JPS58115046A - Manufacture of endurable portland cement - Google Patents
Manufacture of endurable portland cementInfo
- Publication number
- JPS58115046A JPS58115046A JP21061581A JP21061581A JPS58115046A JP S58115046 A JPS58115046 A JP S58115046A JP 21061581 A JP21061581 A JP 21061581A JP 21061581 A JP21061581 A JP 21061581A JP S58115046 A JPS58115046 A JP S58115046A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- weight
- durability
- composition
- portland cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011398 Portland cement Substances 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000004568 cement Substances 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 33
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 17
- 239000011707 mineral Substances 0.000 claims description 17
- 102000006463 Talin Human genes 0.000 claims description 2
- 108010083809 Talin Proteins 0.000 claims description 2
- 239000002245 particle Substances 0.000 description 22
- 235000010755 mineral Nutrition 0.000 description 16
- 239000000126 substance Substances 0.000 description 8
- 238000001035 drying Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000010276 construction Methods 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- CJONZFZTOGYADY-UHFFFAOYSA-N O.OS(O)(=O)=O.OS(O)(=O)=O.OS(O)(=O)=O Chemical compound O.OS(O)(=O)=O.OS(O)(=O)=O.OS(O)(=O)=O CJONZFZTOGYADY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- -1 organic acid salts Chemical class 0.000 description 1
- FWFGVMYFCODZRD-UHFFFAOYSA-N oxidanium;hydrogen sulfate Chemical compound O.OS(O)(=O)=O FWFGVMYFCODZRD-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明社耐久性の改良されたポルトランドセメントの製
造方法に関する。すなわち、特定範囲の鉱物組成を有す
るボルトランドセメントクリンカにセラコラを添加して
粉砕し、セメントの粒子組成を特定範囲に入るよう分級
することにより、耐久性の改良されたポルトランドセメ
ントを製造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing Portland cement with improved durability. That is, the present invention relates to a method for producing Portland cement with improved durability by adding Ceracola to Bortland cement clinker having a mineral composition in a specific range, pulverizing it, and classifying the cement so that the particle composition falls within a specific range. It is something.
以下の説明において、3CaO−8iO1はC,Sと、
2Ca()SingはC,Sと、3CaO’Al1m0
aはC,Aと、4C& 0 ’AM20s ’ FJ(
%はC4AFと略記する。In the following explanation, 3CaO-8iO1 is C, S,
2Ca()Sing is C, S, and 3CaO'Al1m0
a is C, A, 4C & 0 'AM20s' FJ (
% is abbreviated as C4AF.
モルタル゛やコンクリートの耐久性を損う主な作用とし
ては斡燥収縮、凍“結融解等の機械的劣化の他に雨水、
海水、薬品などの侵角による化学的劣化とがある。どれ
らの作用に対する抵抗性を高めるには、使用材料、′配
合、部拐の寸法、施工方法、養生条件等を適切に選択す
る必要がある。なかでも使用材料の適否は極めて1喪で
ある。このためポルトランドセメントの耐久性について
も従来より禎々研究が行われて来ているが、未だ満足で
きる品質の′ものは現出していない。しかしポルトラン
ドセメントの耐久性を増す方法としては次のような点が
指摘されている
(1) セメントのプレーン比表面積を小さく゛(粗
く)する。The main effects that impair the durability of mortar and concrete include mechanical deterioration such as drying shrinkage and freezing and thawing, as well as rainwater and
Chemical deterioration occurs due to erosion of seawater, chemicals, etc. In order to increase the resistance to any of these effects, it is necessary to appropriately select the materials used, the composition, the dimensions of the cracks, the construction method, the curing conditions, etc. Above all, the suitability of the materials used is extremely important. For this reason, extensive research has been conducted on the durability of Portland cement, but nothing of satisfactory quality has yet emerged. However, the following points have been pointed out as ways to increase the durability of Portland cement: (1) Reduce the plain specific surface area of cement.
