成分を単に混合した11゜ ものであってもよいが、前記のよ、うに予備縮合を行っ
て得られるものが好ましい。予備縮合は前記少くとも2
〜3成分を混合し、好ましくは180℃以上に加熱して
行なわれる。この予備線食物IIc他の必須成分、たと
えば微粒状シリカと多価アルー−ルの予備縮合物の場合
はアルキルエーテル化メチロールメ2電ン、溶剤がない
場合KIJ溶剤、を加え必要によ〉他の成分を加えて被
覆組成物が製造される。この被覆組成物は単独で使用す
ることができるが、また他の被覆剤と併用することもで
きる。この被覆組成物は合成樹脂製光学部材の基材表面
に直接、あゐい祉プツイi−等を介して塗布し、加熱硬
化して硬質被膜とする・塗布方法唸111iK@定され
ずたとえにスプレー塗シ、浸漬塗p、四−ラー塗シ、ス
ピナへmシワ八ケ塗pなどで行いうる。
The above-mentioned coating composition may be a 11° composition obtained by simply mixing the essential components, but it is preferably obtained by precondensation as described above. The precondensation is carried out at least two times as described above.
- Three components are mixed and preferably heated to 180°C or higher. Add other essential ingredients, such as alkyl etherified methylolmethane in the case of a precondensate of finely divided silica and polyvalent alcohol, KIJ solvent if no solvent is available, and add other essential ingredients as necessary. The ingredients are added to produce the coating composition. This coating composition can be used alone or in combination with other coating agents. This coating composition is applied directly to the surface of the base material of the synthetic resin optical member using a coating material such as Ai-Ki-Putsui-i, and is heated and cured to form a hard coating. It can be applied by spray coating, dip coating, four-color coating, spinner coating, etc.

硬化温度は$O〜11i0℃が適轟であシ、較負被膜の
厚さFi1〜20μが追歯である。
A suitable curing temperature is $0 to 11i0°C, and a thickness Fi1 to 20μ of the calibration film is suitable.

上記のようにして得られた基材上の硬質被膜表面に次い
で反射防止膜が形成される。反射防止膜の形成方法とし
ては、真空蒸着、イオンブレーティング、CVD、など
の蒸着やスパッタリングなどで行なわれる・反射防止膜
はその最内層(硬質被膜側)と最外層のいずれか少くと
も一方に保護層、付着性向上層、あるいは硬質層(以下
、これら3者を保護層という)として反射防止としては
直接作用しない層を有していてもよい。特にシリカを含
む保護層#′i、金成樹金製樹脂製基材着性向上層ある
いは無機質硬質被膜として知られている。本発明におい
ても、蒸着などによシ有機質硬質被膜上に形成されたシ
リカ層線有機質硬質被膜層との付着性が棗好である。な
お、前記有機質硬質被膜と反射防止層との付着強度の問
題は、反射防止層の最内層のとのシリカ層を設は九場合
も含む1問題であシ、従来の有機質硬質被膜上にこのシ
リカの保護層を設は九場合にも付着強度、は不充分であ
った。本発明においては、反射防止層の最内層は810
x(x:1〜3)などのシリカ層ではなくてもよい。た
とえば有機質硬質被膜上に保一層を設けなくてもよく、
またアル建すなどの他の保籟層を設けてもよい。しかし
、付着強度や他の物性の面から反射防止層の最内層はシ
リカの層であることが好ましい。また、反射防止層の最
外層は反射防止作用のおる層を保−する丸めにそれより
内側にある層よ如も硬質の層を設ける°ことが好ましい
。この最外層の保護層としては最内層と同様にシリカ層
であることが好ましい。
Next, an antireflection film is formed on the surface of the hard coating on the substrate obtained as described above. The anti-reflective film can be formed by vacuum deposition, ion blating, CVD, etc., or sputtering.The anti-reflective film is formed on at least one of the innermost layer (hard coating side) and the outermost layer. It may have a layer that does not directly act as an anti-reflection layer, such as a protective layer, an adhesion-improving layer, or a hard layer (hereinafter, these three will be referred to as a protective layer). In particular, it is known as a protective layer #'i containing silica, a layer for improving adhesion to a resinous substrate made of metal resin, or an inorganic hard coating. In the present invention, the adhesion to the silica layer formed on the organic hard coating by vapor deposition or the like is excellent. The problem of adhesion strength between the organic hard coating and the antireflection layer is one problem, including the case where a silica layer is provided as the innermost layer of the antireflection layer. Even when a protective layer of silica was applied, the adhesion strength was insufficient. In the present invention, the innermost layer of the antireflection layer is 810
It may not be a silica layer such as x (x: 1 to 3). For example, it is not necessary to provide a protective layer on the organic hard coating.
Further, other protection layers such as aluminum may be provided. However, from the viewpoint of adhesion strength and other physical properties, the innermost layer of the antireflection layer is preferably a silica layer. Further, it is preferable that the outermost layer of the antireflection layer is provided with a layer that is harder than the layers inside the outermost layer that retains the antireflection effect. As with the innermost layer, the outermost protective layer is preferably a silica layer.

