JPH1182005A - Catalyst structure and its production - Google Patents
Catalyst structure and its productionInfo
- Publication number
- JPH1182005A JPH1182005A JP9243994A JP24399497A JPH1182005A JP H1182005 A JPH1182005 A JP H1182005A JP 9243994 A JP9243994 A JP 9243994A JP 24399497 A JP24399497 A JP 24399497A JP H1182005 A JPH1182005 A JP H1182005A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- gas
- catalyst structure
- mold
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 167
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 238000000465 moulding Methods 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 239000011949 solid catalyst Substances 0.000 claims description 14
- 238000000746 purification Methods 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 238000004898 kneading Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 238000004080 punching Methods 0.000 claims description 2
- 239000003638 chemical reducing agent Substances 0.000 abstract description 32
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 230000035515 penetration Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 111
- 230000000694 effects Effects 0.000 description 16
- 230000003197 catalytic effect Effects 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 201000005569 Gout Diseases 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 229910018404 Al2 O3 Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910018967 Pt—Rh Inorganic materials 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内燃機関の排気ガ
ス等のガスに還元剤又は酸化剤を添加して、触媒作用を
利用してガスを浄化する触媒装置に組み入れて使用され
る触媒構造体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst structure used by incorporating a reducing agent or an oxidizing agent into a gas such as an exhaust gas of an internal combustion engine and purifying the gas by utilizing a catalytic action. It is about the body.
【0002】[0002]
【従来の技術】ディーゼル機関や一部のガソリン機関等
の内燃機関の排気ガス中からNOxを還元除去するため
や、様々な燃焼ガスを浄化するための触媒装置について
種々の研究や提案がなされている。この触媒装置は、自
分自身は変化せずに化学変化を助けて反応を促進して、
HC,CO,NOxを酸化あるいは還元させてガスを清
浄化する触媒の作用を利用したものであり、触媒装置に
装着される触媒構造体は一般に活性成分(触媒成分)、
担体(触媒担持体)と助触媒や安定剤等の添加成分とか
ら構成されている。2. Description of the Related Art Various researches and proposals have been made on catalyst devices for reducing and removing NOx from exhaust gas of internal combustion engines such as diesel engines and some gasoline engines and for purifying various combustion gases. I have. This catalytic device promotes the reaction by helping the chemical change without changing itself,
It utilizes a function of a catalyst for purifying gas by oxidizing or reducing HC, CO, and NOx, and a catalyst structure mounted on a catalyst device generally includes an active component (catalytic component),
It is composed of a carrier (a catalyst carrier) and additional components such as a co-catalyst and a stabilizer.
【0003】この触媒の活性成分は酸化触媒の場合には
Pt(白金),Pd(パラジウム)等の貴金属やこれら
の混合物が用いられ、3元触媒の場合には、Pt−Rh
(ロジウム)やPt−Pd−Rh系の混合物が一般的に
使用されている。また、活性成分を担持する担体は、活
性アルミナやセラミックが一般的であり、形状的には、
粒状の担体の表面に活性成分を担持させたペレット触媒
と、一体成形のハニカム構造の担体に触媒層を設けたモ
ノリス(ハニカム)触媒の2種類がある。The active component of this catalyst is a noble metal such as Pt (platinum) or Pd (palladium) or a mixture thereof in the case of an oxidation catalyst, and Pt-Rh in the case of a three-way catalyst.
(Rhodium) and Pt-Pd-Rh-based mixtures are generally used. In addition, the carrier supporting the active ingredient is generally activated alumina or ceramic, and in shape,
There are two types, a pellet catalyst in which an active component is supported on the surface of a granular carrier, and a monolith (honeycomb) catalyst in which a catalyst layer is provided on a carrier having an integral honeycomb structure.
