JPS58118739A - Ultasonic probe and production thereof - Google Patents
Ultasonic probe and production thereofInfo
- Publication number
- JPS58118739A JPS58118739A JP57000536A JP53682A JPS58118739A JP S58118739 A JPS58118739 A JP S58118739A JP 57000536 A JP57000536 A JP 57000536A JP 53682 A JP53682 A JP 53682A JP S58118739 A JPS58118739 A JP S58118739A
- Authority
- JP
- Japan
- Prior art keywords
- flat
- conductive
- main surface
- piezoelectric material
- long side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 ■1発明の背景 A、技術分野 本発明は超音波探触子およびその製造方法に関する。[Detailed description of the invention] ■1 Background of the invention A. Technical field The present invention relates to an ultrasonic probe and a method for manufacturing the same.
(5)
B、先行技術とその問題点
生体の断層像を実時間で観察することのできる超音波診
断装置などの超音波医療電子機器には、機械的可動部分
がな−く電子的に超音波ビームを走査することのできる
電子走査型の超音波探触子が多く用いられている。この
ような超音波探触子では、平板状のたとえばセラミック
系の圧電材料からなる平板圧電材の両主面にそれぞれ銀
を蒸着、スクリーン印刷あるいは塗布固着してなる平板
電極を設けた振動子を多数線形に配列し、各平板電極を
リードにて各外部接続端子に接続した1次元アレイ構造
をとっている。(5) B. Prior art and its problems Ultrasonic medical electronic equipment such as ultrasound diagnostic equipment that can observe tomographic images of living bodies in real time has no mechanically moving parts and uses electronic ultrasound. Electronic scanning type ultrasound probes that can scan a sound beam are often used. Such an ultrasonic probe uses a vibrator in which flat plate electrodes are formed by vapor depositing, screen printing, or coating silver on both main surfaces of a flat piezoelectric material made of a ceramic piezoelectric material. A one-dimensional array structure is adopted in which a large number of electrodes are arranged linearly and each flat plate electrode is connected to each external connection terminal by a lead.
このような超音波探触子では1次元的に配列された多数
の超音波振動子を選択的に順次駆動することによって超
音波ビームを走査し、また受波時も各振動子を順次選択
的にアクティブとすることによって電子走査を行なって
いる。Such an ultrasonic probe scans an ultrasonic beam by selectively and sequentially driving a large number of ultrasonic transducers arranged one-dimensionally, and also selectively drives each transducer sequentially during wave reception. Electronic scanning is performed by activating the
従来、このような多数の超音波振動子の1次元配列から
なる超音波探触子は、平板圧電材の両主面、すなわち表
面および裏面にある各電極(6)
と接続リードとの電気的接続はそれぞれ別個の工程で行
なわれていた。たとえば、まず第1の工程で平板圧電材
を多数に分割した各振動子の裏面の電極にリードを接続
して各振動子ごとの個別電極とし11次に第2の工程で
各振動子の表面の電極に銅などの金属箔などの共通電極
を共通に接続する例がある(たとえば特開昭56−54
833号参照)。このように従来の製造方法によれば振
動子の両電極と外部回路へのアクセス部との接続には必
らず2工程を必要とし、多くは多数の振動子を製造工程
中のみ一時的に保持しておく補助板などを必要としてい
た。Conventionally, an ultrasonic probe consisting of a one-dimensional array of a large number of ultrasonic transducers like this has been designed to conduct electrical connections between each electrode (6) on both principal surfaces of a flat piezoelectric material, that is, the front and back surfaces, and the connecting lead. Each connection was made in a separate process. For example, in the first step, a flat piezoelectric material is divided into many parts, and leads are connected to the electrodes on the back of each vibrator to form individual electrodes for each vibrator. There is an example in which a common electrode such as a metal foil such as copper is commonly connected to the electrodes of the
(See No. 833). In this way, conventional manufacturing methods always require two steps to connect both electrodes of the vibrator and the access part to the external circuit, and in many cases, a large number of vibrators are temporarily connected only during the manufacturing process. I needed an auxiliary board to hold it.
超音波探触子の製造は、これら電極とリード部との接続
のみならず、バッキング材や音響整合層と圧電材料との
接合、複数の振動子への分割切断などの多数の工程から
なるので、できるだけ工程数を少なくして価格を低減す
るとともに各工程における加工精度のバラツキの蓄積を
排除して高い信頼性の菓子を得ることが要求される。Manufacturing an ultrasonic probe involves many steps, including not only connecting these electrodes and lead parts, but also bonding the backing material, acoustic matching layer, and piezoelectric material, and cutting the transducer into multiple transducers. It is required to reduce the number of steps as much as possible to reduce the price, and to eliminate the accumulation of variations in processing accuracy in each step to obtain highly reliable confectionery.
■0発明の目的
したがって本発明は、できるだけ少ない工程数で信頼性
の高い超音波探触子を製造することができる方法、およ
びそあような超音波探触子を提供することを目的とする
。■0 Purpose of the Invention Therefore, the present invention aims to provide a method of manufacturing a highly reliable ultrasonic probe with as few steps as possible, and such an ultrasonic probe. .
本発明によればこの目的は次のような超音波探触子の製
造方法によって達成される。すなわちこの方法によれば
、矩形の平板圧電材の一方の主面にこれを実質的に覆う
形で第1の平板導電材を被着させ、他方の主面には第1
の平板導電材とは独立した第2の平板導電材を被着させ
、第1の平板導電材の一部は他方の主面まで伸びて、他
方の主面の一部を長手方向に覆う形をとシ、矩形の平板
圧電材の幅よシ小さい幅の矩形の開口を有する可撓性の
平板絶縁材の表面において、この開口の一方の長辺に沿
って伸びる第1の導電パターンを形成し、この開口の他
方の長辺に沿って伸び第1の導電ノ4ターンとは独立し
た第2の導電パターンを形成し、第2の導電/Jターン
は開口から離れる方向に伸びる複数の導体部を有し、平
板導電材の表面の上に前記平板圧電材をその長辺が開口
の長辺と実質的に平行なるように載置して、平板圧電材
の他方の主面の一部を覆っている第1および第2の平板
導電材のうちの一方の一部を平板絶縁材の第1の導電パ
ターンに、他方の平板圧電材の一部を第2の導電ノPタ
ーンにそれぞれ接続し、前記平板圧電材と異なる音響イ
ンピーダンスを有し平板圧電材の矩形の外形に近い形状
を有するバッキング材の主面の上に、平板圧電材の長辺
がバッキング材の長辺と実質的に平行になるように平板
絶縁材をその裏面を下にして装着し、平板絶縁材をバッ
キング材の矩形の長辺に沿ってその側面の方へ折シ曲げ
、これら平板圧電材、平板絶縁材およびバッキング材に
切込みを入れ、この切込みは平板圧電材の矩形の幅方向
に伸びて複数の導体部の間に位置し、少なくともバッキ
ング材の主面に達しておシ、これによって一方の平板導
電材を共通電極とし、他方の平板導電材を個別電極とす
る複数の超音波振動子が形成される(9)
本発明によれば次のような超音波探触子が提供される。According to the present invention, this object is achieved by the following method of manufacturing an ultrasound probe. That is, according to this method, the first flat conductive material is adhered to one main surface of a rectangular flat piezoelectric material in a manner that substantially covers it, and the first flat conductive material is applied to the other main surface of the rectangular flat piezoelectric material.
