JPS58111515A - Crystal oscillator - Google Patents
Crystal oscillatorInfo
- Publication number
- JPS58111515A JPS58111515A JP21268381A JP21268381A JPS58111515A JP S58111515 A JPS58111515 A JP S58111515A JP 21268381 A JP21268381 A JP 21268381A JP 21268381 A JP21268381 A JP 21268381A JP S58111515 A JPS58111515 A JP S58111515A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- axis
- type
- oscillator
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000010409 thin film Substances 0.000 abstract description 5
- 230000010355 oscillation Effects 0.000 abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 238000010586 diagram Methods 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000007575 Calluna vulgaris Nutrition 0.000 description 1
- 241000238558 Eucarida Species 0.000 description 1
- 241001648319 Toronia toru Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/21—Crystal tuning forks
- H03H9/215—Crystal tuning forks consisting of quartz
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は3本の@動枝を有する水晶撮動子(以FE型振
動子と略称する)の共振周波′a@度特性の改良に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvement of the resonance frequency characteristics of a crystal sensor having three moving arms (hereinafter abbreviated as FE type resonator).
第1図は従来及び本発明に係るE型振動子の外形を示す
斜hi図である。一様な根厚の水晶機ICi’!r<切
板11,12.13が、ペース部14と共Vこ一体に形
成され、3本の蛋動枝11,12.13の長さ寸法は、
はぼ等しく、枝巾寸/P:vこついて(1、振動技11
.13が互にほぼ等しく、・1・助板12は任意に選べ
る。第2図(A) (B) ;d従来及び杢・べ明で利
用するE型振動子の振動モードの概略を示す図である。FIG. 1 is a diagonal hi diagram showing the external shape of an E-type vibrator according to the conventional technology and the present invention. Crystal machine ICi' with uniform root thickness! r< The cutting plates 11, 12.13 are integrally formed with the pace part 14, and the length dimensions of the three perturbation branches 11, 12.13 are as follows:
Evenly, branch width size/P:v stuck (1, vibration technique 11
.. 13 are almost equal to each other, and 1. The auxiliary plate 12 can be arbitrarily selected. FIGS. 2A and 2B are diagrams schematically showing the vibration modes of the E-type vibrator used in conventional and heather/bemei.
第2図(A)は11.g1図YY析面から見だ4勅モー
ドの断面図である。第2図+B)は、4刊1図XX断面
から見た振動モードの断面図であ、る。振動技11,1
2.13は、矢印5で示す方向に変位し、振動変位零の
時刻から(1/4)周M r&の時刻には、それぞれ点
線11a、12a 、 1’3a で示される位1aに
くる。Figure 2 (A) shows 11. Figure g1 is a cross-sectional view of the 4-mode as seen from the YY analysis plane. Figure 2+B) is a sectional view of the vibration mode seen from the XX section in Figure 1 of the 4th edition. Vibration technique 11,1
2.13 is displaced in the direction shown by arrow 5, and comes to position 1a shown by dotted lines 11a, 12a, and 1'3a, respectively, at a time of (1/4) rotation Mr& from the time of zero vibration displacement.
従来のE型振動子の欠点は、一般に屈曲水晶眼動子が常
温付近で良好な共撮周波数搗#特性を示すカット方位全
採用しても、その共振周波数1吹温度係数は、天衣な負
の値になり、零又は正の値にすることが困・唖であった
。The drawback of the conventional E-type resonator is that even if the bent crystal ophthalmoscope is used in all cut directions, which exhibit good frequency characteristics near room temperature, its resonant frequency 1-stroke temperature coefficient is It becomes a negative value, and it is difficult to set it to zero or a positive value.