(2) クリンカ中の鉱物組成としてC,St−多く
しく相対的にCs8は少々くなる)、CsA’t少なく
する。(2) As for the mineral composition in the clinker, C, St-rich and Cs8 relatively small) and CsA't are reduced.
(3) クリンカ中の化学成分として、アルカリ分(
K、O+Na、O)および遊離石灰分(f 、 Cab
’。(3) As a chemical component in clinker, alkaline content (
K, O + Na, O) and free lime content (f, Cab
'.
を少々くする。Make it a little less.
しかしながら上記指摘点を城抄入れたポルトランドセメ
ントを製造しても、耐久性ポルトランドセメントとして
使用するには問題があり、汎用性のある耐久性4ルトラ
ンドセメントは得られない。すなわちC2S含有量が多
く、lレーン比表面積が小さく粉末度の粗いポルトラン
ドセメントは、短期材令における強度が小さく、長期湿
潤養生下において強度が増進するので、このようなセメ
ントを用いてモルタルまたはコンクリートを施工した場
合、相当長い日数に亘って十分な養生対策を必要とし、
そのため養生コストが高騰したり、するいは養生不足の
ために長期においても低強度のまま推移して硬化体に所
望の耐久性が確保でき々い危険性をはらむ等の欠点があ
る。それ故、このalIルトランドセメントは殆ど耐久
性セメントとして実用に供水発明はセメントの耐久性を
高めるうえで、) セメント粒子を粗くする従来技−
術の考えとは別に従前見過されてきた特定範囲内にセメ
ント粒子の粒径を揃えることにょシこれを達成し、更に
タリンヵ鉱物組成−兼ね合いから耐久性の高いポルトラ
ンドセメントを爽現させたものであって、その構成は、
クリンカ中の鉱物組成がC,840〜80重量優s C
aA 4重量−以下なるボルトランドセメントタリンヵ
にセラコラを添加して粉砕し1その際セメントの粒子組
成として30μ残分1o重量%以下でかつプレーン比表
面積が3000〜4000”/、になるように特殊分級
機で分級してセメントt−調製することを特徴とする。However, even if Portland cement is produced that takes into account the above-mentioned points, there are problems in using it as a durable Portland cement, and a versatile Durable 4 Rutland cement cannot be obtained. In other words, Portland cement, which has a high C2S content, a small specific surface area, and a coarse powder, has low strength during short-term aging and increases in strength under long-term moist curing. If construction is carried out, sufficient curing measures will be required for a considerable number of days,
Therefore, there are drawbacks such as an increase in curing costs, or a risk that the cured product may not be able to secure the desired durability because its strength remains low even for a long time due to insufficient curing. Therefore, this alI Rutland cement is practically used as a durable cement.In order to increase the durability of cement, the invention was carried out using conventional techniques to coarsen cement particles.
Apart from the idea of technique, we achieved this by aligning the particle size of cement particles within a specific range that had been overlooked in the past, and further developed a highly durable Portland cement due to the mineral composition of Tarinka. And its composition is
Mineral composition in clinker is C, 840-80% by weight C
aA Ceracola is added to Bortland Cement Tarinka, which is less than 4% by weight, and pulverized.1 At that time, the particle composition of the cement is such that the particle composition of the cement is 30μ residue and 10% by weight or less, and the plain specific surface area is 3000 to 4000''/. It is characterized by classifying it with a special classifier and preparing cement T-.
以下に本発明を実施例と共に詳細にiI2明する。The present invention will be explained in detail below along with examples.
ボルトランドセメントクリンカは一般にC烏S。Boltland cement clinker is generally C Karasu S.