A second flat conductive material independent of the flat conductive material is attached, and a part of the first flat conductive material extends to the other main surface and covers a part of the other main surface in the longitudinal direction. forming a first conductive pattern extending along one long side of the opening on the surface of the flexible flat insulating material having a rectangular opening having a width smaller than the width of the rectangular flat piezoelectric material; A second conductive pattern is formed along the other long side of the opening and is independent of the first conductive turn. part of the other main surface of the flat piezoelectric material by placing the flat piezoelectric material on the surface of the flat conductive material so that its long side is substantially parallel to the long side of the opening. A part of one of the first and second flat conductive materials covering the plate is connected to the first conductive pattern of the flat insulating material, and a part of the other flat piezoelectric material is connected to the second conductive P-turn. The long side of the flat piezoelectric material is substantially connected to the long side of the backing material on the main surface of the backing material which has an acoustic impedance different from that of the flat piezoelectric material and has a shape close to the rectangular outer shape of the flat piezoelectric material. Attach the flat insulating material with its back side down so that it is parallel to and a notch is made in the backing material, and this notch extends in the rectangular width direction of the flat piezoelectric material, is located between the plurality of conductor parts, and reaches at least the main surface of the backing material. A plurality of ultrasonic transducers are formed in which the flat conductive material serves as a common electrode and the other flat conductive material serves as individual electrodes (9) According to the present invention, the following ultrasonic probe is provided.
すなわちこの超音波探触子は矩形の平板圧電材の一方の
主面にこれを実質的に覆う形で第1の平板導電材を被着
させ、他方の主面には第1の平板導電材とは独立した第
2の平板導電材を被着させ、第1の平板導電材の一部は
他方の主面まで伸びて他方の主面の一部を長手方向に覆
う形をとシ、矩形の平板圧電材の幅よシ小さい幅の矩形
の開口を有する可撓性の平板絶縁材の表面において、こ
の開口の一方の長辺に沿って伸びる第1の導電パターン
を形成し、この開口の他方の長辺に沿って伸び第1の導
電パターンとは独立した第2の導電パターンを形成し、
第2の導電パターンは開口から離れる方向に伸びる複数
の導体部を有し、平板導電材の表面の上に前記平板圧電
材をその長辺が開口の長辺と実質的に平行になるように
載置して、平板圧電材の他方の主面の一部を覆っている
第1および第2の平板導電材のうちの一方の一部を平板
絶縁材の第1の導電パターンに、他方の平r1n)
板圧電材の一部を第2の導電・母ターンにそれぞれ接続
し、前記平板圧電材と異なる音響インピーダンスを有し
平板圧電材の矩形の外形に近い形状を有するバッキング
材の主面の上に、平板圧電材の長辺がバッキング材の長
辺と実質的に平行になるように平板絶縁材をその裏面を
下にして装着し、平板絶縁材をバッキング材の矩形の長
辺に沿ってその側面の方へ折カ曲げ、これら平板圧電材
、平板絶縁材およびバッキング材に切込みを入れ、この
切込みは平板圧電材の矩形の幅方向に伸びて複数の導体
部の間に位置し、少なくともバッキング材の主面に達し
ておシ、これによって一方の平板導電材を共通電極とし
、他方の平板導電材を個別電極とする複数の超音波振動
子を含むものである。That is, in this ultrasonic probe, a first flat conductive material is adhered to one main surface of a rectangular flat piezoelectric material so as to substantially cover it, and a first flat conductive material is attached to the other main surface of the rectangular flat piezoelectric material. A second flat conductive material independent of the first flat conductive material is applied, and a part of the first flat conductive material extends to the other main surface and covers a part of the other main surface in the longitudinal direction, and a rectangular shape is formed. A first conductive pattern extending along one long side of the opening is formed on the surface of a flexible flat insulating material having a rectangular opening having a width smaller than the width of the flat piezoelectric material. forming a second conductive pattern extending along the other long side and independent of the first conductive pattern;
The second conductive pattern has a plurality of conductor parts extending away from the opening, and the flat piezoelectric material is placed on the surface of the flat conductive material so that its long side is substantially parallel to the long side of the opening. A part of one of the first and second flat conductive materials covering a part of the other main surface of the flat piezoelectric material is placed on the first conductive pattern of the flat insulating material, and a part of the other plate flat r1n) A main surface of a backing material that connects a part of the plate piezoelectric material to the second conductive/mother turn, and has an acoustic impedance different from that of the flat piezoelectric material and has a shape close to the rectangular outer shape of the flat piezoelectric material. A flat insulating material is mounted on top of the rectangular long sides of the backing material, with the flat insulating material placed on its back side so that the long sides of the flat piezoelectric material are substantially parallel to the long sides of the backing material. The flat piezoelectric material, the flat insulating material, and the backing material are bent along the sides thereof, and cuts are made in the flat piezoelectric material, the flat insulation material, and the backing material, and the cuts extend in the width direction of the rectangular shape of the flat piezoelectric material and are located between the plurality of conductor parts. , which reaches at least the main surface of the backing material, thereby including a plurality of ultrasonic transducers in which one flat conductive material serves as a common electrode and the other flat conductive material serves as individual electrodes.
