Nothing Special   »   [go: up one dir, main page]

JPS58123755A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58123755A
JPS58123755A JP57006264A JP626482A JPS58123755A JP S58123755 A JPS58123755 A JP S58123755A JP 57006264 A JP57006264 A JP 57006264A JP 626482 A JP626482 A JP 626482A JP S58123755 A JPS58123755 A JP S58123755A
Authority
JP
Japan
Prior art keywords
layer
fet
field effect
substrate
channel length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57006264A
Other languages
Japanese (ja)
Inventor
Yukinobu Miwa
三輪 行信
Hirohito Tanabe
田辺 博仁
Tamotsu Ohata
大畑 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57006264A priority Critical patent/JPS58123755A/en
Publication of JPS58123755A publication Critical patent/JPS58123755A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/40Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00 with at least one component covered by groups H10D10/00 or H10D18/00, e.g. integration of IGFETs with BJTs
    • H10D84/401Combinations of FETs or IGBTs with BJTs

Landscapes

  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To estimate easily the characteristics such as channel length of FET and mutual conductance etc. by a method wherein a bipolar transistor for monitoring is formed on the surface of the same substrate of duplicate diffused and insulated FET. CONSTITUTION:A bipolar transistor B is formed on a substrate similar to the substrate 11 formed into a duplicate diffused and insulated gate FET A. The base region 13b of the bipolar transistor B and the channel 13a of the FET A are formed into the same conductive type with the same depth of diffusion. Through the constitution so far mentioned, specific relations may be established between the amplification degree of the bipolar transistor B and the channel length of the FET. Therefore, the characteristics such as the channel length of FET A and the mutual conductance etc. may be monitored by means of measuring the amplification degree of the transistor B.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、特に二重拡散絶縁r−)電界効果トランジ
スタである半導体装置に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a semiconductor device, in particular a double diffused insulated r-) field effect transistor.

〔発明の技術的背景〕[Technical background of the invention]

電界効果トランジスタ燻、半導体集積回路を構成する基
本素子として、1要な素子の一つである。この電界効果
トランジスタの中で二重拡散絶縁r−)電界効果トラン
ジスタ(以下単に電界効果トランジスタと称する)は、
チャネル部に空乏層が拡がり(二くいため高耐圧構造で
あり、また製造工程が比較的簡単である等の利点を有し
ている。
The field effect transistor is one of the basic elements that make up semiconductor integrated circuits. Among these field effect transistors, the double diffused insulation r-) field effect transistor (hereinafter simply referred to as field effect transistor) is
It has the advantage of having a high breakdown voltage structure because the depletion layer spreads (double) in the channel part, and the manufacturing process is relatively simple.

このような電界効果トランジスタは、第1図1;示すよ
うに1例えばN型半導体基板(以下単に基板と称する)
11にN層12を形成する。
As shown in FIG.
An N layer 12 is formed on 11.

このN層12内に選択エツチングを施して2層11を形
成し、さらにこのP層lj内に選択エツチングを施して
ソース領域であるN 19IJ 4 m *14hを拡
散して形成する。この2層13の表面上に酸化Vリプン
等の絶縁膜であるr−)峻化瞑15を介してデート電極
16を形成し、またN層14m、14bおよびP層IJ
の各表面と舶咳するようにソース電極11を形成する。
Selective etching is performed within this N layer 12 to form a second layer 11, and further selective etching is performed within this P layer lj to diffuse and form a source region of N 19IJ 4 m *14h. A date electrode 16 is formed on the surface of these two layers 13 via an insulating film 15 made of V-lipon oxide or the like, and N layers 14m, 14b and P layer IJ are formed.
A source electrode 11 is formed so as to be in contact with each surface of the substrate.

さらに基板11にドレイン電極18を形成する。Further, a drain electrode 18 is formed on the substrate 11.

このような半導体装!lにおいて、チャネル19には@
1図(:示すように二つの接合部があり。
Such a semiconductor device! l, channel 19 has @
Figure 1 (: There are two joints as shown.

しかもdlf差があるため、上記のように空乏層が拡が
りにくい。したがって、/fランチルー等も生じにくい
ため高耐圧構造となる利点を有する。
Moreover, since there is a dlf difference, the depletion layer is difficult to expand as described above. Therefore, since /f lunch-through etc. are less likely to occur, it has the advantage of having a high voltage withstand structure.