本発明の目的は、従来のE型振動子の欠、「、与電除去
し、共振周波数温度特性が良好となるカット方・位を提
供することにある。この目的を達成するためv(、本発
明はE型振動子の振動技の枝巾方向及び長さ方向が、そ
れぞれ水晶のX軸(電気軸)及びY軸(機械軸)に一致
した状態(2カツトの状態)のE型振動子をX軸のまわ
りに角度ψ(ψの符号は反時計方向を正とする)だけ回
転するとき、ψを一25°から+35°の範囲の角度に
設定することを特徴とするものである。The purpose of the present invention is to provide a cutting direction and position that eliminates the charge of the conventional E-type vibrator and improves the resonant frequency temperature characteristics.In order to achieve this purpose, The present invention provides E-type vibration in a state (two-cut state) in which the width direction and length direction of the vibration technique of the E-type vibrator coincide with the X-axis (electrical axis) and Y-axis (mechanical axis) of the crystal, respectively. When rotating the child around the X axis by an angle ψ (the sign of ψ is positive in the counterclockwise direction), ψ is set to an angle in the range of -25° to +35°. .
以下本発明の実施例を従来例と比較しながら詳細に説明
する。Embodiments of the present invention will be described in detail below while comparing them with conventional examples.
一般Vこ水晶振動子の共振周波数温度特性は、次式のよ
うに表わすことができる。The resonant frequency temperature characteristic of a general V crystal resonator can be expressed as follows.
Δf = f −f。Δf = f - f.
ここで f:共振周i−勘
T:温度 □
fo二基準温度における共振周波数
T0:基準温度
α:1次温水温数
β:2次温次温数
r:3水温度係数
α、β、°rは一般に振動子のカット方位と寸法によっ
て定まる。Here, f: Resonance frequency i - T: Temperature □ fo Resonance frequency at two reference temperatures T0: Reference temperature α: Primary hot water temperature number β: Secondary temperature number r: 3 Water temperature coefficients α, β, ° r is generally determined by the cutting direction and dimensions of the vibrator.
第3図は従来及び本発明に係るE型振動子の寸法パラメ
ータの説明図で第3図囚は平面図、第3図(B)は側面
図である。又は振動子11,12.13の長さ寸法を示
す。hは振動技11.13の巾寸法e、)ioは振動技
12の中寸法を示す。4はベースの長さ寸法を示゛す。FIG. 3 is an explanatory diagram of the dimensional parameters of the E-type vibrator according to the prior art and the present invention, where the third figure is a plan view and FIG. 3(B) is a side view. Or the length dimension of the vibrator 11, 12, 13 is shown. h indicates the width dimension e of vibration technique 11.13, ) io indicates the middle dimension of vibration technique 12. 4 indicates the length dimension of the base.
gはスリットの巾寸法を示す。tは振動子の板厚寸法を
示す。g indicates the width of the slit. t indicates the plate thickness of the vibrator.
第4図は従来のE型機動子のカット方位の説明図である
。第4図でE型掻動子41は振動技42 ′の校長方
向及び枝巾方向が、それぞれ水晶のY@(機械S)及び
2軸(光@)に一致した状態(Xカットの状態)から出
発して、X軸のまわりに角度θ(θの符号は反時計方向
を正とする)だけ回転されている。従来のE型機動子の
カット角度θは、常温0°から10°の範囲の角度から
選択されていた。これらの角度範囲では、一般に屈曲水
晶振動子の共振周波数温度特性は比較的良好となる。FIG. 4 is an explanatory diagram of the cutting direction of the conventional E-type machine element. In Fig. 4, the E-type stirrer 41 is in a state where the principal direction and branch width direction of the vibration technique 42' correspond to the Y@ (machine S) and two axes (light@) of the crystal, respectively (X-cut state) Starting from , it is rotated around the X axis by an angle θ (the sign of θ is positive in the counterclockwise direction). The cut angle θ of the conventional E-type armature was selected from angles in the range of 0° to 10° at room temperature. In these angular ranges, the resonant frequency temperature characteristics of the bent crystal resonator are generally relatively good.
第5図は従来のE型振動子の1水温度係数αとカット・
角度θの実験的に得られた関係を示すグラフである。Figure 5 shows the water temperature coefficient α and cut-off of the conventional E-type resonator.