本発明の1つの態様によれば、超音波探触子は、第1の
平板導電材を共通電極とし、第2の平板導電材を個別電
極とする。According to one aspect of the present invention, the ultrasonic probe uses the first flat conductive material as a common electrode and the second flat conductive material as individual electrodes.
本発明の他の態様によれば、超音波探触子における切込
みは複数の導体部のそれぞれの間に本発明の他の態様に
よれば、超音波探触子における平板絶縁材の開口は周囲
が完全に閉じた矩形をなす。According to another aspect of the invention, the cut in the ultrasonic probe is between each of the plurality of conductor portions. forms a completely closed rectangle.
本発明の他の態様によれば、超音波探触子における第2
の導電ノぐターンは、複数の導体部がそれぞれ独立して
平板絶縁材の表面に形成されている。According to another aspect of the invention, the second
In the conductive nozzle, a plurality of conductor portions are each independently formed on the surface of a flat insulating material.
■0発明の詳細な説明
次に添付図面を参照して本発明の超音波探触子および超
音波探触子の製造方法を詳純に説明する。(1) Detailed Description of the Invention Next, the ultrasonic probe and method of manufacturing the ultrasonic probe of the present invention will be described in detail with reference to the accompanying drawings.
81図(4)および■)に示す実施例のように、たとえ
ばセラミック系の圧電材料からなる全体として矩形の平
板圧電材10に、この矩形の一方の長辺に対応する側面
12を残して他方の側面ならびに平板の両主面をコの字
形にたとえば銀などの導電材料を蒸着、スクリーン印刷
もしくは塗布固着して形成した極薄の平板導電材で被覆
し、その一方の主面の一部にこの矩形の長辺と平行にス
リット14を入れて平板導電材の一部を除去し、これを
第1の平板導電材16と第2の平板導電材18に分割す
る。両者は互いに完全に独立している。理解を深めるた
めに本実施例の実寸を附記すると、平板圧電材の長辺i
oom、、短辺13*m+スリット側主面の平板導電材
16の幅1 mu +スリット14の幅1薫で、厚さは
3.5 MHzの場合で0.4 mmである。As in the embodiment shown in FIGS. 81 (4) and (2), a generally rectangular flat piezoelectric material 10 made of, for example, a ceramic piezoelectric material is provided with a side surface 12 corresponding to one long side of the rectangle, and the other side is The side surfaces and both main surfaces of the flat plate are coated in a U-shape with an ultra-thin flat conductive material formed by vapor deposition, screen printing, or coating and fixation of a conductive material such as silver, and a part of one of the main surfaces is coated with A slit 14 is made parallel to the long side of this rectangle to remove a portion of the flat conductive material and divide it into a first flat conductive material 16 and a second flat conductive material 18 . Both are completely independent of each other. In order to understand the actual dimensions of this example, the long side i of the flat piezoelectric material is
oom, the short side is 13*m + the width of the flat conductive material 16 on the main surface on the slit side is 1 mu + the width of the slit 14 is 1 mu, and the thickness is 0.4 mm at 3.5 MHz.
次に第1図(0に示すように、すくなくとも平板圧電材
10の矩形よシ少し小さい幅方向の寸法形状を有する開
口20を有するポリイミド等の可撓性の絶縁材料からな
る平坦な基板22に、図示のような)J?ターン形状を
有する第1の導電パターン24および第2の導電パター
ン26を形成する。両パターンは、たとえば銅などの導
電性材料の箔を基板22の主面に被着させたものである
。第1の導電パターン24は、開口20の一方の長辺に
沿った電極部28と、外部の回路に接続されるリード部
30とからなシ、第2の導電A’ターン26は、開口2
0の他方の(13)
長辺に沿った電極部32と、外部の回路に接続される多
数の導体部34とからなる。第1の導る多数の超音波振
動子60(第1図(2)またはCF’))の共通電極の
一部をなし、第2の導電パターン26は多数の超音波振
動子の個別電極の一部をなすことになる。したがって第
2の導電パターン26の導体部34はこの例では完成後
の超音波探触子に含まれる振動子の数に対応して設けら
れている。更に電極部を除く上記リード部を覆うように
ポリイミド等のカバーフィルムを貼布する。Next, as shown in FIG. 1 (0), a flat substrate 22 made of a flexible insulating material such as polyimide has an opening 20 having a widthwise dimension slightly smaller than the rectangular shape of the flat piezoelectric material 10. , as shown) J? A first conductive pattern 24 and a second conductive pattern 26 having a turn shape are formed. Both patterns are formed by depositing a foil of a conductive material, such as copper, on the main surface of the substrate 22. The first conductive pattern 24 consists of an electrode part 28 along one long side of the opening 20 and a lead part 30 connected to an external circuit, and the second conductive A' turn 26 consists of an electrode part 28 along one long side of the opening 20 and a lead part 30 connected to an external circuit.
The other (13) of 0 consists of an electrode part 32 along the long side and a large number of conductor parts 34 connected to an external circuit. The first conductive pattern 26 forms part of the common electrode of a large number of ultrasonic transducers 60 (FIG. 1 (2) or CF'), and the second conductive pattern 26 forms a part of the common electrode of a large number of ultrasonic transducers 60 (FIG. 1 (2) or CF'). It will form a part. Therefore, in this example, the conductor portions 34 of the second conductive pattern 26 are provided in correspondence with the number of transducers included in the completed ultrasound probe. Furthermore, a cover film made of polyimide or the like is applied so as to cover the lead portion except for the electrode portion.
次に第1図の)に示すように、同図(Qの可撓性基板2
2の開口20よシ若干大きく、同図■または(B)に示
す圧電材10の矩形と少なくとも同程度の大きさの形状
を有するバッキング材40を用意する。このバッキング
材は、超音波探触子として完成後、探触子の超音波出力
方向とは反対の方向すなわち背面側に放射された超音波
(14)
を反射させることで前面負荷への超音波出力を増し、探
触子としての感度を良くするための反射材として、また
は背面へ放射された超音波を吸収して超音波パルスを尖
鋭にする吸収材として、探触子の応答性を良くする役目
を果す。感度を良くするための反射材に適する例を示せ
ば、圧電材10の音響インピーダンス、たとえば30
X I Of/−/crlsとは大きく異なる音響イン
ピーダンス、たとえば約3xlO55’z智Sを有する
エポキシ樹脂などが好ましい。Next, as shown in Fig. 1), the flexible substrate 2 of Fig.