C*S+CaAおよびC4AFを主要構成鉱物とし、こ
れら組成鉱物の種類及び割合に応じて水と接した際の水
利反応速度や水和反応によって生成する水和物の種類、
大きさ、形状、さらKは水和セメント硬化体の粗密構造
が異なるので、これら組成鉱物の種類及び割合を適宜a
il!lて、普通セメント、早強セメント、中毒熱セメ
ント等の愉性の異なるポルトランドセメントが製造され
ている。本発明の適切な粒子組成をもつセメントに粉砕
された場合においては、クリンカ中のC茸S含有量は多
い#1ど(相対的にCsSは少なくなる)セメントの水
和発熱および乾燥収縮が小さくなり、凍結融解抵抗性お
よび化学薬品抵抗性が向上するが%40重量優よシ少な
いと上記抵抗性が低下し、80重重量上り多くなると通
常の施工と養生では十分な強健と耐久性が得られなくな
るので40〜80重量−の範囲が適当である。クリンカ
中のCIA含有量は多くなるとセメントの初期強度の向
上にある程度プラスに作用するが、水和発熱や乾燥収縮
が大きくなり化学薬品抵抗性も低下するので、4重量−
以下が適当である。 。C*S+CaA and C4AF are the main constituent minerals, and depending on the type and proportion of these constituent minerals, the water utilization reaction rate when in contact with water and the type of hydrate produced by the hydration reaction,
Since the size, shape, and coarse structure of the hardened hydrated cement differ, the types and proportions of these compositional minerals should be adjusted accordingly.
Il! Portland cements with different benefits are manufactured, such as ordinary cement, early strength cement, and toxic heat cement. When pulverized into cement with an appropriate particle composition according to the present invention, the clinker has a high CsS content (relatively less CsS), and the hydration heat generation and drying shrinkage of the cement are small. However, if the weight is less than 40%, the above resistance will decrease, and if the weight is more than 80%, normal construction and curing will not provide sufficient strength and durability. Therefore, a range of 40 to 80% by weight is appropriate. When the CIA content in clinker increases, it has a positive effect to some extent on improving the initial strength of cement, but it also increases hydration heat generation and drying shrinkage and reduces chemical resistance.
The following are appropriate. .
また、クリンカ中の04AF含有量は多いはど乾燥収縮
が小さくなり化−学業品抵抗性も増すが、強度発現にあ
まり寄与しないの、で、5〜15重量優にあることが望
ましい。クリンカ中のアルカリ分(%0+Na、0)お
よび遊離石灰分(f、caO)も少ない方が耐久性を増
すので、夫々1重量%以下であ2ことが好ましい。Further, the higher the 04AF content in the clinker, the smaller the drying shrinkage and the higher the resistance to chemical products, but it does not contribute much to the development of strength, so it is desirable to have a content of 5 to 15% by weight. Since durability increases when the alkali content (%0+Na, 0) and free lime content (f, caO) in the clinker are also small, it is preferable that each of them is 1% by weight or less.
以上のことから本発明においてはクリンカ鉱物の組成を
C,840〜80重量鳴、CsA4重量優以下に調整す
る。セメント粉末の粒度を本発明の範囲Kl#整しても
クリンカ鉱物の組成が上記範囲外となるものは充分な耐
久性を得られない。例えば後述の実施例に示すようK
Cm 8重量参が25.0 、15.7 、85.0の
4の(試料Na7゜8.16)、及びC,A重量嗟が9
.3のもの(試料N19)はいずれもMg804水滴液
t MgC”*水溶液に対する圧縮強さが本発明の半分
以下に止まる。Based on the above, in the present invention, the composition of the clinker mineral is adjusted to C, 840 to 80% by weight, and CsA to less than 4% by weight. Even if the particle size of the cement powder is adjusted to the range Kl# of the present invention, sufficient durability cannot be obtained if the composition of the clinker mineral is outside the above range. For example, as shown in the example below, K
Cm 8 weight scales are 25.0, 15.7, 85.0 (sample Na 7° 8.16), and C and A weight scales are 9
.. In all cases, the compressive strength against the Mg804 aqueous solution tMgC''* aqueous solution was less than half that of the present invention.
次に、本発明で使用するセラコラ祉、セメントに通常便
用されているものであればよい。セツーウの添加量は常
用の範囲でよく、セメント中のSO8換算で1.5〜3
.0重量係が好ましい。Next, any ceramic that is commonly used in the cement used in the present invention may be used. The amount of Setuu to be added may be within the usual range, and is 1.5 to 3 in terms of SO8 in cement.