It is a graph showing an experimentally obtained relationship of angle θ.
第 1 表
このときの振動子の寸法パラメーターの値を第1表第2
行目に示す。第1表で横線は、その部分のパラメーター
が可変であることを示す。又基準温度T。は25°Cと
する。以下全てT。225℃ とする。第5図から明ら
かなように、従来のE型機動子は、カット角度θをどの
ように選んでも、1次温度係数が零又は正にならなかっ
た。このような傾向は、寸法パラメーターが他の値の場
合でも同じである。第6図は本発明のE型振動子のカッ
ト方位の説明図である。第6図でE型橡動子61は振動
技62の枝巾方向及び校長方向が、それぞれ水晶のX軸
(電気軸)及びY軸(機械@)に一致した状態(2カツ
トの状態)から出発して、X軸のまわりに角度ψ(ψの
符号は反時計方向をiEとする)だけ回転されている。Table 1 The values of the dimensional parameters of the vibrator at this time are shown in Table 1 and Table 2.
Shown in line 1. In Table 1, horizontal lines indicate that the parameters in that section are variable. Also, the reference temperature T. is 25°C. All below are T. The temperature shall be 225℃. As is clear from FIG. 5, in the conventional E-type mover, no matter how the cut angle θ was selected, the primary temperature coefficient did not become zero or positive. This tendency is the same even when the dimensional parameters have other values. FIG. 6 is an explanatory diagram of the cutting direction of the E-type vibrator of the present invention. In FIG. 6, the E-type oscillator 61 changes from a state (two-cut state) in which the branch width direction and principal direction of the vibration technique 62 coincide with the X-axis (electrical axis) and Y-axis (mechanical @) of the crystal, respectively. Starting from the beginning, it is rotated by an angle ψ (the sign of ψ is iE in the counterclockwise direction) about the X-axis.
第7図から第12図は、本発明のE型振動子の温度係数
又は温度特性の3次元有限要素法による計算値を示すグ
ラフである。計算の際一定にするカット角度又は寸法パ
ラメーターを第1表3行目から8行目に示す。尚計算値
は水晶振動子の全域薄膜電極、支持部材、水晶の圧電性
等を無視したものである。第7図は本発明のE型振動子
の1水温度係数αが、カット角ψによってどのように変
わるかを示すグラフである。第7図り・ら明らかなよう
に1水温度係数αは一9″〜26°で零又は正の値を示
す。本来1水温度係数が零となるカット角度は温度特性
が最良となるカット角度といえるが、屈曲水晶振動子の
1水温度係数は一般に水晶表面に固着している金1g?
1INX電極及び支持部材の影響で負の方向に引っばら
Cやすい。従って本発明では1水温度係数αが正の値に
なるカット角度も温度特性が良好となるカット角度であ
ると判断している。第8図は1水温度係数αが真中の振
動技の枝巾寸法り。にょってどのように変わるかを示す
グラフである。横軸は板厚寸法tで無次元化している。7 to 12 are graphs showing calculated values of the temperature coefficient or temperature characteristics of the E-type vibrator of the present invention using the three-dimensional finite element method. The cut angles or dimension parameters that are kept constant during calculation are shown in Table 1, lines 3 to 8. Note that the calculated value ignores the thin film electrode over the entire area of the crystal resonator, the support member, the piezoelectricity of the crystal, etc. FIG. 7 is a graph showing how the water temperature coefficient α of the E-type vibrator of the present invention changes depending on the cut angle ψ. As is clear from Figure 7, the water temperature coefficient α shows a zero or positive value between -9'' and 26°. Originally, the cut angle at which the water temperature coefficient becomes zero is the cut angle at which the temperature characteristics are the best. However, the temperature coefficient of 1 water of a bent crystal resonator is generally equal to 1 gram of gold fixed on the surface of the crystal?