A backing material 40 is prepared which is slightly larger than the opening 20 of No. 2 and has a shape at least as large as the rectangular shape of the piezoelectric material 10 shown in FIG. After this backing material is completed as an ultrasonic probe, it reflects the ultrasonic waves (14) emitted in the opposite direction to the ultrasonic output direction of the probe, that is, to the back side, thereby transmitting ultrasonic waves to the front load. It can be used as a reflective material to increase the output and improve the sensitivity of the probe, or as an absorbing material to sharpen the ultrasonic pulse by absorbing the ultrasonic waves emitted to the back surface, improving the responsiveness of the probe. fulfill the role of To give an example of a suitable reflective material for improving sensitivity, the acoustic impedance of the piezoelectric material 10, for example, 30
An epoxy resin having an acoustic impedance significantly different from XIOf/-/crls, such as about 3xlO55'zZ, is preferred.
ところで本発明による超音波探触子の製造方法によれば
、第1および第2の平板導電材16および18を備えた
圧電材10を第1図(B)の向きにしてそのまま同図(
C)に示す可撓性基板22の上に同口20か圧電材10
の矩形と重なるように載置する。この状態で第1および
第2の導電パターン24および26のそれぞれの電極部
28および32と、これらにそれぞれ接する第1および
第2の平板導電材16および18の一部とをハンダ付け
など釦よって接合する。この場合基板22の裏面よ)加
熱するのが工程的に有利である。これによって第1おな
び第2の平板導電材16および18がそれぞれ第1およ
び第2の導電i4ターン24および26の端子部30お
よび34と電気的に接続されたことになる。According to the method of manufacturing an ultrasonic probe according to the present invention, the piezoelectric material 10 including the first and second flat conductive materials 16 and 18 is oriented as shown in FIG.
The opening 20 or the piezoelectric material 10 is placed on the flexible substrate 22 shown in C).
Place it so that it overlaps the rectangle. In this state, the electrode parts 28 and 32 of the first and second conductive patterns 24 and 26, and parts of the first and second flat conductive materials 16 and 18 that are in contact with these, are connected by soldering or other means. Join. In this case, it is advantageous in terms of process to heat the back surface of the substrate 22. As a result, the first and second flat conductive members 16 and 18 are electrically connected to the terminal portions 30 and 34 of the first and second conductive i4 turns 24 and 26, respectively.
次に、このように可撓性基板22の上に圧電材10を搭
載したものを、第1図(ハ)に示すバッキング材40の
上に同図(C)およびの)に示す状態、すなわち可撓性
基板22のパターンのある面を上にして開口20を基板
22に一致させるようにして載置する。基板22および
その開口2゜から露出している第1および第2の導電材
16および18の一部ならびにスリット14の部分の圧
電材10と、バッキング材40との接合はたとえばエポ
キシ樹脂などの接着剤にておこなう。バッキング材40
がエポキシ樹脂である場合は接着剤もエポキシ樹脂とす
るように、バッキング材40と同じ素材を含む接着剤を
用いることが好ましい。こうすることによって接着剤と
バッキング材40との間に界面が形成されることがなく
、好ましくない界面での超音波の反射などを防止するこ
とができる。Next, the piezoelectric material 10 mounted on the flexible substrate 22 is placed on the backing material 40 shown in FIG. 1(C) in the state shown in FIG. The flexible substrate 22 is placed with the patterned side facing up and the opening 20 aligned with the substrate 22. The substrate 22, parts of the first and second conductive materials 16 and 18 exposed from the 2° opening thereof, and the piezoelectric material 10 at the slit 14 are bonded to the backing material 40 using adhesive such as epoxy resin. Do it with a drug. Backing material 40
It is preferable to use an adhesive containing the same material as the backing material 40, so that when the backing material 40 is an epoxy resin, the adhesive is also an epoxy resin. By doing so, an interface is not formed between the adhesive and the backing material 40, and reflection of ultrasonic waves at an undesirable interface can be prevented.
次に第1図(ト)に示すように可撓性基板22をバッキ
ング材40・の両側面に沿って折シ曲げ、両者の間を同
様に接着剤で接合する。Next, as shown in FIG. 1(G), the flexible substrate 22 is bent along both sides of the backing material 40, and the two are similarly bonded with adhesive.
?JCまたとえばスクライビングダイサなどの薄い研削
砥石によって圧電材1oの幅方向に切込み50を入れ、
圧電材10を長手方向に等分割する。この切込み5oは
第1図(ト)およびC)に示すように、圧電材10の第
1の導電材16から圧電材10ならびに第2の導電材1
8および第1の導電材16の一部を通って可撓性基板2
2上の第1および第2の導電パターン24および26の
各電極部28および32に達し、その先端52は同図(
ト)に示すように第2の導電ノfターン26の電極部3
2を完全に分断する位置(第3図の矢印Aの先端の位置
)マでバッキング材40の中にわずかに切刃込まれてい
る。また、隣接する2つの切込み50の間隔すなわち(
17)
ピッチは第2の導電パターン26の複数のリード部34
の配列ピッチに等しく、隣接する2本の導体部34のほ
ぼ中央に1本の切込み5Gが位置して■1♀接するリー
ド部34相互を電気的に切断するようになされている。? Make a cut 50 in the width direction of the piezoelectric material 1o using a thin grinding wheel such as a scribing dicer.
The piezoelectric material 10 is divided into equal parts in the longitudinal direction. As shown in FIGS.
8 and a part of the first conductive material 16 to the flexible substrate 2
The tips 52 of the first and second conductive patterns 24 and 26 on the same figure (
As shown in (g), the electrode portion 3 of the second conductive turn 26
The cutting edge is slightly cut into the backing material 40 at the position where it completely separates the backing material 40 (the position of the tip of the arrow A in FIG. 3). Also, the distance between two adjacent notches 50, that is, (
17) The pitch is the plurality of lead parts 34 of the second conductive pattern 26
One notch 5G is located approximately at the center of two adjacent conductor portions 34 and is equal to the arrangement pitch of 1♀, so as to electrically disconnect the lead portions 34 that are in contact with each other.