.. A weight ratio of 0 is preferred.
なおセラコラの代シに他の凝結調節痢(例えばホウ酸、
炭酸塩、リン酸塩、ケイ弗化物、有機酸塩等)を使用し
ても差し支え表い。In addition, other coagulant-controlled diarrhea (e.g. boric acid,
Carbonates, phosphates, silicofluorides, organic acid salts, etc.) may be used.
本発明の耐久性4ルトランドセメントは、上記鉱物組成
のタリン力を用いて、セメントの粒子組成として30μ
残分10重量嚢以下、かつブレーン比表面積3000〜
4000sf/、に%定したことを特徴とする。ブレー
ン比表面積が4000cdltを越えると微粉量が多く
なり過ぎて耐久性が低下し、30001F未満では通常
の施工・養生では十分な強度が発現せず本願の特性を発
揮しない。Durability 4 Rutland cement of the present invention uses the Talin force of the above mineral composition, and has a cement particle composition of 30 μm.
Residue: 10 weight bags or less, and Blaine specific surface area: 3000~
It is characterized by having a fixed rate of 4000sf/. If the Blaine specific surface area exceeds 4,000 cdlt, the amount of fine powder will be too large and durability will decrease, and if the Blaine specific surface area is less than 30,001 F, normal construction and curing will not develop sufficient strength and will not exhibit the characteristics of the present application.
一般に従来セメントの粉末度はブレーン比表面積が30
00 al/を前後のものが多く、篩残分は88μ拳基
準か・・9い−rる。とζろがセメントの耐久性に及は
す粉末度の影醤、はプレーン比表面1 :
積の他に粒子組成の相違も重要′な要素であることが見
出される。本発明は耐久性を向上させる丸めの最適な粒
子組成を、ブレーン比表面積のしたものであって、従来
看過されていた粒子領域に顕著力特性を見出したもので
ある。本発明は上記知見に基づき上記ブレーン比表面積
において30μ残分を10重量−以下とする。30μ残
分がlO重tcsを越えると通常の施工養生条件のもと
では十分な強度発現や耐久性が得られなくなる。Generally, the fineness of conventional cement has a Blaine specific surface area of 30.
Many of them are around 00 al/, and the sieve residue is based on 88 μm...9. In addition to the plane ratio surface 1: product, the difference in particle composition is also found to be an important factor in influencing the durability of cement. The present invention has determined the optimum particle composition for roundness that improves durability by determining the Blaine specific surface area, and has discovered significant force characteristics in particle regions that have been overlooked in the past. Based on the above findings, the present invention makes the 30μ residual in the Blaine specific surface area less than 10% by weight. If the 30μ residue exceeds 1O weight tcs, sufficient strength and durability cannot be obtained under normal construction and curing conditions.
本発明で示した粒子組成の表現手段であるブレーン比表
面積と30μ残分との関係は一般にブレーン比表面積が
大きい#1ど30μ残分が小さくなる傾向にある。ここ
で従来、粉砕システムとしてセメント工場で使用してい
る粉砕機(カールミル)と分級機Cc−コ型セ・9レー
タ。The relationship between the Blaine specific surface area, which is a means of expressing the particle composition shown in the present invention, and the 30μ residue generally tends to be smaller for #1, which has a larger Blaine specific surface area. Here, a crusher (Karl mill) and a classifier Cc-C type separator, which have been conventionally used in cement factories as a crushing system, are used.