1INX tends to be pulled apart in the negative direction due to the influence of the electrode and support member. Therefore, in the present invention, the cut angle at which the water temperature coefficient α takes a positive value is also determined to be the cut angle at which the temperature characteristics are good. Figure 8 shows the width of the vibration technique with the water temperature coefficient α in the middle. This is a graph showing how it changes depending on the situation. The horizontal axis is dimensionless with the plate thickness dimension t.
第8図がら真中の枝巾寸法を大六くすることによって1
水温度係数αは零又は正の値に設定可能なことがわかる
。By increasing the width of the middle branch from Figure 8 to 1
It can be seen that the water temperature coefficient α can be set to zero or a positive value.
第9図は1水温度係数αがスリット巾寸法gによってど
のように変わるかを示すグラフである。第9図からスリ
ット巾寸法を大へ□べすることによって、1水温度係数
αは零又は正の値に設定可能なことがわかる。第10図
は1水温度係数αが、振動技の長さ寸法tvこよってど
のようQζ変わるかを示すグラフである。第10図がら
徹1助枝の陵さ・J“法を小きくすることによって、1
次Y晶・用係数αl−1零の方向に近、つぐこ吉がわか
る。以上のグラフがら本発明のE型振・幼子の1水温度
係数α(は、カット角度のみならず、寸法パラメーター
によっても零又は正の値に設定で各ることがわかる。第
11図仏)IBI(C)は1水温度係数α、2次渦l、
f係数β、3次温度係数γが、カット角度ψによってど
のように変わるかを示すグラフである。第11図(A)
からα=0となるカット角度ψの値はψ=−14,2゜
となる。このカット角度におけるβおよびγの値をそれ
ぞれ第11図(B)および第11図(C)がらdみとる
とβ= 1.2 X 10−’ ℃−” 、r =2.
2 X 10−H℃弓となる。第12図は、上記α、β
、rの値を使って(1)式から計算された温度特性金示
すグラフである。第12図から本発明のE型振動子の共
振用波数温度特性(Δf/fo)は、o°〜4o′CI
!J1テ0.5ppm以内に入り、極めて良好であるこ
とがわかる。FIG. 9 is a graph showing how the water temperature coefficient α changes depending on the slit width g. It can be seen from FIG. 9 that by increasing the slit width dimension, the water temperature coefficient α can be set to zero or a positive value. FIG. 10 is a graph showing how the water temperature coefficient α changes depending on the length tv of the vibration technique Qζ. Figure 10 shows that by reducing the height of Toru 1 and the height of the branch, 1
Close to the direction of the next Y-crystal coefficient αl-1 zero, Tsugukoyoshi can be seen. From the above graphs, it can be seen that the water temperature coefficient α (1) of the E-type shaker/larva of the present invention varies depending on not only the cutting angle but also the dimensional parameters, as shown in Figure 11. IBI(C) is 1 water temperature coefficient α, secondary vortex l,
It is a graph showing how the f coefficient β and the third-order temperature coefficient γ change depending on the cut angle ψ. Figure 11 (A)
Therefore, the value of the cut angle ψ at which α=0 is ψ=−14.2°. Observing the values of β and γ at this cut angle from FIG. 11(B) and FIG. 11(C), respectively, β=1.2×10−'°C−”, r=2.
2 x 10-H°C arch. Figure 12 shows the above α, β
, is a graph showing the temperature characteristics calculated from equation (1) using the values of r. From FIG. 12, the resonance wave number temperature characteristic (Δf/fo) of the E-type vibrator of the present invention is 0° to 4o' CI
! It can be seen that the J1 value is within 0.5 ppm, which is extremely good.
本発明のE型振動子が、従来のE型機動子Vζくら
′べて、共振周波数温度特性が良くなる理由は、定
性的に次のように考えられる。E型上動子が、利2図(
4)(B)に示すような振動モードで撮動するとへ、振
動枝部では、主として、伸びひずみ成分が存在し、ベー
ス部では、せん断ひずみ成分が存在するようになる。従
って共振周波数に関門している弾性定数は上記2種類の
ひずみ成分に対応して2種類となる。本発明はこれらの
弾性定数の温関係数が互にキャンセル又は正の方向にあ
り、従来のものはそうなっていないことによる。113
図(蜀は本発明実施例の電極構造を示す斜視図である。The E-type vibrator of the present invention is different from the conventional E-type machine Vζ.