〔背景技術の間層点〕[Interlayer point of background technology]

ところで、上記のような電界効果トランジスタでは、そ
の素子の特性を決定する重要な要因の一つであるチャネ
ル1りのチャネル長は、P層IJおよびN層141等の
横方向の拡散で決定される。この場合の拡散のコントロ
ールは。
By the way, in the above field effect transistor, the channel length of one channel, which is one of the important factors determining the characteristics of the device, is determined by the lateral diffusion of the P layer IJ, the N layer 141, etc. Ru. What is the control of diffusion in this case?

幀方向である深さ方向の拡散を1&拳として行なうもの
で、その精度はホトエ1...ツ、1チンダ法等に比較
すると非常に夷い。しかしながら、上記チャネル長の測
定は、具体的には拡散の深さを測定する方法であるアン
グルラツゾ、−−ルラップ法等で行なうのであるが、特
に例えば1〜2μ汎程度の短かいチャネル長では測定誤
差を生じやすい。また、チャネル1gの形成の際、2層
13およびN層14mである各拡散層の拡散深さの測定
等の評価は、個々の半導体装置毎に行なうため、相互コ
ンメクタンス厘m等の素子の特性にばらつきを生じやす
い、したがって、従来の電界効果トランジスタでは、素
子の特性が不均一となる欠点がある。
This method performs diffusion in the depth direction, which is the horizontal direction, as 1 & fist, and its accuracy is 1. .. .. This is very expensive compared to the 1-chinda method. However, the measurement of the channel length mentioned above is specifically carried out using methods such as the angle latso and -rulap methods, which are methods for measuring the depth of diffusion. Easy to cause errors. In addition, when forming the channel 1g, evaluations such as measurement of the diffusion depth of each diffusion layer, which is the second layer 13 and the N layer 14m, are performed for each individual semiconductor device. Accordingly, conventional field effect transistors have the disadvantage of non-uniform device characteristics.

〔発明の目的〕[Purpose of the invention]

この発明は上記の事情を鑑みてなされたもので、二重拡
散絶縁r−)電界効果トランジスタにおいて、チャネル
長の測定誤差を減少し、相互コンダクタ7111種等の
素子の特性のばらつきを減少して、均一な素子の特性を
有する半導体装置を提供することを目的とする。
This invention has been made in view of the above circumstances, and is intended to reduce channel length measurement errors and variations in characteristics of elements such as 7111 types of transconductors in double-diffused insulated r-) field effect transistors. An object of the present invention is to provide a semiconductor device having uniform element characteristics.

〔発明の概要〕  □::1 上記の目的を達成するために、この発明では。[Summary of the invention] □::1 In order to achieve the above objectives, this invention.

二重拡散絶縁r−)電界効果トランジスタの基板に横方
向のバイポーラトランジスタを形成する。このバイポー
ラトランジスタのペース領域と電界効果トランジスタの
チャネル部の両者の拡散層を同一導電型で、拡散の深さ
が同一となるように形成する。そして、ΔイI−ラトラ
ンジスタの増輻皐bfeと電界効果トランジスタのチャ
ネル長の相関関係を利用して、b(・の測定からチャネ
ル長および相互コンダクタンス1mを予測するものであ
る。
Forming a lateral bipolar transistor in the substrate of a double diffused isolated r-) field effect transistor. The diffusion layers in both the space region of the bipolar transistor and the channel region of the field effect transistor are formed to have the same conductivity type and the same diffusion depth. The channel length and mutual conductance 1 m are then predicted from the measurement of b(.) by utilizing the correlation between the convergence increase bfe of the ΔI-ra transistor and the channel length of the field effect transistor.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照してこの発明の一実東例について説明す
る。第2図はこの発明の一実施例シー係る半導体装置の
構成を示すもので1例えばN層層であるN型半導体基板
(以下単に基板と称する)Ilk−にNWIk12を形
成する。このN 層I2内の表面に所定の間隔をもって
P型拡散層(以下単C−P層と称する)13畠、13b
を形成する。さらにこのP層JJa、Jjb内の各表面
1:N414m、14bおよび8層21を形成し、この
N層14mが電界効果トランジスタのソース領域となる
。また、8層21はエミッタ領域となり、上記2層11
bのペース領域およびN層12のコレクタ領域と共にバ
イポーラトランジスタを構成する。そして、このバイポ
ーラトランジスタの各領域の表面を4出するように、酸
化シリコン等の絶縁膜lig二選択エツチングを施して
コンタクトホールを形成する。
An example of the present invention will be described below with reference to the drawings. FIG. 2 shows the structure of a semiconductor device according to an embodiment of the present invention. For example, an NWIk 12 is formed on an N type semiconductor substrate (hereinafter simply referred to as a substrate) Ilk-, which is an N layer. A P-type diffusion layer (hereinafter referred to as a single C-P layer) 13, 13b is formed on the surface of this N layer I2 at a predetermined interval.
form. Further, N414m, 14b and 8 layers 21 are formed on each surface 1 of the P layers JJa and Jjb, and this N layer 14m becomes the source region of the field effect transistor. Further, the 8th layer 21 becomes an emitter region, and the 2nd layer 11
A bipolar transistor is formed together with the pace region b and the collector region of the N layer 12. Then, two-selective etching is performed on an insulating film such as silicon oxide to form contact holes so as to expose the surface of each region of this bipolar transistor.