スターチパント型上ノ9レータ、サイクロン型セAlレ
ータ等)の組合せではセメントの粒子組成は第1図囚に
示す領域にある。しかしながら上記囚領域の粒子組@を
有するものは充分な耐久性を発揮していない。例えば実
施例において上記囚領域に属するNll 1 、Mal
2の試料は水中及び薬液中養生の圧縮強度が本発明の
ものより小さく(第3表参照)、乾燥収縮率は逆に本発
明の、ものより大きく、耐久性に劣る(第4表入更に凍
結試験結果は同一鉱物組成でも粒子組成の違いによシ大
幅な相違がある(第5表参照)このように特定範囲の鉱
物組成と粒子組成を組合せることKよって耐久性の改良
された4ルトランドセメントが得られるのは、珪酸カル
シウム水和物、水酸化カルシウム、アルミン酸カルシウ
ム−硫酸塩水和物(モノサルフェート水和物)、アルミ
ン酸カルシウム三硫酸塩水和物(エトリンガイト)等の
各種水和物が耐久性を発揮するのに適切な形状、大きさ
、量比および迷電で生成し、その結果耐久性に適合した
水和硬化体の組繊が形我される丸めと考えらiる。In the case of a combination of starch punt type top plate, cyclone type separator, etc.), the particle composition of the cement is in the range shown in Figure 1. However, those having the particle group @ in the above-mentioned captive region do not exhibit sufficient durability. For example, in the embodiment, Nll 1 and Mal belonging to the above prison area
The compressive strength of sample No. 2 when cured in water and in a chemical solution is lower than that of the present invention (see Table 3), and the drying shrinkage rate is conversely greater than that of the present invention, indicating inferior durability (see Table 4). There are large differences in freezing test results even with the same mineral composition due to differences in particle composition (see Table 5).By combining a specific range of mineral composition and particle composition, durability has been improved4. Rutland cement is obtained from various types of water such as calcium silicate hydrate, calcium hydroxide, calcium aluminate-sulfate hydrate (monosulfate hydrate), and calcium aluminate trisulfate hydrate (ettringite). It can be thought of as rounding, in which the hydrated material is produced with the appropriate shape, size, quantity ratio, and stray electricity to exhibit durability, and as a result, the composite fibers of the hydrated hardened material are formed that are suitable for durability. Ru.
分級機として例えば、特開昭56−15876号に示す
過流式分級機を用いるとよい。As the classifier, for example, a superflow classifier disclosed in Japanese Patent Application Laid-Open No. 56-15876 may be used.
次に本発明の実施例を示す。Next, examples of the present invention will be shown.
実施例1
4+WtIロロ1−レV1−1□fi + AJφ門1
L ^ −−ドセメントタリンカの鉱物組成および化学
成分1/を第1表に示し、製造し九ポルトランドセメン
トの粒子組成、SO8および使用七ノ4レータ横別m1
表
(注)鉱物組成はBogu・の式によ、る、。Example 1 4+WtI Roro 1-ReV1-1□fi + AJφ gate 1
Table 1 shows the mineral composition and chemical composition of Docement Tarinka, and the particle composition of the manufactured nine Portland cement, SO8 and the seven four-layer ratio used.
Table (Note) Mineral composition is based on Bogu's formula.
第1−第2表に示す試料を用い、JIS R5201
(セメントの物理試験方法)に基づくモルタル供試体を
作製し、20℃の恒温室内で24時間湿空養生を行ない
、続いて6日間20℃の水中で養生した後、さらに同恒
温室内で水中、硫酸マグネシウム2.5重量優水溶液中
および塩化!グネシウム2.5重量慢水溶液中の夫々に
1年間浸漬した後、圧縮強さを測定し九結果第3表
本発明品の耐薬品性は極めて良好であり長期に亘って安
定しているが、比較品では硬jヒ体の崩壊や劣化が見ら
れる。Using the samples shown in Tables 1 and 2, JIS R5201
(Physical Test Method for Cement) A mortar specimen was prepared and cured in humid air for 24 hours in a thermostatic chamber at 20℃, then cured in water at 20℃ for 6 days, and further submerged in the same thermostatic chamber. Magnesium sulfate 2.5 weight in an aqueous solution and chloride! After being immersed in a 2.5 weight gnesium solution for one year, the compressive strength was measured and the results are shown in Table 3.The chemical resistance of the product of the present invention is extremely good and stable over a long period of time. In the comparison product, disintegration and deterioration of the hard body can be seen.