切込み50の先端52は第1の導電パターン24の端部
36(この例では可撓性基板22の端部にもなっている
)に達してはならず、第1図(ト)忙示すように第1の
導電パターン24は切込み50で分割されないで連続し
たものとなってbる。これによって、多数の超音波振動
子60を含む超音波探触子62が完成する。なおこの電
気的接続を鮮2図に示す。同図において第1図に示す要
素は同じ参照符号で概念的に示されている。これかられ
かるように、第1の平板導電材16が個個の振動子60
に共通な共通電極として端子部30に接続され、第2の
平板導電#18が個々の振動子60に固有の個別電極と
して導体部34に接続されている。The tip 52 of the notch 50 must not reach the end 36 of the first conductive pattern 24 (which is also the end of the flexible substrate 22 in this example), and must not reach the end 36 of the first conductive pattern 24 (which is also the end of the flexible substrate 22 in this example), as shown in FIG. The first conductive pattern 24 is not divided by the notches 50 and is continuous. As a result, an ultrasonic probe 62 including a large number of ultrasonic transducers 60 is completed. This electrical connection is shown in Figure 2. In this figure, elements shown in FIG. 1 are conceptually indicated by the same reference numerals. As you will see, the first flat conductive material 16 is connected to the individual vibrators 60.
The second flat conductive plate #18 is connected to the conductor portion 34 as an individual electrode unique to each vibrator 60.
第4図は可撓性基板22の他の形状の例を示C1只)
す。同図(4)では第2の導電パターンが連続してなく
、初めから個々の導体部34として独立している例が示
されている。したがって圧電、材10の第2の導電材と
の接続は、個々の導体部34の一部32.Aに対して行
なわれる。同図(B)は、第1図(0に示す開口20の
周囲が完全に閉じたものではなく、一部が開いている開
口20Aを有する可撓性基板22を示す。第4図に示す
いずれの基板22でも本発明による製造方法に良好に適
用することができる。FIG. 4 shows an example of another shape of the flexible substrate 22. FIG. 4(4) shows an example in which the second conductive pattern is not continuous, but is independent as individual conductor portions 34 from the beginning. Therefore, piezoelectrically, the connection of the material 10 with the second electrically conductive material 32 . This is done for A. FIG. 4B shows a flexible substrate 22 having an opening 20A in which the periphery of the opening 20 shown in FIG. 1 (0) is not completely closed, but is partially open. Any substrate 22 can be satisfactorily applied to the manufacturing method according to the present invention.
第5図は、切込み50のピッチが端子部34のピッチの
173であシ、1本の端子部34に3個の振動子60の
個別電極18が共通に接続されている例を示す。その電
気的接続を第6図に示す。このように端子部34と振動
子60との対応は必ずしも1対1でなく、1対複数であ
ってもよい。FIG. 5 shows an example in which the pitch of the notches 50 is 173 times the pitch of the terminal portions 34, and the individual electrodes 18 of three vibrators 60 are commonly connected to one terminal portion 34. The electrical connection is shown in FIG. In this way, the correspondence between the terminal portions 34 and the vibrators 60 is not necessarily one-to-one, but may be one-to-multiple.
第7図は基板22の一方の端部36をバッキング材40
の側面に沿って折シ曲げず、その主面すなわち圧電材の
搭載されている面に伸ばしたまま接合した例を示す。こ
の場合、第1の導電材16を共通電極として機能させる
ためには第1の導電パターン24を個々の振動子60ご
とに分離してはならないので、個々の振動子60に分離
する切断工程における切断ストロークは第7図の矢印B
で示すように第1の導電パターン24の端部36に達し
ないように制御する必要がある。なお第1図の実施例で
は第3図について前述したように切断ストロークの制御
の必要はなく、切断の深さの制御(矢印A)のみでよい
。FIG. 7 shows one end 36 of the substrate 22 attached to a backing material 40.
An example is shown in which the piezoelectric material is not bent along the side surface of the piezoelectric material, but is stretched and bonded to its main surface, that is, the surface on which the piezoelectric material is mounted. In this case, in order for the first conductive material 16 to function as a common electrode, the first conductive pattern 24 must not be separated into individual vibrators 60; The cutting stroke is indicated by arrow B in Figure 7.
As shown in , it is necessary to control the conductive pattern so that it does not reach the end 36 of the first conductive pattern 24 . In the embodiment shown in FIG. 1, there is no need to control the cutting stroke as described above with reference to FIG. 3, and only the depth of cutting (arrow A) is required.
前述のいずれの実施例においても超音波探触#’−a
2として完成後は、第1の導電材16が各振動子60の
共通電極となっている。しかし本発明による製造方法は
必らずしもこの形態に限定されない。第1の導電材16
を個別電極とし、第2の導電材18を共通電極とするよ
うに、第1図(ト))に示す圧電材10をその圧電材の
平板形状を含む平面内で180°回転させた向きにして
同図(Qあ可撓性基板22の上に載置して接合してもよ
い。なお第1の導電材16を共通電極とした超音波探触
子の方が共通電極をアースに接地することによシ誘導電
流による雑音に対する耐性が優れている長所がある。In any of the above embodiments, the ultrasonic probe #'-a
2, the first conductive material 16 serves as a common electrode for each vibrator 60. However, the manufacturing method according to the present invention is not necessarily limited to this form. First conductive material 16
The piezoelectric material 10 shown in FIG. In the same figure (Qa), it may be placed on the flexible substrate 22 and bonded.It should be noted that an ultrasonic probe with the first conductive material 16 as a common electrode is better when the common electrode is grounded. This has the advantage of excellent resistance to noise caused by induced current.
■0発明の具体的作用効果
本発明の超音波探触子および超音波探触子の製造方法に
よれば、可撓性基板上の回路パターンへの超音波振動子
の2つの電極の接続は、単一の工程で同時に行なうこと
ができる。またこの電極接続工程と、各超音波振動子に
分割する工程もほとんど同時に行なうことができる。し
たがって個々の超音波振動子に分割する前に両電極を正
確に回路ノリ−ンに接続できる。また、分割工程におい
て各超音波振動子について高精度の機械的寸法で均等に
各振動子を形成することができる。各電極への回路接続
は可撓性基板へ形成された印刷回路によって行なわれる
ので、回路接続についても多数の振動子に対して高い精
度の1シ械的寸法を得ることができる。しかもこのよう
な外部回路へのアクセス部における印(21)
刷配腺回路板の使用は、外部回路との機械的インタフェ
ースにおいても良好な適合性を生ずる。■0 Specific effects of the invention According to the ultrasonic probe and the method for manufacturing an ultrasonic probe of the present invention, the connection of the two electrodes of the ultrasonic transducer to the circuit pattern on the flexible substrate is , can be performed simultaneously in a single step. Further, this electrode connection step and the step of dividing into each ultrasonic transducer can be performed almost simultaneously. Therefore, both electrodes can be accurately connected to the circuit line before being divided into individual ultrasonic transducers. Further, in the dividing step, each ultrasonic transducer can be formed uniformly with highly accurate mechanical dimensions. Since the circuit connections to each electrode are made by printed circuits formed on the flexible substrate, highly accurate mechanical dimensions can be obtained for the circuit connections for a large number of vibrators. Moreover, the use of such a printed circuit board (21) at the access to the external circuit also results in good compatibility at the mechanical interface with the external circuit.