このコンタクトホールな介して、2層13b。The second layer 13b is formed through this contact hole.

II@するよう(−ペース電極JJa(El、エミッタ
電極jjb(19およびプレフタ電極Jjc(C)を形
成する。同様に電界効果トランジスタのf−ト電極16
(q、ソース電極IF(8)およびドレイン電極18(
Dを形成するが、を記第1図と開襟であるため説明は省
略する。
II@ (- pace electrode JJa (El, emitter electrode jjjb (19) and pre-left electrode Jjc (C) are formed.Similarly, f-to electrode 16 of the field effect transistor is formed.
(q, source electrode IF (8) and drain electrode 18 (
D is formed, but since it is shown in Figure 1 and has an open collar, the explanation will be omitted.

このような半導体装置毎;おいて、電界効果トランジス
タの例えば相互コンダクタンス厘mの特性を向上するC
;は、チャネル19を形成するP層111の濃度を低く
し、すなわち移動度を向上させる。さらに、ソース領域
(N層)141の濃度を高くしてソース抵抗を減少させ
、テヤネル1りの長さを短くする必要がある。このよう
な場合、バイポーラトランジスタ(以下モニタ部と称す
る)のペース領域(P層)13bは、製造上2層71M
の濃度と同−1二でき、しかもモニタ部のペース・エミ
ッタ間電圧V1i1BOとヘ−ス餉域JJbの濃度に相
関関係があることは従来から明らかである。したがって
、このモニタ部の電圧VIIIOを測定すれば、電界効
果トランジスタのP層JJaの濃度を容易に予測するこ
とができる。また、モニタ部のエミッタ領域(N 層)
21とソース領域14鳳の濃度は製造上同一にでき、し
かもモニタ部のペース領域11bの拡散の深さと電界効
果トランジスタの2層13鳳の拡散の深さも同一である
。すなわち、モニタ部のペース幅と電界効果トランジス
タのチャネル幅が同一であり、モニタ部のbf6(エミ
ッタ接地電流増幅率)と電界効果トランジスタの相互コ
ンダクタンスgmに相関関係があることは明らかである
。したがって、モニタ部の’feを測定すれば、電界効
果トランジスタのgmを容易に予測でき、gmのノ譬う
メータであるチャネル長およびソース領域14mの濃度
等も予測できることシーなる。
For each such semiconductor device, C is used to improve the characteristics of, for example, the mutual conductance of a field effect transistor.
; lowers the concentration of the P layer 111 forming the channel 19, that is, improves the mobility. Furthermore, it is necessary to increase the concentration of the source region (N layer) 141 to reduce the source resistance and shorten the length of the layer 1. In such a case, the space region (P layer) 13b of the bipolar transistor (hereinafter referred to as the monitor section) has two layers 71M for manufacturing purposes.
It has been known from the past that there is a correlation between the pace-to-emitter voltage V1i1BO of the monitor section and the concentration of the Heath region JJb. Therefore, by measuring the voltage VIIIO of this monitor section, the concentration of the P layer JJa of the field effect transistor can be easily predicted. Also, the emitter region (N layer) of the monitor section
21 and the source region 14 can be made to be the same in manufacturing, and the diffusion depth of the space region 11b of the monitor section and the diffusion depth of the second layer 13 of the field effect transistor are also the same. That is, it is clear that the pace width of the monitor section and the channel width of the field effect transistor are the same, and that there is a correlation between bf6 (common emitter current amplification factor) of the monitor section and mutual conductance gm of the field effect transistor. Therefore, by measuring 'fe' of the monitor section, gm of the field effect transistor can be easily predicted, and the channel length and the concentration of the source region 14m, which are the meters of gm, can also be predicted.

