Nothing Special   »   [go: up one dir, main page]

JPS58109719A - Magnetic bearing - Google Patents

Magnetic bearing

Info

Publication number
JPS58109719A
JPS58109719A JP56206919A JP20691981A JPS58109719A JP S58109719 A JPS58109719 A JP S58109719A JP 56206919 A JP56206919 A JP 56206919A JP 20691981 A JP20691981 A JP 20691981A JP S58109719 A JPS58109719 A JP S58109719A
Authority
JP
Japan
Prior art keywords
magnet
shaft
magnetic flux
bias
bias magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206919A
Other languages
Japanese (ja)
Inventor
Nobuo Tsumaki
妻木 伸夫
Kosuke Noda
野田 耕介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56206919A priority Critical patent/JPS58109719A/en
Publication of JPS58109719A publication Critical patent/JPS58109719A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To suppress the generation of eddy current to minimum and consequently reduce the generation of heat by a structure wherein a bias magnet is made annular and yet a U-shape in its axial cross section so as to produce no change of magnetic flux in the direction of rotation of a shaft. CONSTITUTION:The iron core 5a of the bias electromagnet is made annular and yet a U-shape in its axial cross section as illustrated in the accompanying figure. When a permanent magnet is employed as bias magnet, the magnet is magnetized so as to produce circumferentially same magnetic pole as shown in the figure. While, when an electromagnet 5b is employed as bias magnet, circumferentially same magnetic pole can be obtained by winding a coil as indicated in the figure. Owing to the structure as mentioned above, because no change of magnetic flux is produced circumferentially even under the rotation of the shaft 2, no eddy current is resulted to be produced.

Description

【発明の詳細な説明】 本発明は制御形磁気軸受に係り、特にノ(イアス磁石と
コントロール磁石とを有する制御形ラジアル磁気軸受に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a controlled magnetic bearing, and more particularly to a controlled radial magnetic bearing having an ear magnet and a control magnet.

コントロール用電磁石の発生する磁束によってバイアス
磁石の発生する磁束を増減してシャフトを所望の位置に
浮上支持する制御形ラジアル磁気軸受は、従来一般には
第1図に示すような磁石の配置になっている。すなわち
X、Y方向をそれぞれ2つの磁石によってコントロール
し、バイアスコイル4と制御用コイル3とは鉄心1に巻
かれている。この方式では強磁性体のシャフト2が回転
すると、磁石の発生するN、Sの磁極を横切るため、大
きな渦電流を生じ、シャフト2および磁石の発熱が大き
くなり特に回転数が大きい場合には使用に耐えない。そ
こで、磁石だけでなく、シャフトにも積層板を配置して
渦電流を押えるなどの対策がとられている。しかし、シ
ャフトに積層板を用いると、遠心強度の点で制約を受け
、シャフトのスピードをあまり大きくできないなどの問
題点がるる。
Controlled radial magnetic bearings, which levitate and support a shaft at a desired position by increasing or decreasing the magnetic flux generated by a bias magnet using the magnetic flux generated by a control electromagnet, have conventionally generally had magnets arranged as shown in Figure 1. There is. That is, the X and Y directions are each controlled by two magnets, and the bias coil 4 and control coil 3 are wound around the iron core 1. In this method, when the ferromagnetic shaft 2 rotates, it crosses the N and S magnetic poles generated by the magnet, resulting in a large eddy current, which generates a large amount of heat in the shaft 2 and the magnet.This method is particularly useful when the rotation speed is high. I can't stand it. Therefore, countermeasures have been taken, such as placing laminated plates not only on the magnet but also on the shaft to suppress eddy currents. However, when a laminated plate is used for the shaft, it is limited in terms of centrifugal strength, and there are problems such as not being able to increase the speed of the shaft very much.

本発明の目的はシャフトが回転しても渦電流による発熱
の問題がなく、かつシャフトに積層板を配設する必要の
ない磁気軸受を提供することにある。
An object of the present invention is to provide a magnetic bearing that does not have the problem of heat generation due to eddy current even when the shaft rotates, and does not require a laminated plate to be provided on the shaft.

磁気軸受において、渦電流が発生するのは強磁気体の回
転にともなって磁束が変化するからでろる。従って回転
方向に対して磁束が変化しないような磁石配置1を用い
れば渦′#L流損は小さくなる。
Eddy currents occur in magnetic bearings because the magnetic flux changes as the ferromagnetic material rotates. Therefore, if the magnet arrangement 1 is used such that the magnetic flux does not change in the direction of rotation, the vortex '#L flow loss will be reduced.