したがって、製造工程が短縮され価格が低減するのみな
らず、高い精度の多数の超音波振動子を高密度に集積し
た信頼性の高い超音波探触子を提供することができる。Therefore, not only the manufacturing process is shortened and the price is reduced, but also a highly reliable ultrasonic probe in which a large number of highly accurate ultrasonic transducers are densely integrated can be provided.
このようにして提供された超音波探触子は、個々の振動
子の機械的−電気的特性が均一であシ、また振動子相互
間では機械的に独立しているので相互間での振動時の干
渉が少なく、かつ−次元アレイが均当なピッチで精度高
く配列され・ているので、電子走査の場合、振動子また
は配列の不均一あるいは振動子相互の干渉による電気回
路設計理論上の合成ビーム方向と実際のビーム方向とに
誤差が出るなどの不都合が生じない効果を有する。In the ultrasonic probe provided in this way, the mechanical and electrical characteristics of the individual transducers are uniform, and the transducers are mechanically independent, so vibrations between each transducer are uniform. In the case of electronic scanning, there is little interference in time, and the -dimensional array is arranged with high precision at a uniform pitch, so in the case of electronic scanning, there is no problem in electric circuit design due to non-uniformity of transducers or arrangement or mutual interference between transducers. This has the effect that inconveniences such as errors between the combined beam direction and the actual beam direction do not occur.
第1図(4)〜C)は本発明による超音波探触子の製造
工程を説明するための斜視図、
第2図は超音波探触子の回路接続の例を示す(22)
回路図、
第3図は第1図(ト)に示す超音波探触子の端面図、
第4図(4)および(B)は第1図に示す可撓性基板の
他の例を示す平面図、
第5図は超音波探触子の他の実施例を示す部分側面図、
第6図は第5図に示す実施例の回路接続を示す回路図、
第7図は超音波探触子の他の実施例を示す端面図である
。
10・・・平板圧電材
16・・・第1の平板導電材
18・・・第2の平板導電材
20・・・開口
22・・・可撓性基板
24・・・第1の回路パターン
26・・・第2の回路パターン
40・・・バッキング材
50・・・切込み
60・・・超音波振動子
62・・・超音波探触子。
第1図
オ1図
第2図 第3図
第4図
第5図
才6Fで
オフ r=、HFig. 1 (4) to C) are perspective views for explaining the manufacturing process of the ultrasonic probe according to the present invention, and Fig. 2 is a circuit diagram showing an example of circuit connection of the ultrasonic probe (22). , FIG. 3 is an end view of the ultrasonic probe shown in FIG. 1 (G), and FIGS. 4 (4) and (B) are plan views showing other examples of the flexible substrate shown in FIG. 1. , Fig. 5 is a partial side view showing another embodiment of the ultrasonic probe, Fig. 6 is a circuit diagram showing the circuit connection of the embodiment shown in Fig. 5, and Fig. 7 is a partial side view showing another embodiment of the ultrasonic probe. FIG. 7 is an end view showing another embodiment. 10... Flat piezoelectric material 16... First flat conductive material 18... Second flat conductive material 20... Opening 22... Flexible substrate 24... First circuit pattern 26 ...Second circuit pattern 40...Backing material 50...Notch 60...Ultrasonic transducer 62...Ultrasonic probe. Figure 1 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Turn off at 6F r=, H
Claims (1)
覆う形で第1の平板導電材を被着させ、他方の主面には
第1の平板導電材とは独立した第2の平板導電材を被着
させ、第1の平板導電材の一部は他方の主面まで伸びて
該他方の主面の一部を長手方向に覆う形をとシ、前記矩
形の平板圧電材の幅よシ小さい幅の矩形の開口を有する
可撓性の平板絶縁材の表面において、該開口の一方の長
辺に沿って伸びる第1の導電ノ?ターンを形成し、該開
口の他方の長辺に沿って伸び第1の導電パターンとは独
立した第2の導電パターンを形成し、第2の導電パター
ンは前記開口から離れる方向に伸びる複数の導体部を有
し、 前記平板絶縁材の表面の上に前記平板圧電材をその長辺
が前記開口の長辺と実質的に平行に(1) なるように載置して、該平板圧電材の他方の主面の一部
を覆っている第1および第2の平板導電材のうちの一方
の一部を該平板絶縁材の第1の導電・千ターンに、他方
の平板圧電材の一部を第2の導電パターンにそれぞれ接
続し、前記平板圧電材と異なる音響インピーダンスを有
し、該平板圧電材の矩形の外形に近い形状を有するバッ
キング材の主面の上に、前記平板圧電材の長辺力(該バ
ッキング材の長辺と実質的に平行になるよりに前記平板
pm材を該平板舶縁材の裏面を下にして装着し、 該平板絶縁材を前記バッキング材の矩形の長辺に沿って
該バッキング材の側面の方へ折シ曲げ、 前記平板圧電材、平板絶縁材および前記バッキング材に
切込みを入れ、該切込みは該平板圧電材の矩形の幅方向
に伸びて前記複数の導体部の間に位置し、少なくとも該
バッキング材の主面に達しておシ、 これによって前記一方の平板導電材を共通室rす) 極とし、他方の平板導電材を個別電極とする複数の超音
波振動子を含むことを特徴とする超音波探触子。 2、第1の平板導電材を共通電極とし、第2の平板導電
材を個別電極とすることを特徴とする特許請求の範囲第
1項記載の超音波探触子。 3、前記切込みは前記複数の導体部のそれぞれの間に位
置することを特徴とする特許請求の範囲無七蟇套た嬢第
2項記載の超音波探触子。 4、前記平板絶縁材の開口は周囲が閉じた矩形をなすこ
とを特徴とする特許請求の範囲Mz項または第3項記載
の超音波探触子。 5、第2の導電・母ターンは、複数の導体部がそれぞれ
独立して前記平板絶縁材の表面に形成6、矩形の平板圧
電材の一方の主面に該主面を実質的に覆う形で第1の平
板導電材を被着させ、他方の主面には第1の平板導電材
とは独立した第2の平板導電材を被着させ、第1の平板
導電材の一部は他方の主面まで伸びて該他方の主面の一
部を長手方向に覆う形をとシ、前記矩形の平板圧電材の
幅よシ小さい幅の矩形の開口を有する可撓性の平板絶縁
材の表面において、該開口の一方の長辺に沿って伸びる
第1の導電パターンを形成し、該開口の他方の長辺に沿
って伸び第1の導電パターンとは独立した第2の導電パ
ターンを形成し、第2の導電i+ターンは前記開口から
離れる方向に伸びる複数の導体部を有し、 前記平板絶縁材の表面の上に前記平板圧電材をその長辺
が前記開口の長辺と実質的に平行になるように載置して
、該平板圧電材の他方の主面の一部を覆っている第1お
よび第2の平板導電材のうちの一方の一部を該平板絶縁
材の第1の導電パターンに、他方の平板圧電材の一部を
第2の導電パターンにそれぞれ接続し、前記平板圧電材
と異なる音響インピーダンスを有し、該平板圧電材の矩
形の外形に近い形状を有するバッキング材の主面の上に
、前記平板圧電材の長辺が該バッキング材の長辺と実質
的に平行になるように前記平板絶縁材を該平板絶縁材の
裏面を下にして装着し、 該平板絶縁材を前記バッキング材の矩形の長辺に沿って
該バッキング材の側面の方へ折)曲げ、 前記平板圧電材、平板絶縁材および前記バッキング材に
切込みを入れ、該切込みは該平板圧電材の矩形の幅方向
に伸びて前記複数の導体部の間に位置し、少なくとも該
バッキング材の主面に達しておシ、 これによって前記一方の平板導電材を共通電極とし、他
方の平板導電材を個別電極とする複数の超音波振動子が
形成されることを特徴とする超音波探触子の製造方法。