反射防止層は最内層と最外層を除いても通常多層構造を
有する。この各14−特定の材料を特定の膜厚に積層し
て得られる。反射防止膜の構成材料としては保護層を含
めて、たとえは次のような無機物質が使用される。シリ
カ、アル建す、ジルコニア、酸化マグネシウム、酸化セ
リウム、酸化チタン、酸化インジウム、酸化ネオジウム
、酸化タンタル、m化ベリウム、酸化イツトリウム、酸
化ハフニウムその他の酸化物。
The antireflection layer usually has a multilayer structure except for the innermost layer and the outermost layer. Each of these 14-specific materials is laminated to a specific thickness. As constituent materials of the antireflection film, including the protective layer, the following inorganic substances are used, for example. Silica, aluminum oxide, zirconia, magnesium oxide, cerium oxide, titanium oxide, indium oxide, neodymium oxide, tantalum oxide, beryum oxide, yttrium oxide, hafnium oxide and other oxides.

フッ化!グネシウム、フッ化セリウム、フッ化うンタン
、フッ化リチウム、フッ化トリウム。
Fluoride! Gnesium, cerium fluoride, porium fluoride, lithium fluoride, thorium fluoride.

フッ化ネオジウム、その他の7フ化物。硫化亜鉛、その
他の酸化物中フッ化物以外の無機化合物。また、これら
材料中に銅、金、銀、クロム。
Neodymium fluoride and other heptafluorides. Inorganic compounds other than fluoride in zinc sulfide and other oxides. Also, these materials include copper, gold, silver, and chromium.

アルf=ウム、その他の金属や金属化合物を少量加えて
着色させることもできる。
It is also possible to add a small amount of aluminum, other metals, or metal compounds for coloring.

前記の説明のように、本発明の合成*m製光学部#砿合
成樹脂基材層、有機質硬質被膜層。
As described above, the synthetic*m optical part of the present invention includes a synthetic resin base layer and an organic hard coating layer.

および反射防止層の少くとも3層から構成される。この
基材層と硬質被膜層との間はプライマ一層などの他の層
が介在していてもよい。また反射防止層は前記のように
反射防止には直接作用しない保一層を設けてもよく、そ
の層を設ける場合は反射防止層の最内層および/を九は
最外層に設けられ、その層は通常シリカからなる〇この
層はシリカ以外に他の無機物質な會んでいてもよい。反
射防止層は複数の層から構成され、保護層が設けられて
いる場合でもその層を除いても複数の層からなる。これ
ら構成部分からなる光学部材は透明体あるいは着色透明
体であることが好ましい。着色体は、金成樹脂製基材ヤ
硬質被膜が着色していてもよく、反射防止膜が着色され
ていてもよい。
and an antireflection layer. Another layer such as a primer layer may be interposed between the base material layer and the hard coating layer. Further, the anti-reflection layer may be provided with a protective layer that does not directly act on anti-reflection as described above, and when such a layer is provided, it is provided as the innermost layer and/or the outermost layer of the anti-reflection layer. Usually composed of silica, this layer may contain other inorganic substances in addition to silica. The antireflection layer is composed of a plurality of layers, and whether a protective layer is provided or not, it is composed of a plurality of layers. It is preferable that the optical member consisting of these constituent parts be a transparent body or a colored transparent body. In the colored body, the metal resin base material or hard coating may be colored, or the antireflection film may be colored.

本発明光学部材としては、眼鏡用レンズが適しているが
、これに限られるものではなく、カメラその他の光学機
器用のレンズ、平板、プリズム勢1種々の光学部材であ
ってもよい。眼鏡用レンズの場合、その材質はジエチレ
ングリコール・ビスアリルカーボネートの単独1合体あ
るいは他の共重合性モノマーとの共重合体が好ましい。
As the optical member of the present invention, a spectacle lens is suitable, but the invention is not limited to this, and various optical members such as lenses, flat plates, and prisms for cameras and other optical equipment may be used. In the case of eyeglass lenses, the material is preferably a monomer of diethylene glycol/bisallyl carbonate or a copolymer with other copolymerizable monomers.

