JPS58102569A - Manufacture of amorphous silicon solar battery - Google Patents
Manufacture of amorphous silicon solar batteryInfo
- Publication number
- JPS58102569A JPS58102569A JP56201288A JP20128881A JPS58102569A JP S58102569 A JPS58102569 A JP S58102569A JP 56201288 A JP56201288 A JP 56201288A JP 20128881 A JP20128881 A JP 20128881A JP S58102569 A JPS58102569 A JP S58102569A
- Authority
- JP
- Japan
- Prior art keywords
- amorphous silicon
- substrate
- substrates
- film
- silicon solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021417 amorphous silicon Inorganic materials 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims abstract description 39
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 4
- 230000000873 masking effect Effects 0.000 claims description 2
- -1 diborane Chemical compound 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- JCLFHZLOKITRCE-UHFFFAOYSA-N 4-pentoxyphenol Chemical group CCCCCOC1=CC=C(O)C=C1 JCLFHZLOKITRCE-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はアモルファスシリコン太陽電池の製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an amorphous silicon solar cell.
本発明の目的は操作性が優れ蓋産性の高いアモルファス
シリコン太陽電池の製造方法を提供することである。An object of the present invention is to provide a method for manufacturing an amorphous silicon solar cell with excellent operability and high lid productivity.
モノシラン(sin、)あるいは四7ツ化硅素(si7
.)をプラズマ分解して得られる7モル7アスシリコン
は太陽光に対する光吸収係数が大である。光伝導度が高
い。基板の自由廣が大である等の理由から低価格太陽電
池の有望材料として注目を集めている。Monosilane (sin) or silicon tetratride (si7)
.. ) has a large light absorption coefficient for sunlight. High photoconductivity. It is attracting attention as a promising material for low-cost solar cells because of the large free width of the substrate.
その主たる製造方法は真空槽内に所定のガスを導入して
所定の内圧とし、該真空槽内におけるグロー放電により
膜形成を行なうプラズマovn法である。The main manufacturing method is a plasma ovn method in which a predetermined gas is introduced into a vacuum chamber to maintain a predetermined internal pressure, and a film is formed by glow discharge within the vacuum chamber.
第1図にプラズマOVD装置の概要を示す。Figure 1 shows an overview of the plasma OVD apparatus.
図において1.2.3は各々モノシラン、ホスフィン、
ジボランであり各ガスとも水素ガスで希釈している。4
,5.6はマスクローコントローラでガス流量の精密制
御を行なう。7は真空槽、8はンヤワーで高周波の一方
の電極を兼用している。In the figure, 1.2.3 are monosilane, phosphine,
Diborane and each gas is diluted with hydrogen gas. 4
, 5.6 performs precise control of the gas flow rate using a mask row controller. 7 is a vacuum chamber, and 8 is a vacuum chamber which also serves as one of the high frequency electrodes.
9はサセプタ、10は基板加熱ヒータ、11は高周波電
源(通常1 i 56 M Hz )、12は試料基板
である。16は排気口で真空ポンプ系に接続されている
。9 is a susceptor, 10 is a substrate heater, 11 is a high frequency power source (usually 1 i 56 MHz), and 12 is a sample substrate. 16 is an exhaust port connected to a vacuum pump system.
排気口13により真空排気を行ないながらマス70−コ
ントローラ4によりモノシランガスを導入し所定の内圧
(01〜5Torr)とした後、高周波電源1またより
電力を供給すると、電&I8とサセプタ9との間でグロ
ー放電を起こしプラズマを発生する。このグロー放電に
よりモノシランが分解され、試料基板12の表面にアモ
ルファスシリコン膜が形成される。While performing vacuum evacuation through the exhaust port 13, monosilane gas is introduced through the mass 70-controller 4 to achieve a predetermined internal pressure (01 to 5 Torr), and then power is supplied from the high frequency power source 1 or the susceptor 9. Causes glow discharge and generates plasma. Monosilane is decomposed by this glow discharge, and an amorphous silicon film is formed on the surface of the sample substrate 12.
なお試料基板としてはガラス、金属(ステンレス、モリ
ブデン等)、高分子フィルム等が使用される。Note that glass, metal (stainless steel, molybdenum, etc.), polymer film, etc. are used as the sample substrate.