[Claims] 1. A first flat conductive material is adhered to one main surface of a rectangular flat piezoelectric material in a manner that substantially covers the main surface, and a first flat conductive material is attached to the other main surface of the rectangular flat piezoelectric material. A second flat conductive material independent of the conductive material is applied, and a portion of the first flat conductive material extends to the other main surface and covers a portion of the other main surface in the longitudinal direction. C. On the surface of the flexible flat insulating material having a rectangular opening having a width smaller than the width of the rectangular flat piezoelectric material, a first conductive hole extending along one long side of the opening? a second conductive pattern extending along the other long side of the opening and independent of the first conductive pattern, the second conductive pattern being a plurality of conductors extending in a direction away from the opening; the flat piezoelectric material is placed on the surface of the flat insulating material so that its long side is substantially parallel to the long side of the opening; A part of one of the first and second flat conductive materials covering a part of the other main surface is connected to the first conductive 1,000 turns of the flat insulating material, and a part of the other flat piezoelectric material are respectively connected to the second conductive patterns, and have an acoustic impedance different from that of the flat piezoelectric material, and a backing material having a shape close to the rectangular outer shape of the flat piezoelectric material. Long side force (the flat PM material is installed with the back side of the flat marine edge material facing down so that it is substantially parallel to the long side of the backing material, and the flat plate insulating material is attached to the rectangular length of the backing material. bending the backing material toward the side surface along the sides, making cuts in the flat piezoelectric material, the flat insulating material, and the backing material, and the cuts extending in the width direction of the rectangular shape of the flat piezoelectric material to (2) located between the conductor portions of the backing material and reaching at least the main surface of the backing material, thereby making one of the flat conductive materials a common chamber (r) and the other flat conductive material serving as individual electrodes. An ultrasonic probe comprising an ultrasonic transducer. 2. The ultrasonic probe according to claim 1, wherein the first flat conductive material is a common electrode, and the second flat conductive material is an individual electrode. 3. The ultrasonic probe according to claim 2, wherein the cut is located between each of the plurality of conductor parts. 4. The ultrasonic probe according to claim Mz or claim 3, wherein the opening of the flat insulating material has a rectangular shape with a closed periphery. 5. The second conductive/mother turn has a plurality of conductor parts independently formed on the surface of the flat insulating material 6. A second conductive/mother turn is formed on one main surface of the rectangular flat piezoelectric material so as to substantially cover the main surface. A first flat conductive material is deposited on the other main surface, a second flat conductive material independent of the first flat conductive material is deposited on the other main surface, and a part of the first flat conductive material is attached to the other main surface. a flexible flat plate insulating material having a shape extending to the main surface of the other main surface and covering a part of the other main surface in the longitudinal direction, and having a rectangular opening having a width smaller than the width of the rectangular flat piezoelectric material; A first conductive pattern extending along one long side of the opening is formed on the surface, and a second conductive pattern independent of the first conductive pattern is formed along the other long side of the opening. The second conductive i+ turn has a plurality of conductor parts extending in a direction away from the opening, and the flat piezoelectric material is placed on the surface of the flat insulating material so that its long side is substantially the same as the long side of the opening. A part of one of the first and second flat conductive materials covering a part of the other main surface of the flat piezoelectric material is placed parallel to the flat piezoelectric material. A part of the other flat piezoelectric material is connected to the first conductive pattern, and a part of the other flat piezoelectric material is connected to a second conductive pattern, and has an acoustic impedance different from that of the flat piezoelectric material, and has a shape close to the rectangular outline of the flat piezoelectric material. Mounting the flat insulating material on the main surface of the backing material so that the long side of the flat piezoelectric material is substantially parallel to the long side of the backing material, with the back surface of the flat insulating material facing down; The flat insulating material is bent along the long sides of the rectangle of the backing material toward the side surface of the backing material, and cuts are made in the flat piezoelectric material, the flat insulating material, and the backing material, and the cuts are formed in the flat piezoelectric material, the flat insulating material, and the backing material. The piezoelectric material extends in the width direction of the rectangular shape and is located between the plurality of conductor parts, and reaches at least the main surface of the backing material. 1. A method of manufacturing an ultrasonic probe, comprising forming a plurality of ultrasonic transducers each using a conductive material as an individual electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57000536A JPS58118739A (en) | 1982-01-05 | 1982-01-05 | Ultasonic probe and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57000536A JPS58118739A (en) | 1982-01-05 | 1982-01-05 | Ultasonic probe and production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58118739A true JPS58118739A (en) | 1983-07-14 |