このようにして、電界効果トランジスタと同一の基板1
1にモニタ部であるバイポーラトランジスタを形成する
ことによって、ノ寺イ−−ラトランゾスタのbfeの測
定結果から電界効果トることかできる。したがって、バ
イポーラトランジスタのbf・0測定により電界効果ト
ランジスタのチャネル長およびチャネル幅等の製造を比
較的容易にコントロールすることができ、しbhモbt
・の測定は容易で誤差が少ないことから電界効果トラン
ジスタの素子特性であるgmをばらつくことなくほぼ均
一にできる。しかも、従来チャネル長等の測定に用いて
いたゴールラップ等の化学処理の工程等もbfeの測定
で代替することによって省略でき1作業効率を向上でき
る効果もある。
In this way, the same substrate 1 as the field effect transistor
By forming a bipolar transistor serving as a monitor portion in 1, it is possible to determine the field effect from the measurement results of bfe of the Nodera I-Ra transaster. Therefore, by measuring bf・0 of bipolar transistors, it is possible to relatively easily control the manufacturing of field effect transistors such as channel length and channel width.
Since the measurement of * is easy and has little error, gm, which is the element characteristic of a field effect transistor, can be made almost uniform without variation. In addition, chemical treatment steps such as goal lapping, which were conventionally used to measure channel length, etc., can be omitted by replacing them with bfe measurement, which has the effect of improving one-work efficiency.

〔発明の効果〕〔Effect of the invention〕

uhl述したようにこの発明シ=よれば、二重1拡敵絶
縁f−)電界効果トランジスタの同一基板の表面にモニ
タ用バイポーラトランジスタを形成して、このパイ一−
ラトランジスタの電流増幅率hf@等の測定から電界効
果トランジスタのチャネル長および相互コンダクタンス
gat等の特性を容易に予測することができる。したが
って、チャネル長等の測定誤差を大幅に減少し、相互コ
ンメタタン11m等の素子の特性のばらつきの少ない均
一な特性を有する半導体装置を提供できる。しかもチャ
ネル長等の測定の工程でが一ルラッグ等の化学処理を省
略できるため、製造工程における作業効率を向上できる
効果もある。
As mentioned above, according to the present invention, a monitor bipolar transistor is formed on the surface of the same substrate as the double one field effect transistor, and this pie
Characteristics such as the channel length and mutual conductance gat of a field effect transistor can be easily predicted from measurements of the current amplification factor hf@ of the field effect transistor. Therefore, it is possible to provide a semiconductor device in which measurement errors such as channel length are significantly reduced, and the characteristics of elements such as the mutual contactor 11m have uniform characteristics with little variation. In addition, chemical treatments such as lugs can be omitted in the process of measuring the channel length, etc., which has the effect of improving work efficiency in the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の構成図、第2図はこの発明
の一実施例シー係る半導体装置の構成図である。 11・・・Nm半導体基板、12・・・N層、11゜1
 3  暑  ◆、 1.1  b ・・・ P 層 
、  1 4  畠  、  14b、21+ ・・・N層、Is・・・絶縁膜、18・・・r−ト電極
、1r・・・ソース電極、18・・・ドレイy電極、2
2m・・・ペース電極、22b・・・エミッタ電極、2
2c・・・コレクタ電極。
FIG. 1 is a block diagram of a conventional semiconductor device, and FIG. 2 is a block diagram of a semiconductor device according to an embodiment of the present invention. 11...Nm semiconductor substrate, 12...N layer, 11°1
3 Heat ◆, 1.1 b... P layer
, 14 Hatake, 14b, 21+...N layer, Is...insulating film, 18...r-to electrode, 1r...source electrode, 18...dray y electrode, 2
2m...Pace electrode, 22b...Emitter electrode, 2
2c...Collector electrode.