その他、ポリカーボネート糸whやアクリル系樹脂も適
当な材質である◇ 以下、本発明を実施例および比較例により具体的に説明
するが、本発明はこれら実施例のみに限定されるもので
はない。
In addition, polycarbonate yarn wh and acrylic resin are also suitable materials.◇ The present invention will be specifically explained below using Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例・比較例 ジエチレングリコール・ビスアリルカーボネート1合体
からなる眼鏡用レンズに後記する2種の有機質硬質被膜
を形成し九。一方、アルコキシシランの加水分解物を硬
質成分として會む(微粒状シリカは含まない)有機硬質
被膜でおると考えられる硬質被膜を有するジエチレング
リコール・ビスアリルカーボネート1合体からなる市販
のa−用レンズ2種類を入手しえ。以下これらを本発明
品、比較品、ム製品、およびBfR品と呼ぶ。これら硬
質被膜を有する銀鏡用レンズ各50枚に蒸着温度80C
で電子銃を用いて4層からなる反射防止層を蒸着し九。
Examples and Comparative Examples Two kinds of organic hard coatings described later were formed on a spectacle lens made of a combination of diethylene glycol and bisallyl carbonate. On the other hand, a commercially available lens 2 for A- is made of a combination of diethylene glycol and bisallyl carbonate 1 and has a hard coating thought to be an organic hard coating containing a hydrolyzate of alkoxysilane as a hard component (does not contain fine particulate silica). Get the type. Hereinafter, these will be referred to as the present invention product, comparative product, Mu product, and BfR product. Each of these 50 silver mirror lenses with hard coatings was deposited at a temperature of 80C.
Then, an antireflection layer consisting of four layers was deposited using an electron gun.

iIk内層はシリカ層である。これらにつき、後記する
強度試験、反射防止層の付着強度試験、および一部のサ
ンプルにつき実用試験を行った。これらの試験方法およ
び結果は後記の通シであった。
The iIk inner layer is a silica layer. Regarding these, a strength test described later, an adhesion strength test of the antireflection layer, and a practical test were conducted on some samples. These test methods and results were as described below.

〔本発明&:硬質被膜の形成〕[Present invention &: Formation of hard film]

平1nth 120 i、100平方1当シ約3〜4個
のシラノール基を有する微粒状シリカのイソプロパツー
ル分散液(シリカ含量30重量qb)217部(重量部
:以下同様)にテトラエチレングリコール194部を加
え、イソプロパツールを留去した後180℃8時間加熱
し、予備縮合を行った。これにヘキサキスメトキシメチ
ルメラミン130部を加えて130℃で約21部のメタ
ノールが留去されるまで加熱し良。この液にイソプロパ
ツールを固形分濃度30重量−になる量加え、さらにパ
ラトルエンスルホン酸(硬化触媒)お:びレベリング剤
を少量加えて被覆組成物を′造した。前記眼鏡用レンズ
にこの被覆組成物を塗布し、120℃1時間加熱硬化し
て、厚さ約5μの硬質被膜を形成した。
1nth 120 i, 100 sq. 217 parts (parts by weight: same below) of isopropanol dispersion of finely divided silica having about 3 to 4 silanol groups (silica content: 30 qb by weight) and 194 parts by weight of tetraethylene glycol After the isopropanol was distilled off, the mixture was heated at 180° C. for 8 hours to perform precondensation. Add 130 parts of hexakismethoxymethylmelamine to this and heat at 130°C until about 21 parts of methanol is distilled off. A coating composition was prepared by adding isopropanol in an amount to give a solid concentration of 30% by weight, and further adding a small amount of paratoluenesulfonic acid (curing catalyst) and a leveling agent. This coating composition was applied to the eyeglass lens and cured by heating at 120° C. for 1 hour to form a hard coating with a thickness of about 5 μm.

