JPS58134722A - Supersonic-applied injection molding method - Google Patents
Supersonic-applied injection molding methodInfo
- Publication number
- JPS58134722A JPS58134722A JP1620982A JP1620982A JPS58134722A JP S58134722 A JPS58134722 A JP S58134722A JP 1620982 A JP1620982 A JP 1620982A JP 1620982 A JP1620982 A JP 1620982A JP S58134722 A JPS58134722 A JP S58134722A
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- horn
- molding material
- temperature
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/56—Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
- B29C45/568—Applying vibrations to the mould parts
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は高分子材料を用いるプラスチック部品を射出成
形する方法並びに装置に関するもので、特に高精度のプ
ラスチック部品の成形技術を指向するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for injection molding plastic parts using polymeric materials, and is particularly directed to high-precision molding techniques for plastic parts.
近年、射出成形装置の圧力・射出速度・温度等の制御技
術の進展により、射出成形によるプラスチック部品の高
精度部品への応用が進んでいる。しかしながら、従来の
通常の射出成形方法ではキャビティに注入する成形材料
の温度と金型の温度は200−10 Y;の差を前提条
件とするため、キャビティに注入された成形材料の内部
には注入・冷却過1iにおいて先の温度差と同程度の温
度的不均一が生じるのはさけられない欠点がある。この
ため成形材料の内部組成は配向・結晶化度・密度・収縮
率等物性の不均一なる分布を不可避的に内蔵するため、
キャビティ形状との厳密なる相似賦形が阻害される。従
つ゛〔、従来の通常の射出成形方法では、切削・研摩加
工した部品と同等の高精度は得られない欠点があった。In recent years, advances in control technology for pressure, injection speed, temperature, etc. of injection molding equipment have led to the application of injection molded plastic parts to high-precision parts. However, in the conventional injection molding method, the temperature of the molding material injected into the cavity and the temperature of the mold are preconditioned to be 200-10 Y; - There is an unavoidable drawback that temperature non-uniformity similar to the previous temperature difference occurs in the cooling layer 1i. For this reason, the internal composition of the molding material inevitably contains uneven distribution of physical properties such as orientation, crystallinity, density, shrinkage rate, etc.
Strict resemblance to the cavity shape is inhibited. Therefore, conventional injection molding methods have the disadvantage that they cannot achieve the same high precision as parts that are cut and polished.
本発明は前記従来技術の欠点を改善するためキャビティ
内の注入・冷却過程におけろ成形材料の内部の温度的不
均一を従来方法に比し大幅に減少して、射出成形で得る
プラスチック部品の形状精度を大幅に向上することを可
能とする射出成形装置を提供することにある。In order to improve the drawbacks of the prior art, the present invention significantly reduces the temperature non-uniformity inside the molding material during the injection and cooling process in the cavity compared to the conventional method, thereby improving the quality of plastic parts obtained by injection molding. An object of the present invention is to provide an injection molding device that can significantly improve shape accuracy.
キャビティを冷却孔が投けである超音波用のホーンで構
成し、冷却しながら超音波振動しているキャビティに成
形材料を注入する。ホーンから成形材料に伝達された振
動エネルギーは成形材料の固相と溶融相の間の界面にて
熱エネルギーに変換されるので成形材料の同相と溶融相
の界面に熱エネルギーを供給できる。発振条件を制御す
ることでキャビティ内の注入・冷却過程における成形材
料の内部の温度勾配温度分布を従来方法に比し大幅に減
少しながら注入・冷却過程を遂行できる。これが本発明
の原理である。The cavity is constructed with an ultrasonic horn with cooling holes, and the molding material is injected into the cavity which is being ultrasonically vibrated while being cooled. The vibration energy transmitted from the horn to the molding material is converted into thermal energy at the interface between the solid phase and the molten phase of the molding material, so that thermal energy can be supplied to the interface between the same phase and the molten phase of the molding material. By controlling the oscillation conditions, the injection and cooling process can be performed while significantly reducing the temperature gradient temperature distribution inside the molding material during the injection and cooling process in the cavity compared to conventional methods. This is the principle of the invention.
図は本発明の寮施による射出成形装置の全体図である。The figure is an overall view of an injection molding apparatus according to the present invention.
図で1は本発明に係るキャビティ表面を兼ねる超音波振
動用のホーンである。2はコーン。In the figure, 1 is a horn for ultrasonic vibration that also serves as a cavity surface according to the present invention. 2 is corn.