該アモルファスシリコン膜に不純物ドープを行なう場合
、モノシランガスと同時にマス70−コントローラ5又
は6によりホスフィン又はジボランを流す、前者の場合
N形アモルファスシリコン膜が形成され、後者の場合P
形アモルファスンリコン膜が形成される。なおホスフィ
ンの代わりにアルシン(A−aH3)を用いても同様で
ある。When doping the amorphous silicon film with impurities, phosphine or diborane is flowed through the mass 70 and the controller 5 or 6 at the same time as the monosilane gas. In the former case, an N-type amorphous silicon film is formed, and in the latter case, a P
An amorphous silicon film is formed. Note that the same effect can be obtained even if arsine (A-aH3) is used instead of phosphine.
希釈ガスとして水素、ヘリウム、アルゴン等が−用いら
れているが、特に水素が多用されている。Hydrogen, helium, argon, etc. are used as the diluent gas, and hydrogen is particularly frequently used.
これはアモルファスシリコンを形成する場合、シリコン
原子のダングリングボンドを水素が補償し局在準位密度
を減少させるためである。This is because when amorphous silicon is formed, hydrogen compensates for dangling bonds of silicon atoms and reduces the localized level density.
従来該アモルファスシリコン層形成時には基板ホルダー
に試料基板を並べ上からマスクをセットする方法であっ
たが、試料基板のサイズがバラツキを有するため位置決
めが難しく歩留が低かった。Conventionally, when forming the amorphous silicon layer, a sample substrate was arranged on a substrate holder, and a mask was set from above. However, since the size of the sample substrate varied, positioning was difficult and the yield was low.
本発明はかかる欠点を除去するもので基板のセット方法
を改善することにより操作性及び歩留を向上し量産性を
高めたものである。The present invention eliminates such drawbacks and improves operability and yield by improving the method of setting substrates, thereby increasing mass productivity.
以下図面に基づき本発明について更に詳細に記述する。The present invention will be described in more detail below based on the drawings.
第2図はアモルファスシリコン太陽電池の断面図を示す
。FIG. 2 shows a cross-sectional view of an amorphous silicon solar cell.
ここで21はガラス基板、22は下部電極(工T0 、
8 n O!等の透明電極)、25はP形アモルファス
シリコン層、24はノンドープJll(1層)、25は
N形アモルファスシリコン層、26は上部電極(At、
−Mi、Or等の金属電極)である。Here, 21 is a glass substrate, 22 is a lower electrode (T0,
8 n O! 25 is a P-type amorphous silicon layer, 24 is a non-doped Jll (1 layer), 25 is an N-type amorphous silicon layer, 26 is an upper electrode (At,
-metal electrodes such as Mi and Or).
第3図は他のアモルファスシリコン太陽電池(7)断面
図である。FIG. 3 is a sectional view of another amorphous silicon solar cell (7).
ここで31はガラス基板、32は上部電極(1丁0.8
nO,等の透明電極)、33はP形アモルファスシリコ
ンpd、54はノンドープ層(ill)、55はw形ア
モルファスシリコン層、56+i下部電極(At、Ni
、Or等の金属電極)である。Here, 31 is a glass substrate, 32 is an upper electrode (1 piece 0.8
33 is a p-type amorphous silicon pd, 54 is a non-doped layer (ill), 55 is a w-type amorphous silicon layer, 56+i lower electrode (At, Ni
, Or, etc.).
上記太陽電池はいずれも透明電極側から光が入射する。In all of the above solar cells, light enters from the transparent electrode side.
餉4図はアモルファスシリコン太陽電池の上面図である
。Figure 4 is a top view of an amorphous silicon solar cell.
ここで41はガラス基板、42は下部電極、43はアモ
ルファスシリコン層(pstsn層)、46は上部電極
である。Here, 41 is a glass substrate, 42 is a lower electrode, 43 is an amorphous silicon layer (pstsn layer), and 46 is an upper electrode.
ガラス基板41上に透明電極42のパターンを形成し該
透明電極パターンの一部をマスキングしアモルファスシ
リコン層を形成する。A pattern of transparent electrodes 42 is formed on a glass substrate 41, and a part of the transparent electrode pattern is masked to form an amorphous silicon layer.