Claims (1)

【特許請求の範囲】[Claims] 一1の導電型の半導体基板の表面シー所定の間隔をもっ
て形成される第2の導電型のIIIおよび嘱2の不純物
領域と、この第1および第2の不純物領域のそれぞれの
一部に形成される$2の導電型の@lおよびII2の不
純11!ls域と、この′#42の導電型の第1および
I’$2の不純物領域のそれぞれに接続して上記基板の
表面とに設けられるンース電橋およびエミッタ電極と、
上記第2の導電型の第1の不純物領域の表面上C二絶縁
膜を介して設けられるr−)電極と、上記第2の導電型
の@2の不純物領域C二警続して上記基板の表面とに設
けられるペース電極と、を紀基板に接続するコレクタ電
極およびドレイン電橋とを械備することを特徴とする半
導体装置。
impurity regions of a second conductivity type III and a second conductivity type formed at predetermined intervals on the surface of a semiconductor substrate of a first conductivity type, and a portion of each of the first and second impurity regions. Impurity 11 of conductivity type @l and II2 of $2! a source bridge and an emitter electrode provided on the surface of the substrate and connected to the ls region and the first and I'$2 impurity regions of conductivity type '#42, respectively;
An r-) electrode provided on the surface of the first impurity region of the second conductivity type C2 via an insulating film and an impurity region C2 of the second conductivity type @2 are connected to the substrate. 1. A semiconductor device comprising: a pace electrode provided on a surface of the semiconductor device; and a collector electrode and a drain bridge connecting the semiconductor device to a semiconductor substrate.
JP57006264A 1982-01-19 1982-01-19 Semiconductor device Pending JPS58123755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57006264A JPS58123755A (en) 1982-01-19 1982-01-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57006264A JPS58123755A (en) 1982-01-19 1982-01-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58123755A true JPS58123755A (en) 1983-07-23

Family

ID=11633587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57006264A Pending JPS58123755A (en) 1982-01-19 1982-01-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58123755A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466970A (en) * 1987-09-08 1989-03-13 Nissan Motor Mosfet with overcurrent protecting function
JPS6467972A (en) * 1987-09-09 1989-03-14 Nissan Motor Power mosfet
JPH01157573A (en) * 1987-09-28 1989-06-20 Mitsubishi Electric Corp Semiconductor device and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466970A (en) * 1987-09-08 1989-03-13 Nissan Motor Mosfet with overcurrent protecting function
JPS6467972A (en) * 1987-09-09 1989-03-14 Nissan Motor Power mosfet
JPH01157573A (en) * 1987-09-28 1989-06-20 Mitsubishi Electric Corp Semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
JP2876694B2 (en) MOS type semiconductor device having current detection terminal
US4672314A (en) Comprehensive semiconductor test structure
US4024561A (en) Field effect transistor monitors
US4283733A (en) Semiconductor integrated circuit device including element for monitoring characteristics of the device
US4197632A (en) Semiconductor device
JPS647633A (en) Method of screening gate oxide film on semiconductor
JPS58123755A (en) Semiconductor device
JP6589845B2 (en) Semiconductor device
JPS6153855B2 (en)
KR890005817A (en) Manufacturing Method of Semiconductor BCMOS Device
CN106024780A (en) Power device and manufacturing method thereof
JPS60200541A (en) Semiconductor device
JP2002184829A (en) Insulating film capacity evaluation device
JPS6148927A (en) Semiconductor device
JPH07142736A (en) Thin-film transistor and its contact resistance measuring method
JP2530722Y2 (en) Semiconductor device
JPS5871655A (en) Semiconductor device
CN106257669A (en) Power device and preparation method thereof
JPS59194444A (en) Monitoring semiconductor device and monitoring method
CN118010181A (en) Temperature test structure, temperature test chip and temperature test method
JPS5927097B2 (en) Manufacturing method of semiconductor device
TW451377B (en) Reliability testing device and its testing method
JPS58173868A (en) Mos type field effect transistor
JPH09213762A (en) Method for evaluating insulation property in semiconductor device
JPS6185863A (en) Semiconductor integrated circuit device