実施例2
第1〜11!2表の試料を用い、JIB R5201
(セメントの物理試験方法)に基づくモルタル供試体t
−a形し、セメント協会標準試験方法CAJ8 H−1
1−1971(モルタルの硬化乾燥による長さ変化fl
Jj定試験方法)に準じ相対湿[50%の条件下で乾燥
収縮を測定した結果は第4表
本発明品の乾燥収縮は比較品に対して極めて小きいこと
が認められる。Example 2 Using the samples in Tables 1 to 11!2, JIB R5201
Mortar specimen t based on (physical test method for cement)
-A type, Cement Association standard test method CAJ8 H-1
1-1971 (Length change due to hardening and drying of mortar fl
The drying shrinkage was measured under conditions of relative humidity (50%) in accordance with J.J. Specific Test Methods.
実施例3
第1−第2表の試料と川砂(粗粒率1.95 )を用い
、砂/セメン) = 2.0 、水/セメント=0.5
、空気量0.5〜1.5容積チの配合でIOX10X4
0mのモルタル供試体を成形し、20℃の恒温室内で2
4時間湿空養生を行ない、続いて2週間20℃の水中で
養生した後、A8TM666−75(急速凍結融解に対
するコンクリートの抵抗試験方法)に準じ50サイクル
時の耐久性指数り、F、を求めた。ここでいう耐久性指
数り、F、は凍結融解のサイクル数が50のときの動弾
性係数と凍結融解試験開始前の動弾性係数との比−であ
る。Example 3 Using the samples in Tables 1 and 2 and river sand (coarse particle ratio 1.95), sand/cement = 2.0, water/cement = 0.5
, IOX10X4 with an air content of 0.5 to 1.5 volume
A 0 m mortar specimen was formed and heated in a constant temperature room at 20℃ for 2 hours.
After curing in humid air for 4 hours and then curing in water at 20°C for 2 weeks, the durability index (F) at 50 cycles was determined according to A8TM666-75 (method for testing the resistance of concrete to rapid freezing and thawing). Ta. The durability index F here is the ratio between the dynamic elastic modulus when the number of freeze-thaw cycles is 50 and the dynamic elastic modulus before the start of the freeze-thaw test.
試験結果は第5表に示す如くであった。The test results were as shown in Table 5.
第5表
以上の実施例で示すように、本発明の方法によって製造
された、特定範囲のクリンカ鉱物組成およびセメント粒
子組5X、t−有するポルトランドセメントは、密実な
硬化体を形成し、従来の分級方式で得られるセメント粒
子Mi成とクリンカ鉱物組成を有するセメントに比べ耐
久性が著しく優れており、かつ通常の施工・養生で十分
な強Ifを発揮する汎用型耐久性ポルトランドセメント
である。As shown in the Examples in Table 5 and above, the Portland cement produced by the method of the present invention and having a specific range of clinker mineral composition and cement particle set of 5X, t forms a dense hardened body, and It is a general-purpose durable Portland cement that has significantly superior durability compared to cement with a cement particle Mi composition and a clinker mineral composition obtained by the classification method of 1.