6は変換機、4は超音波発振機、5は発振条件(振動数
、振幅)を自動的に変化jろ制御装置。6 is a converter, 4 is an ultrasonic oscillator, and 5 is a control device that automatically changes oscillation conditions (frequency, amplitude).
6は電漁、7はホーン1.コーン2.変換85を支える
取付台、8は油圧シリンダーでホーン・勇
1をキャビティ表面に加わる成形圧力に抗して所定位置
に設定する。9はホーン1に設けた冷却孔でその内を一
定温度の冷媒が循環する。10は固定11J、11ハ固
定1M#、12ハ取付板A、16は取付板B、14はヒ
ータ、15はランナーでヒータ14によるホットランナ
−で、一定高温(250〜5tso v )の溶融熱可
塑性成形材料で満されている。16はゲートである。1
0〜16は金型の固定側を形成し射出成形材固定側ダイ
プレート17に取付けられている。18は可動型、19
は可動型取付板で+8i9は射出成形材可動側ダイプレ
ート20に取付けられる。21はプラスチック部品の形
状を賦形するキャビティで、ホーン1.固定型A10.
可動[1Bにより形成されている。なおホーン1〜油圧
シリンダー8から成る超音波発掘装置はキャビティ21
0表裏側に各々2組設けられているものである。6 is electric fishing, 7 is horn 1. Cone 2. A mounting base 8 supporting the conversion 85 is a hydraulic cylinder that sets the horn 1 in a predetermined position against the molding pressure applied to the cavity surface. Reference numeral 9 denotes a cooling hole provided in the horn 1, through which a coolant at a constant temperature circulates. 10 is a fixed 11J, 11c is a fixed 1M#, 12c is a mounting plate A, 16 is a mounting plate B, 14 is a heater, 15 is a runner, which is a hot runner by the heater 14, and melts heat at a constant high temperature (250 to 5tsov). Filled with plastic molding material. 16 is a gate. 1
0 to 16 form the fixed side of the mold and are attached to the injection molding material fixed side die plate 17. 18 is movable type, 19
is a movable mounting plate, and +8i9 is attached to the injection molding material movable side die plate 20. 21 is a cavity that shapes the shape of the plastic part, and horn 1. Fixed type A10.
It is formed by a movable [1B]. The ultrasonic excavation device consisting of the horn 1 to the hydraulic cylinder 8 is located in the cavity 21.
There are two sets each on the front and back sides.
次に本発明装置の動作を説明jる。成形材から注入され
る一定高温の溶融成形材料はランナー15.ゲート16
を通り、50−80を内の一定低温に維持されている金
型のキャビティ21に注入される。溶融成形材料の注入
と同時に超音波発振〜
機4を発振させホーン1に超音波を伝達する。Next, the operation of the device of the present invention will be explained. The molten molding material at a constant high temperature is injected from the molding material through the runner 15. gate 16
and is injected into the mold cavity 21, which is maintained at a constant low temperature within the range of 50-80°C. Simultaneously with the injection of the molten molding material, the ultrasonic oscillation machine 4 is oscillated and the ultrasonic waves are transmitted to the horn 1.
ゲート16からキャビティ21内に進む溶融成形材料の
ホーン1のキャビティ210表面に接jる層は、ホーン
1の温度が低温に維持されているため瞬間的に固化し同
化層22を形成する力t、ホーン1から超音波振動を伝
達されるため加熱されろ。このような環境下で成形材料
はキャビティ21を満す。超音波振動はキャビティ21
に注入された成形材料の固化層22と溶融相25の界面
にて急激に減衰するため、熱エネルギーに変1!jる。Since the temperature of the horn 1 is maintained at a low temperature, the layer of the molten molding material that advances into the cavity 21 from the gate 16 and contacts the surface of the cavity 210 is instantaneously solidified by the force t that forms the assimilated layer 22. , it is heated because ultrasonic vibrations are transmitted from the horn 1. Under such an environment, the molding material fills the cavity 21. Ultrasonic vibration is in cavity 21
The injected molding material is rapidly attenuated at the interface between the solidified layer 22 and the molten phase 25, and is converted into thermal energy. jru.
キャビティ21内の成形材料の固化層22と溶融相25
の界面に熱エネルギーが供給されるので。Solidified layer 22 and molten phase 25 of molding material in cavity 21
Since thermal energy is supplied to the interface of .