JPH0120615B2 JPH0120615B2 (en) | 1989-04-18 |
Family
ID=11476473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57000536A Granted JPS58118739A (en) | 1982-01-05 | 1982-01-05 | Ultasonic probe and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58118739A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61240945A (en) * | 1985-04-17 | 1986-10-27 | 松下電器産業株式会社 | Production of ultrasonic probe |
JPS62149307U (en) * | 1986-03-14 | 1987-09-21 | ||
JPS63310299A (en) * | 1987-06-12 | 1988-12-19 | Fujitsu Ltd | Production of ultrasonic probe |
JPS6427400A (en) * | 1987-03-20 | 1989-01-30 | Nihon Dempa Kogyo Co | Ultrasonic probe and its manufacture |
EP0342874A2 (en) * | 1988-05-19 | 1989-11-23 | Fujitsu Limited | Ultrasound probe for medical imaging system |
EP0853919A3 (en) * | 1997-01-08 | 2001-05-09 | Endosonics Corporation | A high resolution intravascular ultrasound transducer assembly having a flexible substrate and method for manufacture thereof |
JP2021529651A (en) * | 2018-07-17 | 2021-11-04 | 1929803 オンタリオ コーポレイション ディー/ビー/エー フローソニックス メディカル | Ultrasonic patch for detecting fluid flow |
US11937976B2 (en) | 2020-07-06 | 2024-03-26 | 1929803 Ontario Corp | Ultrasound patch with integrated flexible transducer assembly |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5512254A (en) * | 1978-07-14 | 1980-01-28 | Hitachi Ltd | Fuel feeder |
JPS55103840A (en) * | 1979-02-06 | 1980-08-08 | Matsushita Electric Ind Co Ltd | Preparation of ultrasoniccwave probe |
-
1982
- 1982-01-05 JP JP57000536A patent/JPS58118739A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5512254A (en) * | 1978-07-14 | 1980-01-28 | Hitachi Ltd | Fuel feeder |
JPS55103840A (en) * | 1979-02-06 | 1980-08-08 | Matsushita Electric Ind Co Ltd | Preparation of ultrasoniccwave probe |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61240945A (en) * | 1985-04-17 | 1986-10-27 | 松下電器産業株式会社 | Production of ultrasonic probe |
JPS62149307U (en) * | 1986-03-14 | 1987-09-21 | ||
JPH0543770Y2 (en) * | 1986-03-14 | 1993-11-05 | ||
JPS6427400A (en) * | 1987-03-20 | 1989-01-30 | Nihon Dempa Kogyo Co | Ultrasonic probe and its manufacture |
JPS63310299A (en) * | 1987-06-12 | 1988-12-19 | Fujitsu Ltd | Production of ultrasonic probe |
EP0342874A2 (en) * | 1988-05-19 | 1989-11-23 | Fujitsu Limited | Ultrasound probe for medical imaging system |
US4992989A (en) * | 1988-05-19 | 1991-02-12 | Fujitsu Limited | Ultrasound probe for medical imaging system |
EP0342874A3 (en) * | 1988-05-19 | 1991-08-07 | Fujitsu Limited | Ultrasound probe for medical imaging system |
EP0853919A3 (en) * | 1997-01-08 | 2001-05-09 | Endosonics Corporation | A high resolution intravascular ultrasound transducer assembly having a flexible substrate and method for manufacture thereof |
JP2021529651A (en) * | 2018-07-17 | 2021-11-04 | 1929803 オンタリオ コーポレイション ディー/ビー/エー フローソニックス メディカル | Ultrasonic patch for detecting fluid flow |
US11744539B2 (en) | 2018-07-17 | 2023-09-05 | 1929803 Ontario Corporation | Ultrasound patch for detecting fluid flow |
US11937976B2 (en) | 2020-07-06 | 2024-03-26 | 1929803 Ontario Corp | Ultrasound patch with integrated flexible transducer assembly |
Also Published As
Publication number | Publication date |
---|---|
JPH0120615B2 (en) | 1989-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6308389B1 (en) | Ultrasonic transducer and manufacturing method therefor | |
US4747192A (en) | Method of manufacturing an ultrasonic transducer | |
EP0294826B1 (en) | Ultrasonic transducer structure | |
EP0210723B1 (en) | Ultrasonic probe | |
KR100299277B1 (en) | Ultrasonic Converter Array and Manufacturing Method | |
EP0176030B1 (en) | Ultrasonic transducer and method of manufacturing same | |
JP4323487B2 (en) | Ultrasonic vibrator and manufacturing method thereof | |
JPS60112400A (en) | Method of producing metched phase array supersonic wave converter | |
JP3288815B2 (en) | 2D array ultrasonic probe | |
JPS5920240B2 (en) | Ultrasonic probe and method for manufacturing the ultrasonic probe | |
JPS58118739A (en) | Ultasonic probe and production thereof | |
JP3673035B2 (en) | Ultrasonic transducer | |
JP2517331B2 (en) | Ultrasonic probe | |
JP2615517B2 (en) | Ultrasonic probe manufacturing method | |
JP3325368B2 (en) | Ultrasonic probe and manufacturing method thereof | |
JP3776519B2 (en) | Ultrasonic transducer and method of manufacturing the same | |
JP3934202B2 (en) | Ultrasonic probe | |
JPH04119800A (en) | Ultrasonic wave probe | |
JPS6268400A (en) | Manufacture of ultrasonic probe | |
JPS5830361Y2 (en) | Ultrasonic transducer array | |
JPH10308997A (en) | Ultrasonic wave oscillator | |
JPS63276400A (en) | Ultrasonic probe and its manufacture | |
JP3431274B2 (en) | Ultrasonic transducer and manufacturing method thereof | |
JPH0419858B2 (en) | ||
JPS59119999A (en) | Ultrasonic wave transducer |