'The reason why the resonant frequency temperature characteristics are improved can be qualitatively considered as follows. The E-type upper mover is shown in Figure 2 (
4) When photographing is carried out in the vibration mode shown in (B), there is mainly an extensional strain component in the vibrating branch part, and a shear strain component in the base part. Therefore, there are two types of elastic constants that are related to the resonance frequency, corresponding to the two types of strain components described above. The present invention is based on the fact that the temperature relationship coefficients of these elastic constants cancel each other out or are in the positive direction, whereas the conventional ones do not. 113
Figure (Shu) is a perspective view showing the electrode structure of an embodiment of the present invention.
水晶からなる振動技131.132,133 の側面に
は、金属薄膜電極135,136が蒸着、スパッターな
どの手段によって固着されている。振動技131゜13
2.133の先端部には、周波数調整用の付加質竜とし
て、金属膜134が固着されている。第13図(B)は
第13図(4)で振動技131.132,133 の
YY断面から見たと轡の金属薄膜電極の接続を示す断面
図である。電極端子137,138 に@動子130
0基本振動の共振周波数に等しい周波数の電圧を付加す
れば、振動技131.132.133り)内部には矢印
で示すような交番覗界l戊分が発生し、振動子130d
水晶のEtE電効来によって、第2(ノー(A) (B
)に示すような振動モードで振@−4−ろ。鴫111図
は1本の振動技の中の電界分佑の種子を示す図である。Metal thin film electrodes 135, 136 are fixed to the side surfaces of the vibrator 131, 132, 133 made of crystal by means such as vapor deposition or sputtering. Vibration technique 131°13
A metal film 134 is fixed to the tip of 2.133 as an additional material for frequency adjustment. FIG. 13(B) is a sectional view showing the connection of the metal thin film electrodes in the back when viewed from the YY cross section of the vibration technique 131, 132, 133 in FIG. 13(4). Electrode terminals 137, 138 @ mover 130
If a voltage with a frequency equal to the resonance frequency of the fundamental vibration is applied, an alternating field of view as shown by the arrow will occur inside the vibrator 130d.
Due to the EtE effect of the crystal, the second (No (A) (B)
) Shake in the vibration mode shown in @-4-RO. Shizu 111 diagram is a diagram showing the seeds of electric field bunyu in one vibration technique.
端子141がプラス電極で、端子142がマイナス電極
のと衣、振動技143の中に・は、電気力線144.j
45が発生し、板厚の上半分と下半分に互に逆向衣の平
行電界成分が発生する。Since the terminal 141 is a positive electrode and the terminal 142 is a negative electrode, there are electric lines of force 144 in the vibration technique 143. j
45 occurs, and parallel electric field components with opposite directions are generated in the upper and lower halves of the plate thickness.