第5図は本発明に基づくアモルファスシリコン膜形成時
の基板のセット状況を示す上面図である。FIG. 5 is a top view showing how a substrate is set during formation of an amorphous silicon film according to the present invention.
ここで51は試料基板、52は押えバネ、53はステン
レスマスクでアル。Here, 51 is a sample substrate, 52 is a presser spring, and 53 is a stainless steel mask.
第6図は上記基板のセット状況の断面図を示す。FIG. 6 shows a sectional view of the setting state of the above-mentioned substrates.
ここで61は試料基板、62は押えバネ、63はステン
レスマスク、64°は基板ホルダーである。Here, 61 is a sample substrate, 62 is a presser spring, 63 is a stainless steel mask, and 64° is a substrate holder.
試料基板は基板ホルダー自身をストッパーとして奥まで
入れ、基板側面をバネで押え基板の固定を行なう。その
後電極のリード側をマスキングして成膜を行かう。Insert the sample substrate all the way into the chamber using the substrate holder itself as a stopper, and use springs to press the sides of the substrate to fix the substrate. After that, film formation is performed while masking the lead side of the electrode.
本発明の製造方法によれば試料基板の着脱が極めて容易
であり操作性が大巾に向上、する。According to the manufacturing method of the present invention, it is extremely easy to attach and detach the sample substrate, and the operability is greatly improved.
又試料基板の側面を固定するためマスクとの位置ズレが
すく電極のシ目−ト等のトラブルが減少した。Also, since the side surface of the sample substrate is fixed, there is less misalignment with the mask, reducing problems such as electrode seams.
なおここではステンレスマスクの場合を例にあげたがリ
ン青銅、ニッケル、モリブデン化合の金属マスクでも同
等の結果が得られている。Although a stainless steel mask is used as an example here, similar results have been obtained with metal masks made of phosphor bronze, nickel, or molybdenum compounds.
以上詳述した如く本発明によれば操作性に優れ量産性の
高いアモルファスシリコン太陽電池の製造方法を提供す
るものであり、アモルファスゲルマニウム略他の非晶質
半導体デバイスの製造にも適用できる。As described in detail above, the present invention provides a method for manufacturing amorphous silicon solar cells with excellent operability and high mass productivity, and can also be applied to manufacturing amorphous germanium and other amorphous semiconductor devices.
第1図はプラズマOVD装置の概要を示す。
第2図はアモルファスシリコン太陽電池の断面を示す。
第3図は他のアモルファスシリコン太陽1に池の断面を
示す。
第4図はアモルファスシリコン太陽電池の上面図を示す
。
5SviJは本発明に基づくアモルファスシリコン#形
成時の基板のセット状況を示す上面図。
第6WJは本発明に基づくアモ゛ル7アスシリコンII
形成時の基板のセット状況の断面図である。
第1図
第2図
第3図
第4図
第6図FIG. 1 shows an outline of a plasma OVD apparatus. FIG. 2 shows a cross section of an amorphous silicon solar cell. FIG. 3 shows a cross section of another amorphous silicon solar cell 1. FIG. 4 shows a top view of an amorphous silicon solar cell. 5SviJ is a top view showing how the substrate is set during the formation of amorphous silicon # according to the present invention. The 6th WJ is Amol 7As silicon II based on the present invention.
FIG. 3 is a cross-sectional view of the setting state of the substrate during formation. Figure 1 Figure 2 Figure 3 Figure 4 Figure 6
Claims (1)
ルファスシリコン層を形成し、更に上部電極を形成して
よるアモルファスシリコン太陽電池において、該アモル
ファスシリコン層は真空排気系により減圧にし得る真空
槽内に所定のガス(モノシラン、ジボラン、ホスフィン
等)を導入して所定の内圧とし、該真空槽内における・
放電現象により成膜を行ない、該アモルファスシリコン
層形成時に基板側面をバネで押え基板の固定を行ない、
上面の一部をマスキングして成膜することを特徴とする
アモルファスシリコン太陽電池の製造方法。In an amorphous silicon solar cell in which an amorphous silicon layer with a pin structure is formed on a lower electrode formed on an insulating substrate and an upper electrode is further formed, the amorphous silicon layer is placed in a vacuum chamber where the pressure can be reduced by an evacuation system. A predetermined gas (monosilane, diborane, phosphine, etc.) is introduced into the vacuum chamber to achieve a predetermined internal pressure.