特に本発明にかかわる磁気軸受では、バイアス電磁石が
常に一足磁束を発生しているため、これによる渦電流損
が大きな問題である。そこでバイアス磁石ヲ壌状とし、
かつその軸方向断面をコの字形にして、シャフトの回転
方向には磁束の変化のない構成としたものでるる。
In particular, in the magnetic bearing according to the present invention, since the bias electromagnet always generates a certain amount of magnetic flux, eddy current loss caused by this is a major problem. Therefore, the bias magnet is made in the shape of a loam,
Moreover, its axial cross section is U-shaped, so that the magnetic flux does not change in the rotational direction of the shaft.

以下、本発明の実施例を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の磁気軸受を構成するバイアス電磁石の
一例である。図に示すように、バイアス電磁石の鉄心5
aを環状にし、かつその軸方向断面形状を図に示すとと
くコの字形とする。バイアス磁石として永久磁石を用い
るならば、図に示すように周方向に同一磁極ができるよ
うに磁化し、電磁石5bi用いる場合には、コイルを図
中に示すように巻けば、周方向に同一磁極が得られる。
FIG. 2 is an example of a bias electromagnet constituting the magnetic bearing of the present invention. As shown in the figure, the iron core 5 of the bias electromagnet
A is annular, and its axial cross-sectional shape is U-shaped as shown in the figure. If a permanent magnet is used as a bias magnet, it is magnetized so that it has the same magnetic poles in the circumferential direction as shown in the figure, and when using electromagnet 5bi, if the coil is wound as shown in the figure, it has the same magnetic poles in the circumferential direction. is obtained.

このようにすればシャフト2が回転しても周方向に磁束
の変化がないため、渦電流が生ずることがない。第3図
は本発明の磁気軸受を構成するコントロール電磁石6を
配置した場合の萌面図であり、また第4図は全体構成を
示した平面図である。コントロール電磁石6は鉄心6a
とコイル6bとで構成されている。
In this way, even when the shaft 2 rotates, there is no change in the magnetic flux in the circumferential direction, so no eddy current is generated. FIG. 3 is a top view of the arrangement of control electromagnets 6 constituting the magnetic bearing of the present invention, and FIG. 4 is a plan view showing the overall configuration. The control electromagnet 6 has an iron core 6a
and a coil 6b.

コントロール磁石6が動作すれば、当然周方向に磁束の
変化は生ずるが、シャフト2が中立点に保持されている
状態を考えれば、第1図の便米方式に比較して渦電流全
大幅に小さくすることができる。
When the control magnet 6 operates, a change in magnetic flux will naturally occur in the circumferential direction, but if we consider that the shaft 2 is held at a neutral point, the eddy current will be significantly reduced compared to the method shown in Figure 1. Can be made smaller.

以上述べたように本発明によればシャフトの回転にとも
なう渦電流の発生が小さく押えられ、発熱が減少すると
ともに、シャフトに積層板を用いるなどの対策が不要と
なるため、積層板の強度により、シャフトの回転速度が
制限されるなどの問題点がなくなるものである。
As described above, according to the present invention, the generation of eddy currents caused by the rotation of the shaft is suppressed to a minimum, heat generation is reduced, and there is no need to take measures such as using a laminated plate for the shaft. This eliminates problems such as the rotational speed of the shaft being limited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の制御形ラジアル出猟軸受の全体構成を示
す図、第2図は本発明の磁気軸受を構成で するバイアス磁石を一部断面に示す斜視図、第3八 図は本発明の磁気軸受を構成するコントロール磁石を組
合せた状態を一部断面にて示す斜視図、第4図は本発明
の磁気軸受の全体構成を示す図である。 2・・・シャフト、5・・・バイアス電磁石、6・・・
コントロール電磁石。 代理人 弁理士 薄田利幸 笥 1 図 猟              5を 第4図 硅     6&
Fig. 1 is a diagram showing the overall configuration of a conventional controlled radial hunting bearing, Fig. 2 is a perspective view partially showing a bias magnet that constitutes the magnetic bearing of the present invention, and Fig. 38 is a diagram showing the present invention. FIG. 4 is a partially sectional perspective view showing a combination of control magnets constituting a magnetic bearing, and FIG. 4 is a diagram showing the overall configuration of the magnetic bearing of the present invention. 2...Shaft, 5...Bias electromagnet, 6...
control electromagnet. Agent Patent Attorney Toshiyuki Usuda 1 Figure 5 Figure 4 Figure 6 &

Claims (1)