第15図は本発明実施例の支持構造を示す斜視図である
。撮動子151の電極端子152,153;rよ、を
円筒形の気密端子154のステム155,156vζ導
電接着剤157で固着されている。FIG. 15 is a perspective view showing the support structure of the embodiment of the present invention. The electrode terminals 152 and 153;
以下説明したように、本発明は■小型低周波で共振周波
数温度特性が極めて良好となる i)2’つの′@動モ
ードの結合を利用して、共撮用波故搗度特性を改良した
ものではないので、共4屓1刈波数温度特性は、振動子
の寸法誤差、川波数調督工桿などの影響をほとんど受け
ない5.■4@子のベース部(支持部)の振動変位が広
範囲にわたって、非常に小さく字るので、振動子の支持
が極めて容易となる。■ホトリソグラフィー技術によっ
て製造で衣るため、均−特性及び量産性の確保が容易な
ことなど、高精度、低消皆電力の発振子として大壜なメ
リットを有する。伺本発明は、基本撮動モードの場合の
みならず、高次振動モードでも同様の効果を有する。As explained below, the present invention has the following advantages: (1) Very good resonant frequency temperature characteristics with a small and low frequency; (i) Improved wave amplitude characteristics for co-photography by utilizing the coupling of two '@ dynamic modes; Therefore, the wave number temperature characteristics are hardly affected by the dimensional error of the vibrator, the river wave number adjustment mechanism, etc.5. (4) The vibration displacement of the base part (supporting part) of the vibrator is very small over a wide range, making it extremely easy to support the vibrator. ■Since it is manufactured using photolithography technology, it has significant advantages as a high-precision, low-power resonator, including the ease of ensuring uniform characteristics and mass production. The present invention has similar effects not only in the basic imaging mode but also in the higher-order vibration mode.
第1図は従来及び本発明に係るE型振動子の形状を示す
斜視図。
第2図(A) (B)は従来及び本発明で利用するE型
娠1子の振動モードの説明図て゛あ′ハ
第2図(Alは第1図YY断面から見た撮動モードへ断
面図。
第2図(B)は第1図XX断面から見た振動モードの断
面図。
第3図は従来及び本発明に係るE型振動子の寸法パラメ
ーターの説明図で第3図囚は平面図、第3図(B)は側
面図。
第4図は従来のE型振動子のカット方位の説明図、
第5図は従来のE型振動子の1水温変係数αとカット角
度θの関係を示すグラフ。
第6図は本発明のE型振動子のカット方位の説明図。
第7図は本発明のE型振動子の1次Y品度係奴αとカッ
ト角度ψの関係を示すグラフ。
第8図は本発明のE型振動子の1次福要係叔αと真中の
振動技の巾寸法比(ho/ t )の関係を示すグラフ
。
第9図は本発明のE型振動子の1水温度係rりαとスリ
ット巾寸法比(g/l)の関係を示すグラフ、。
第10図は本発明のE型@切子の1水温変係数αと振動
技の長さ寸法比(t/l)の関係を示すグラフ。
第11図(A) (B) (C)は本発明のE型振動子
の1次79m度係数α、2水温度係数β、3次温度係故
γとカット角度ψの関係を示すグラフ。
第12図は本発明のE型振動子の共損IN彼数精6ノ(
シリ
同時1ぐ壬示すグラフ。
第13図(A)は本発明実施例の電極構造を示す斜視図
。
窮13図(B)ぼ第13図(蜀のYY断面から県だ金属
4嘆電極の接続を示す断面図。
第14図は振動技の中の電界分布を説明するだめの断面
図。
第15図は本発明実施例の支持構造を示す斜視図。
5・・・・・・振動変位の方向
11.12,13,131,132,133・・・振動
技41・・・・・・従来のE型振動子
61・・・・・・本発明のE型振動子
135.136・・・・・・金属薄膜電極137.13
8・・・・・・電極端子
130.151・・・・・・本発明実施例のE型部動子
154・・・・・・気密端子
155.156・・・・・・ステム
157・・・・・・導電接着剤。FIG. 1 is a perspective view showing the shape of an E-type vibrator according to the prior art and the present invention. Figure 2 (A) and (B) are explanatory diagrams of the vibration mode of the E-type fetus used in the conventional and the present invention. Cross-sectional view. Figure 2 (B) is a cross-sectional view of the vibration mode seen from the XX cross-section in Figure 1. Figure 3 is an explanatory diagram of the dimensional parameters of the E-type vibrator according to the conventional and the present invention. A plan view, and Fig. 3 (B) is a side view. Fig. 4 is an explanatory diagram of the cutting direction of the conventional E-type vibrator. Fig. 5 is the water temperature variation coefficient α and cut angle θ of the conventional E-type vibrator. Graph showing the relationship between. Figure 6 is an explanatory diagram of the cutting direction of the E-type vibrator of the present invention. Figure 7 is the relationship between the primary Y quality control α and the cut angle ψ of the E-type vibrator of the present invention. Fig. 8 is a graph showing the relationship between the primary function coefficient α of the E-type vibrator of the present invention and the width dimension ratio (ho/t) of the vibration technique in the middle. A graph showing the relationship between the water temperature coefficient α and the slit width dimension ratio (g/l) of the E type vibrator. Figure 10 shows the relationship between the water temperature coefficient α and the vibration technique of the E type @ face of the present invention. A graph showing the relationship between the length dimension ratio (t/l). Figures 11 (A), (B), and (C) show the 1st order 79m degree coefficient α, 2nd water temperature coefficient β, 3 of the E-type vibrator of the present invention. A graph showing the relationship between the temperature coefficient γ and the cut angle ψ.