〔比較品:@!質被膜の形成〕[Comparative product: @! Formation of quality film]

メデルトリエトキシシクン178部に0.05規定の塩
酸水54部を液温10C以下に保ちながら1時間かけて
滴下し、次いで室温で1晩放置した。この加水分解物1
60.5部にテトラエチレングリコール194部を加え
、減圧下で60℃に加熱して加水分解物中のエタノール
や水を除去した。得られた混合物にさらにヘキサキスメ
トキシメチルメラミン130部を加え、130℃で約2
1部のメタノールが留去されるまで加熱し、これに固形
分濃度が30重量−となるまでイソプロパツールを加え
、さらに少量の硬化触媒とレベリング剤を加えて被覆組
成物を製造した。前記眼鏡用レンズにこの被覆組成物を
塗布し、120℃1時間加熱硬化して凰さ約5#の硬l
JL被膜を形成した。
54 parts of 0.05N hydrochloric acid solution was added dropwise to 178 parts of Medeltriethoxycycne over 1 hour while keeping the liquid temperature below 10C, and then left overnight at room temperature. This hydrolyzate 1
194 parts of tetraethylene glycol was added to 60.5 parts and heated to 60° C. under reduced pressure to remove ethanol and water in the hydrolyzate. Further, 130 parts of hexakismethoxymethylmelamine was added to the resulting mixture, and the mixture was heated at 130°C for about 2 hours.
The mixture was heated until 1 part of methanol was distilled off, and isopropanol was added thereto until the solids concentration reached 30% by weight, and a small amount of a curing catalyst and a leveling agent were added to prepare a coating composition. This coating composition was applied to the eyeglass lens and cured by heating at 120°C for 1 hour to a hardness of about 5#.
A JL coating was formed.

〔強度試験〕〔Strength test〕

φooooのスチールウールを用い荷重2o。 Load 2o using φoooo steel wool.

Iの条件で職鏡用レンズの硬質被膜表面を往復SOO回
摩擦しえ。その結果を下記に示す。
Rub the hard coating surface of a professional mirror lens back and forth SOO times under conditions I. The results are shown below.

〔付着強度試験〕[Adhesion strength test]

眼鏡用レンズの硬質被膜表面にカンソリで1■ピツチの
基盤目を調刻し、その上に市販のセロファンテープを充
分に密着させ、次いでテープを剥離した。剥離されずに
残つ九反射防止膜の割合は以下の通シであつ九。
On the surface of the hard coating of the eyeglass lens, a 1-inch base pattern was cut with a razor, a commercially available cellophane tape was adhered sufficiently onto the surface, and then the tape was peeled off. The proportion of the anti-reflection film that remains without being peeled off is as follows.

上鮎2つの試験結果後、本発明品とム製品について実用
試験を行った。眼鏡使用者10名を選び右に本発明品、
左にム製品を入れたi11鏡を製作し、これを6ケ月間
使用してもらった。!ケ月ごとに傷の入υ具合を調査し
丸。その結果キズ発生率は以下の通シであった。
After the results of the two tests on sweetfish, practical tests were conducted on the products of the present invention and the mu products. Select 10 eyeglass users and display the invention product on the right.
We made an i11 mirror with the product on the left side and asked the students to use it for 6 months. ! The extent of the wound is inspected every month. As a result, the scratch occurrence rate was as follows.

Claims (1)

【特許請求の範囲】 1、 表面に反射防止膜を有する合成樹脂製光学部材に
おいて、反射防止膜層と合成樹脂基材層との間に平均粒
径20〜500ムのシラノール基を有する無機質微粒上
シリカあるいはその誘導体を含む有機質系硬質被膜を設
けたことを特徴とする合成樹脂製光学部材。 2、 無機質微粒状シリカの誘導体が、有機質系硬質被
膜の結合成分にグラフトした無機質微粒状シリカである
ことを特徴とする特許請求の範囲J11項の光学部材。 31、有機質系硬質被膜の結合成分が多価アルコールと
アルキルエーテル化メチロールメラミンの縮合物である
ことを特徴とする特許請求の範囲第2項の光学部材。 表 シラノール基を有する無機′Jt倣程状シリカがi
oo平方ム当如平均約3〜8個のシラノール基を有する
ものであることをも倣とする籍W!f請求の範囲第1項
の光学部材。 五 反射防止膜が蒸着などによシ形成された無機物質か
らなることを特徴とする%f1f鮪求の範囲第1項の光
学部材。 & 合成11脂徊光部材が合成樹脂製眼鏡用レンズであ
ることを特徴とする特許請求の範囲第1項の光学部材、
[Scope of Claims] 1. In a synthetic resin optical member having an antireflection film on the surface, inorganic fine particles having a silanol group with an average particle size of 20 to 500 μm are provided between the antireflection film layer and the synthetic resin base layer. An optical member made of synthetic resin, characterized in that it is provided with an organic hard coating containing silica or a derivative thereof. 2. The optical member according to claim J11, wherein the derivative of inorganic particulate silica is inorganic particulate silica grafted to a bonding component of an organic hard coating. 31. The optical member according to claim 2, wherein the binding component of the organic hard coating is a condensate of a polyhydric alcohol and an alkyl etherified methylolmelamine. Table Inorganic 'Jt-shaped silica with silanol groups is
It is also imitated that it has an average of about 3 to 8 silanol groups per square meter! f. The optical member according to claim 1. (5) The optical member according to item 1 of the scope of the %f1f requirement, wherein the antireflection film is made of an inorganic material formed by vapor deposition or the like. & Synthesis 11 The optical member according to claim 1, wherein the greasy optical member is a synthetic resin eyeglass lens.
)
JP57024300A 1982-02-19 1982-02-19 Optical member made of synthetic resin Granted JPS58142301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57024300A JPS58142301A (en) 1982-02-19 1982-02-19 Optical member made of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024300A JPS58142301A (en) 1982-02-19 1982-02-19 Optical member made of synthetic resin