【特許請求の範囲】[Claims] コントロール用電磁石と一定磁束を発生するノくイアス
用磁石と金有し、コントロール用電磁石の発生する磁束
によって、バイアス用磁石の発生する磁束を増減して、
クヤフ)1−所望の位置に浮上支持する制御形ラジアル
磁気軸受において、前記バイアス磁石を環状としてシャ
フトをとりまくように配設し、かつその軸方向断面をコ
の字形としてロータの周方向にバイアス磁石の発生する
磁束が変化しないようにしたことを特徴とする磁気軸受
A control electromagnet, a bias magnet that generates a constant magnetic flux, and a wire are used, and the magnetic flux generated by the control electromagnet increases or decreases the magnetic flux generated by the bias magnet.
Kuyafu) 1- In a controlled radial magnetic bearing that floats and supports at a desired position, the bias magnet is annular and is arranged to surround the shaft, and its axial cross section is U-shaped, and the bias magnet is arranged in the circumferential direction of the rotor. A magnetic bearing characterized in that the magnetic flux generated by the magnetic bearing does not change.
JP56206919A 1981-12-23 1981-12-23 Magnetic bearing Pending JPS58109719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206919A JPS58109719A (en) 1981-12-23 1981-12-23 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206919A JPS58109719A (en) 1981-12-23 1981-12-23 Magnetic bearing

Publications (1)

Publication Number Publication Date
JPS58109719A true JPS58109719A (en) 1983-06-30

Family

ID=16531247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206919A Pending JPS58109719A (en) 1981-12-23 1981-12-23 Magnetic bearing

Country Status (1)

Country Link
JP (1) JPS58109719A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612266A1 (en) * 1987-03-13 1988-09-16 Aerospatiale MAGNETIC BEARING FOR ACTIVE CENTERING, ACCORDING TO AT LEAST ONE AXIS, OF A MOBILE BODY ACCORDING TO ANOTHER BODY
WO1998032973A1 (en) * 1997-01-28 1998-07-30 Magnetal Ab Magnetically suspended high velocity vacuum pump
US6118199A (en) * 1997-01-28 2000-09-12 Magnetal Ab Magnetic bearings
CN113187815A (en) * 2021-07-05 2021-07-30 山东天瑞重工有限公司 Radial decoupling hybrid magnetic bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612266A1 (en) * 1987-03-13 1988-09-16 Aerospatiale MAGNETIC BEARING FOR ACTIVE CENTERING, ACCORDING TO AT LEAST ONE AXIS, OF A MOBILE BODY ACCORDING TO ANOTHER BODY
WO1998032973A1 (en) * 1997-01-28 1998-07-30 Magnetal Ab Magnetically suspended high velocity vacuum pump
US6118199A (en) * 1997-01-28 2000-09-12 Magnetal Ab Magnetic bearings
CN113187815A (en) * 2021-07-05 2021-07-30 山东天瑞重工有限公司 Radial decoupling hybrid magnetic bearing

Similar Documents

Publication Publication Date Title
JP3786420B2 (en) Magnetic bearing cell having a rotor and a stator
RU2089761C1 (en) Magnetic support
US4631435A (en) Consequent pole permanent magnet rotor
EP0598137B1 (en) Rotor for synchronous motor
US6359357B1 (en) Combination radial and thrust magnetic bearing
EP0191225B1 (en) Magnetic bearing device
JPH09509465A (en) Magnetic bearing cell having a rotor and a stator
US6703735B1 (en) Active magnetic thrust bearing
JPS6014931B2 (en) Axial electromagnetic bearing for large diameter smooth shaft
JP2005527176A (en) Rotary electric motor having a plurality of diagonal stator poles and / or rotor poles
US8963393B2 (en) Magnetic thrust bearings
JP2886891B2 (en) Axial magnetic bearing assembly
JPS5883552A (en) Rotary machine
JPS58109719A (en) Magnetic bearing
EP0187038A3 (en) Torque motor with high torque poles and magnetic centering spring adjustment
KR101064226B1 (en) Hybrid thrust magnetic bearing
JPH0226310A (en) Magnetic thrust bearing
JPH0371569B2 (en)
JP2004316756A (en) Five-axis control magnetic bearing
JPS6211218B2 (en)
CN117366103B (en) Asymmetric suspension force four-degree-of-freedom hybrid magnetic bearing and design method thereof
JPS5888222A (en) Yoke for magnetic bearing
KR950034989A (en) Thrust Magnetic Bearings
JPH11136886A (en) Permanent magnet motor
JPS5884220A (en) Magnetic bearing