A graph that shows how many times the Siri is running at the same time. FIG. 13(A) is a perspective view showing the electrode structure of the embodiment of the present invention. Fig. 13 (B) Fig. 13 (Cross-sectional view showing the connection of four metal electrodes from the YY cross section of Shu. Fig. 14 is a cross-sectional view to explain the electric field distribution in the vibration technique. Fig. 15) The figure is a perspective view showing the support structure of the embodiment of the present invention. E-type vibrator 61... E-type vibrator of the present invention 135.136... Metal thin film electrode 137.13
8...Electrode terminal 130.151...E type part mover 154 of the embodiment of the present invention...Airtight terminal 155.156...Stem 157... ...Conductive adhesive.
Claims (1)
さ扛た水晶振動子(E型振動子)において、振動技の枝
巾方向及び長さ方向が、それぞれ氷晶のX@(電気軸)
及びY軸(憬械軸)に一致した状態(2カツトの状態)
のE型振動子をX軸のまわりに角度ψ(ψの符号は反時
計方向を正とする)だけ回転するとき、ψヲー25°か
ら+35°の範囲の角度に設定しにこと全特徴とする水
晶撮動子。 (2)振動技の同一側面には、電気的極性が互に異る電
極金属膜がもうけられていることを特徴とする特許請求
の範囲第1項記載の水晶振動子。[Claims] r, g (1) In a crystal resonator (E-type resonator) in which three vibration techniques are formed in an E shape on a crystal plate with a uniform valve plate thickness, the width of the vibration techniques is The direction and length direction are respectively the X@(electrical axis) of the ice crystal.
and the state that matches the Y-axis (mechanical axis) (2-cut state)
When rotating an E-type vibrator around the X axis by an angle ψ (the sign of ψ is positive in the counterclockwise direction), set the angle ψ in the range of -25° to +35°. crystal camera. (2) The crystal resonator according to claim 1, wherein electrode metal films having mutually different electrical polarities are provided on the same side of the vibrator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21268381A JPS58111515A (en) | 1981-12-25 | 1981-12-25 | Crystal oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21268381A JPS58111515A (en) | 1981-12-25 | 1981-12-25 | Crystal oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58111515A true JPS58111515A (en) | 1983-07-02 |
JPH0150135B2 JPH0150135B2 (en) | 1989-10-27 |
Family
ID=16626680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21268381A Granted JPS58111515A (en) | 1981-12-25 | 1981-12-25 | Crystal oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58111515A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6090415A (en) * | 1983-10-25 | 1985-05-21 | Citizen Watch Co Ltd | Crystal resonator |
JPS60242713A (en) * | 1984-05-17 | 1985-12-02 | Citizen Watch Co Ltd | Electrode structure of piezoelectric transducer |
US4926086A (en) * | 1988-07-07 | 1990-05-15 | Centre Suisse D'electronique Et De Microtechnique S.A. | Piezoelectric resonator |
WO2016175218A1 (en) * | 2015-04-28 | 2016-11-03 | 株式会社村田製作所 | Resonator and resonance device |
US10659004B2 (en) | 2015-04-27 | 2020-05-19 | Murata Manufacturing Co., Ltd. | Resonator and resonance device |