Publications (2)

Publication Number Publication Date
JPS58142301A true JPS58142301A (en) 1983-08-24
JPS6213641B2 JPS6213641B2 (en) 1987-03-27

Family

ID=12134313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024300A Granted JPS58142301A (en) 1982-02-19 1982-02-19 Optical member made of synthetic resin

Country Status (1)

Country Link
JP (1) JPS58142301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114203A (en) * 1984-11-09 1986-05-31 Toray Ind Inc Production of composite film having antireflecting property
WO2018235742A1 (en) * 2017-06-19 2018-12-27 株式会社デンソー Optical component made of resin and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674202A (en) * 1979-11-21 1981-06-19 Toray Ind Inc Optical element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674202A (en) * 1979-11-21 1981-06-19 Toray Ind Inc Optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114203A (en) * 1984-11-09 1986-05-31 Toray Ind Inc Production of composite film having antireflecting property
JPH058802B2 (en) * 1984-11-09 1993-02-03 Toray Industries
WO2018235742A1 (en) * 2017-06-19 2018-12-27 株式会社デンソー Optical component made of resin and method for manufacturing same
CN110831759A (en) * 2017-06-19 2020-02-21 株式会社电装 Resin optical component and method for manufacturing same

Also Published As

Publication number Publication date
JPS6213641B2 (en) 1987-03-27

Similar Documents

Publication Publication Date Title
US4395463A (en) Article comprising silicone resin coated, methacrylate-primed substrate
EP0597391B1 (en) Glass plate with ultraviolet absorbing multilayer coating
JP4292634B2 (en) Method for manufacturing antireflection laminate
JP3998786B2 (en) Hard coat film forming coating liquid and hard coat film-coated substrate
CN101617009B (en) Siloxane based coating composition having excellent dyeability, abrasion resistance, glossiness and transparency, and a preparation method thereof, and an optical lens coated by said coating compositi
JPWO2010082566A1 (en) Coating composition, method for producing the composition, and laminate having a hard coat layer
JPH03275769A (en) Coating material composition and production of wear-resistant synthetic resin molded product
JPS58142301A (en) Optical member made of synthetic resin
JP2001163906A (en) Low refractive index composition, low refractive index film, optical multilayer film and antireflection film
JP2805877B2 (en) Composition for coating
US4443579A (en) Silicone resin coating composition adapted for primerless adhesion to plastic and process for making same
WO2001025344A1 (en) Uv curable coatings for plastic ophthalmic lens
JP2000356705A (en) High refractive index composition and optical film comprising the same
JPH03145602A (en) Laminate and production thereof
JP2864383B2 (en) Coating composition and optical article coated with the same
JPH047481B2 (en)
JP2000336313A (en) Coating composition having high refractive index
JP2696829B2 (en) High refractive index coating film and method of manufacturing the same
JPH0129376B2 (en)
JPS63305175A (en) Coating composition
JP2005334714A (en) Compound gradient coating film, self-gradient coating liquid and application of the liquid
JPH08231807A (en) Primer composition and plastic lens
JPS6236072B2 (en)
JP3079539B2 (en) Coating composition and plastic molded article to which it is applied
JPH06340843A (en) Coating composition