ホーン1の温度が低温に維持されているにも係わらずキ
ャビティ21内の成形材料の温度勾配が急激になるのを
阻止でき、成形材料の温度を均一化できる。Even though the temperature of the horn 1 is maintained at a low temperature, the temperature gradient of the molding material in the cavity 21 can be prevented from becoming steep, and the temperature of the molding material can be made uniform.
注入完了と伴に超音波の発振条件を予め組んだプログラ
ムに従い漸時制御装置5にて変化することで、キャビテ
ィ21内に供給する熱エネルギーを、漸時減少する。こ
のようにしてキャビティ21内の成形材料の温度勾配、
温度的不均一を従来方法に比しはるかに小さな値に維持
しつつ注入・冷却過程を遂行することができる。冷却終
了後成形品を金型から取り出丁工程は従来方法と全く同
一であるので省略する。Upon completion of the injection, the ultrasonic oscillation conditions are gradually changed by the control device 5 according to a preset program, thereby gradually decreasing the thermal energy supplied into the cavity 21. In this way, the temperature gradient of the molding material inside the cavity 21,
The injection and cooling process can be carried out while maintaining the temperature non-uniformity to a much smaller value than in conventional methods. The step of removing the molded product from the mold after cooling is completely the same as in the conventional method and will therefore be omitted.
以上のように本発明では成形材料はキャビティ21内へ
注入される時点から、冷却固化し金型から離型されるま
での間、従来方法に比してはるかに温度的不均一性を改
善した状態で注入・冷却過程が遂行されるため、プラス
チック部品の内部組成は配向・結晶化度・密度・収縮率
の物性的不均一が大幅に減少される。このようにプラス
チック部品の内部組成の均一化が実現できるため従来方
法ではさけえない、配向分布に基因する強度異方性や経
時的寸法変化、結晶化度や密度・収縮率の分布に基因す
るそり・ヒケが大幅に減少しキャビティ21の形状との
厳密なる相似的賦形が実現し寸法精度が大幅に改善され
る。この結果高精度に切削・研摩された場合とほとんど
同等の高精度で、射出成形によるプラスチック部品を供
給することができるようになった。しかも、金型自体の
温度は従来方法と同じであるから、成形サイクルも従来
と比べそれ程長くなることはな(、量産性も良い。As described above, in the present invention, the temperature non-uniformity of the molding material from the time it is injected into the cavity 21 until it is cooled and solidified and released from the mold is much improved compared to the conventional method. Since the injection and cooling process is carried out in the same state, physical nonuniformity in orientation, crystallinity, density, and shrinkage rate of the internal composition of the plastic part is greatly reduced. In this way, it is possible to achieve a uniform internal composition of plastic parts, which cannot be avoided using conventional methods. Warpage and sink marks are significantly reduced, a shape that closely resembles the shape of the cavity 21 is realized, and dimensional accuracy is greatly improved. As a result, it has become possible to supply plastic parts by injection molding with almost the same precision as if they had been cut and polished with high precision. Moreover, since the temperature of the mold itself is the same as in the conventional method, the molding cycle is not much longer than in the conventional method (and mass productivity is also good).
図は本発明の一実施例を示す装置の全体図である。
1・・・ホーン、 2・・・コーン。
3・・・変換機、 4・・・超音波発振機。
5・・・発蛋条件制御装置。
8・・・油圧シリンダー、9・・・冷却孔。
10・・・固定ffi、4. 14・・・ヒータ
。
15・・・ホットランナ−118・・・可動型。
21・・・キャビティ、22・・・同化層。
23・・・溶融層。
代理人弁理士 薄 1)利 幸The figure is an overall view of an apparatus showing an embodiment of the present invention. 1...horn, 2...cone. 3...Converter, 4...Ultrasonic oscillator. 5... Development condition control device. 8... Hydraulic cylinder, 9... Cooling hole. 10...Fixed ffi, 4. 14... Heater. 15...Hot runner-118...Movable type. 21... Cavity, 22... Assimilation layer. 23... Molten layer. Representative Patent Attorney Susuki 1) Toshiyuki
Claims (1)
おいて、プラスチック部品の形状な賦形せるキャビティ
を超音波振動用のホーンで構成したことを特徴とする超
音波応用射出成形方法。t. An injection molding method using ultrasonic waves, characterized in that, in an injection mold for injection molding using a polymeric material, a cavity for forming the shape of a plastic part is configured with a horn for ultrasonic vibration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1620982A JPS58134722A (en) | 1982-02-05 | 1982-02-05 | Supersonic-applied injection molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1620982A JPS58134722A (en) | 1982-02-05 | 1982-02-05 | Supersonic-applied injection molding method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58134722A true JPS58134722A (en) | 1983-08-11 |
Family