US10790800B2 (en) | 2015-04-27 | 2020-09-29 | Murata Manufacturing Co., Ltd. | Resonator and resonance device |
US10812046B2 (en) | 2018-02-07 | 2020-10-20 | Murata Manufacturing Co., Ltd. | Micromechanical resonator having reduced size |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002118441A (en) * | 2000-10-10 | 2002-04-19 | Citizen Watch Co Ltd | Torsional vibrator |
-
1981
- 1981-12-25 JP JP21268381A patent/JPS58111515A/en active Granted
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6090415A (en) * | 1983-10-25 | 1985-05-21 | Citizen Watch Co Ltd | Crystal resonator |
JPS60242713A (en) * | 1984-05-17 | 1985-12-02 | Citizen Watch Co Ltd | Electrode structure of piezoelectric transducer |
JPH0538483B2 (en) * | 1984-05-17 | 1993-06-10 | ||
US4926086A (en) * | 1988-07-07 | 1990-05-15 | Centre Suisse D'electronique Et De Microtechnique S.A. | Piezoelectric resonator |
US10659004B2 (en) | 2015-04-27 | 2020-05-19 | Murata Manufacturing Co., Ltd. | Resonator and resonance device |
US10790800B2 (en) | 2015-04-27 | 2020-09-29 | Murata Manufacturing Co., Ltd. | Resonator and resonance device |
WO2016175218A1 (en) * | 2015-04-28 | 2016-11-03 | 株式会社村田製作所 | Resonator and resonance device |
CN107534432A (en) * | 2015-04-28 | 2018-01-02 | 株式会社村田制作所 | Harmonic oscillator and resonance device |
JPWO2016175218A1 (en) * | 2015-04-28 | 2018-02-08 | 株式会社村田製作所 | Resonator and resonance device |
US10673403B2 (en) | 2015-04-28 | 2020-06-02 | Murata Manufacturing Co., Ltd. | Resonator and resonance device |
CN107534432B (en) * | 2015-04-28 | 2020-06-05 | 株式会社村田制作所 | Harmonic oscillator and resonance device |
US10812046B2 (en) | 2018-02-07 | 2020-10-20 | Murata Manufacturing Co., Ltd. | Micromechanical resonator having reduced size |
Also Published As
Publication number | Publication date |
---|---|
JPH0150135B2 (en) | 1989-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS593695B2 (en) | crystal thermometer | |
JP3622202B2 (en) | Method for adjusting temperature characteristics of surface acoustic wave device | |
JPH0232807B2 (en) | ||
JPS58111515A (en) | Crystal oscillator | |
US3944862A (en) | X-cut quartz resonator using non overlaping electrodes | |
JP2002158559A (en) | Lame-mode crystal vibrator | |
US4503353A (en) | Cut angles for tuning fork type quartz resonators | |
JPH03804B2 (en) | ||
JPH0265518A (en) | Piezoelectric resonator | |
US4631437A (en) | Stress compensated piezoelectric crystal device | |
JPH0150134B2 (en) | ||
JPS6365243B2 (en) | ||
JPS6367364B2 (en) | ||
JPS5824503Y2 (en) | Width-slip crystal oscillator | |
JPS60113511A (en) | Piezoelectric vibrating element | |
TW201924102A (en) | Piezoelectric vibrating piece and piezoelectric device | |
JPS583411A (en) | Piezoelectric oscillator | |
JPH0147932B2 (en) | ||
US2436202A (en) | Piezoelectric apparatus | |
JPH0150132B2 (en) | ||
JPS6010111Y2 (en) | crystal twisted resonator | |
JPS6326853B2 (en) | ||
JPS59127413A (en) | Lithium tantalate oscillator | |
JPS58166229A (en) | Crystal oscillator | |
JPS5912810Y2 (en) | piezoelectric vibrator |