The film is formed by a discharge phenomenon, and when forming the amorphous silicon layer, the substrate is fixed by pressing the side surface of the substrate with a spring,
A method for manufacturing an amorphous silicon solar cell, characterized by forming a film while masking a part of the upper surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56201288A JPS58102569A (en) | 1981-12-14 | 1981-12-14 | Manufacture of amorphous silicon solar battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56201288A JPS58102569A (en) | 1981-12-14 | 1981-12-14 | Manufacture of amorphous silicon solar battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58102569A true JPS58102569A (en) | 1983-06-18 |
Family
ID=16438485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56201288A Pending JPS58102569A (en) | 1981-12-14 | 1981-12-14 | Manufacture of amorphous silicon solar battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58102569A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04296473A (en) * | 1991-03-26 | 1992-10-20 | Shin Etsu Polymer Co Ltd | Heat seal connector |
JPH06181076A (en) * | 1992-03-12 | 1994-06-28 | Shin Etsu Polymer Co Ltd | Heat seal connector |
JPH07122320A (en) * | 1993-10-21 | 1995-05-12 | Nec Corp | Heat seal connector |
-
1981
- 1981-12-14 JP JP56201288A patent/JPS58102569A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04296473A (en) * | 1991-03-26 | 1992-10-20 | Shin Etsu Polymer Co Ltd | Heat seal connector |
JPH06181076A (en) * | 1992-03-12 | 1994-06-28 | Shin Etsu Polymer Co Ltd | Heat seal connector |
JPH0817100B2 (en) * | 1992-03-12 | 1996-02-21 | 信越ポリマー株式会社 | Heat seal connector |
JPH07122320A (en) * | 1993-10-21 | 1995-05-12 | Nec Corp | Heat seal connector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5248621A (en) | Method for producing solar cell devices of crystalline material | |
US4229233A (en) | Method for fabricating non-reflective semiconductor surfaces by anisotropic reactive ion etching | |
JPS6122622A (en) | Method and device for producing photovoltaic power panel | |
CN112736151B (en) | Back junction silicon heterojunction solar cell based on wide band gap window layer | |
US4292343A (en) | Method of manufacturing semiconductor bodies composed of amorphous silicon | |
WO2022142007A1 (en) | Efficient heterojunction battery structure and preparation method therefor | |
JP2000138384A (en) | Amorphous semiconductor device and its manufacture | |
JPS58102569A (en) | Manufacture of amorphous silicon solar battery | |
CN102569497A (en) | Method for forming anti-reflecting film on base plate as well as solar cell and preparation method thereof | |
JPS58111380A (en) | Manufacture of amorphous silicon solar cell | |
JPS6132416A (en) | Manufacture of semiconductor device | |
JPH0650780B2 (en) | Solar cell and manufacturing method thereof | |
JP2989055B2 (en) | Solar cell manufacturing method | |
JPS6316914B2 (en) | ||
JPS58102570A (en) | Manufacture of amorphous silicon solar battery | |
JPS58102568A (en) | Manufacture of amorphous silicon solar battery | |
CN107681017A (en) | It is a kind of to grow that AlGaN bases are ultraviolet and the method for deep ultraviolet detector array from bottom to top | |
JPS58102571A (en) | Manufacture of amorphous silicon solar battery | |
JPS59107575A (en) | Manufacture of solar cell | |
JPS61256625A (en) | Manufacture of thin film semiconductor element | |
JPH05343713A (en) | Manufacture of amorphous solar cell | |
JPS59229878A (en) | Novel amorphous semiconductor element and manufacture thereof and device for manufacturing the same | |
CN117976769A (en) | Preparation method of TOPCon battery structure | |
JPS59211289A (en) | Manufacture of amorphous silicon solar battery | |
JPS60128610A (en) | Method of forming thin film |