ID=11910121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1620982A Pending JPS58134722A (en) | 1982-02-05 | 1982-02-05 | Supersonic-applied injection molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58134722A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270131A (en) * | 1985-05-27 | 1986-11-29 | Hitachi Ltd | Manufacturing device of plastic optical information recording board |
WO1988000116A1 (en) * | 1986-06-26 | 1988-01-14 | Pfaehler, Helmut | Process and system for injection molding of objects from thermoplastic material |
JPH01192514A (en) * | 1988-01-29 | 1989-08-02 | Koito Mfg Co Ltd | Forming method of layer containing metal, synthetic resin molding with layer containing metal and mold |
JPH01218813A (en) * | 1988-02-29 | 1989-09-01 | Komatsu Ltd | Plastic molding method |
JPH02131909A (en) * | 1988-07-21 | 1990-05-21 | Idemitsu Kosan Co Ltd | Injection molding method and equipment |
FR2818186A1 (en) * | 2000-12-18 | 2002-06-21 | Internova Int Innovation | Thermofusible polymer preform treatment procedure uses ultrasonic vibrations applied along at least one axis to reduce gas/vapour permeability |
-
1982
- 1982-02-05 JP JP1620982A patent/JPS58134722A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270131A (en) * | 1985-05-27 | 1986-11-29 | Hitachi Ltd | Manufacturing device of plastic optical information recording board |
JPH0327010B2 (en) * | 1985-05-27 | 1991-04-12 | Hitachi Seisakusho Kk | |
WO1988000116A1 (en) * | 1986-06-26 | 1988-01-14 | Pfaehler, Helmut | Process and system for injection molding of objects from thermoplastic material |
JPH01192514A (en) * | 1988-01-29 | 1989-08-02 | Koito Mfg Co Ltd | Forming method of layer containing metal, synthetic resin molding with layer containing metal and mold |
JPH01218813A (en) * | 1988-02-29 | 1989-09-01 | Komatsu Ltd | Plastic molding method |
JPH02131909A (en) * | 1988-07-21 | 1990-05-21 | Idemitsu Kosan Co Ltd | Injection molding method and equipment |
FR2818186A1 (en) * | 2000-12-18 | 2002-06-21 | Internova Int Innovation | Thermofusible polymer preform treatment procedure uses ultrasonic vibrations applied along at least one axis to reduce gas/vapour permeability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5207964A (en) | Method for manufacturing a plastic hollow product using water soluble resin | |
JPH10511053A (en) | Method and apparatus for controlling gas-assisted injection molding | |
US4968462A (en) | Method and apparatus for setting injection pressure of injection molding machine | |
CN1059866A (en) | Lijection orientation blow mollding method | |
JPS58134722A (en) | Supersonic-applied injection molding method | |
EP3950262A1 (en) | Injection molding apparatus and injection molding method | |
JP3403584B2 (en) | Injection molding equipment | |
KR100757390B1 (en) | Apparatus for producing a molded article having a spherical structure in a casting mold | |
JPH01218813A (en) | Plastic molding method | |
JP3348807B2 (en) | Molding equipment | |
JPH0462118A (en) | Method for molding of hollow resin molded item | |
JPS62179912A (en) | Molding equipment of synthetic resin molded part | |
JP2002036309A (en) | Molding die and method for producing plastic moldings | |
JPH01182016A (en) | Plastic injection molding method | |
JPH0218021A (en) | Forming core and temperature controlling method thereof | |
KR100217341B1 (en) | Gateless molding method of thermoplastic resin products and molding apparatus thereof | |
CN101244623A (en) | Forming mechanism with vibration device | |
JPH0924519A (en) | Gateless molding of thermoplastic resin product and gateless molding device | |
JPH0615699A (en) | Injection mold | |
JP2003311794A (en) | Injection molding machine for lost wax casting and injection molding method for lost wax casting | |
JP2946259B2 (en) | Mold temperature control method and mold temperature control device for reaction injection molding apparatus | |
JPS60212317A (en) | Injection compression molding | |
JPH10237475A (en) | Apparatus and process for producing fatty acid metal salt block | |
JPH0339208A (en) | Molding device and molding method | |
JPH0451326B2 (en) |