篤1図はブレーン比表面積を30μ残分との関係を示す
グラフであり、第2図はcaAとC,Sとの組成範囲を
示すグラフである。
図中
には従来の粒子組成、
Bは本発明の粒子組成を示す。
特許出願人
小野田セメント株式会社
代理人
弁理士 光石士部C他1名)
第1図
V’L−>比表面積(Cm2/9)Figure 1 is a graph showing the relationship between the Blaine specific surface area and the 30μ residue, and Figure 2 is a graph showing the composition range of caA, C, and S. In the figure, B shows the conventional particle composition, and B shows the particle composition of the present invention. Patent applicant Onoda Cement Co., Ltd. Representative Patent Attorney Mitsuishi Shibe C and 1 other person) Figure 1 V'L->Specific surface area (Cm2/9)
Claims (1)
0重量−13CaO−A31014重量%以下なるポル
′トランドセメントタリン力にセラコラを添加して砕砕
し、粉末度が、30μ残分1o重量優以下で、かつプレ
ーン比表面積aooo〜4000aVtKなるように分
級してセメントを調製することを特徴とする耐久性の改
良されたポルトランドセメントの製造方法。Mineral composition in clinker is 2CaO-8iO140~8
0 weight - 13 CaO - A 31014 weight % or less Portland cement talin is crushed by adding Ceracola, and classified so that the fineness is less than 30μ residue 10 weight or less and the plain specific surface area is aooo ~ 4000aVtK. A method for producing Portland cement with improved durability, characterized by preparing cement by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21061581A JPS58115046A (en) | 1981-12-26 | 1981-12-26 | Manufacture of endurable portland cement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21061581A JPS58115046A (en) | 1981-12-26 | 1981-12-26 | Manufacture of endurable portland cement |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58115046A true JPS58115046A (en) | 1983-07-08 |
Family
ID=16592254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21061581A Pending JPS58115046A (en) | 1981-12-26 | 1981-12-26 | Manufacture of endurable portland cement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58115046A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10194798A (en) * | 1996-12-27 | 1998-07-28 | Daiichi Cement Kk | Carbonated cement, hardened cement and its production |
-
1981
- 1981-12-26 JP JP21061581A patent/JPS58115046A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10194798A (en) * | 1996-12-27 | 1998-07-28 | Daiichi Cement Kk | Carbonated cement, hardened cement and its production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Panesar et al. | Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials–A review | |
Nguyen et al. | Engineering properties of limestone calcined clay concrete | |
Dembovska et al. | Effect of pozzolanic additives on the strength development of high performance concrete | |
Marthong et al. | Effect of fly ash additive on concrete properties | |
Wang et al. | Mechanical properties and microstructure of Portland cement concrete prepared with coral reef sand | |
Pourkhorshidi et al. | Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans | |
Marthong | Sawdust ash (SDA) as partial replacement of cement | |
Marthong | Effect of rice husk ash (RHA) as partial replacement of cement on concrete properties | |
Crouch et al. | High volume fly ash concrete | |
de Rojas et al. | Use of recycled copper slag for blended cements | |
Rukzon et al. | Use of ternary blend of Portland cement and two pozzolans to improve durability of high-strength concrete | |
Sideris et al. | Fly ash | |
Vafaei et al. | Strength development and acid resistance of geopolymer based on waste clay brick powder and phosphorous slag | |
Kirgiz | Effects of Blended‐Cement Paste Chemical Composition Changes on Some Strength Gains of Blended‐Mortars | |
Ogork et al. | Influence of sawdust ash (SDA) as admixture in cement paste and concrete | |
Rukzon et al. | Strength, chloride penetration and corrosion resistance of ternary blends of portland cement self-compacting concrete containing bagasse ash and rice husk-bark ash | |
Ozyildirim et al. | Resistance to chloride ion penetration of concretes containing fly ash, silica fume, or slag. | |
Hu et al. | Strength characteristics and the reaction mechanism of stone powder cement tailings backfill | |
Ikponmwosa et al. | Comparative study and empirical modelling of pulverized coconut shell, periwinkle shell and palm kernel shell as a pozzolans in concrete | |
Elsayd et al. | Experimental Study of fire effects on compressive strength of normal-strength concrete supported with nanomaterials additives | |
Al-Swaidani et al. | Improvement of the Early‐Age Compressive Strength, Water Permeability, and Sulfuric Acid Resistance of Scoria‐Based Mortars/Concrete Using Limestone Filler | |
Kumar et al. | Study of effect of nano-silica on strength and durability characteristics of high volume fly ash concrete for pavement construction | |
Dinesh et al. | Influence of reactive SiO 2 and Al 2 O 3 on mechanical and durability properties of geopolymers | |
JPS58115046A (en) | Manufacture of endurable portland cement | |
Subedi et al. | Evaluation of Alternative Sources of SCMs for Concrete Materials |