【0004】そして、主流を占めているモノリス触媒で
は、例えば、図6に示すような触媒コンバーターC内
に、触媒構造体11がサポートリング32に支持されて配設
されており、この触媒構造体11は図7に示すような、格
子(ハニカム)形状に成形したコーディエライトのセラ
ミック等からなる担体14のセル11e内面に、活性金属種
を含むアルミナ等からなる触媒層15をコーテングして形
成されている。[0004] In a monolithic catalyst that occupies the mainstream, a catalyst structure 11 is disposed in a catalytic converter C as shown in FIG. Reference numeral 11 denotes a catalyst layer 15 made of alumina or the like containing an active metal species formed on the inner surface of a cell 11e of a carrier 14 made of cordierite ceramic or the like formed in a lattice (honeycomb) shape as shown in FIG. Have been.
【0005】また、モノリス触媒のもう一つの形態とし
て、ガスの潜り込みの障害となる担体を使用せずに触媒
材料にバインダーを加えて結合させて形状を維持するソ
リッド触媒による触媒構造体もあり、このソリッド触媒
の構造体は、通常は押し出し成形によって製造されてい
る。上記のような触媒構造体により排気ガス中のNOx
を還元除去する場合には、還元剤(還元成分)を排気ガ
ス等の浄化対象ガス中に混入させることが必要であり、
この還元剤としては、内燃機関の燃焼室から排出される
未燃HC(炭化水素)や、排気管中に噴射供給される燃
料が用いられるが、触媒成分によっては、CあるいはC
Oが利用される場合もある。As another form of the monolith catalyst, there is a catalyst structure made of a solid catalyst that maintains a shape by adding a binder to a catalyst material and binding the catalyst material without using a carrier that hinders gas penetration. The structure of the solid catalyst is usually manufactured by extrusion. NOx in exhaust gas by the catalyst structure as described above
In the case of reducing and removing, it is necessary to mix a reducing agent (reducing component) into a gas to be purified such as exhaust gas,
As the reducing agent, unburned HC (hydrocarbon) discharged from the combustion chamber of the internal combustion engine or fuel injected and supplied into the exhaust pipe is used. Depending on the catalyst component, C or C is used.
O may be used in some cases.
【0006】そして、還元剤を含む浄化対象ガスが触媒
構造体の各セル内(ガス流通孔)を通過して触媒の活性
成分の触れると、NOxと還元剤との化学反応が促進さ
れてNOxが還元されてN2 となるので、ガスが浄化さ
れる。これらの触媒構造体は、触媒配設時の流通圧損等
を考慮しつつ、浄化対象ガスの流量に見合った触媒成分
との接触面積が得られるように、その触媒構造体の全体
の径、長さ、数及び流通孔(セル)の寸法と数とを設定
して製造される。When the gas to be purified containing the reducing agent passes through each cell (gas flow hole) of the catalyst structure and comes into contact with the active component of the catalyst, the chemical reaction between NOx and the reducing agent is promoted, and NOx is reduced. Is reduced to N2, so that the gas is purified. The overall diameter and length of the catalyst structure are adjusted so that a contact area with the catalyst component commensurate with the flow rate of the gas to be purified can be obtained while taking into account the flow pressure loss and the like when disposing the catalyst. It is manufactured by setting the number and the size and number of flow holes (cells).
【0007】[0007]
【発明が解決しようとする課題】しかしながら、前記の
如く触媒構造体の各寸法を設定しても、期待したほどの
浄化性能が得られず、比較的早期に浄化性能が低下し、
また、目詰まりを起こすという問題がある。この原因の
一つとしては、下流側でガスの触媒層15への潜り込みが
少なくなり、触媒作用が効率よく行われてないことがあ
げられる。つまり、通過するガスは、一般的に高温で触
媒構造体11に入り、流通孔12内で冷却されてその体積を
徐々に減少するが、ガスの流通孔12が通路断面積一定の
筒状に形成されているため、下流側ではガス圧力が低下
することになる。また、ガス温度の低下が無くてもガス
の流通抵抗により下流側ではガス圧力が低下する。その
ため、下流側でのガスの触媒層15への潜り込むが少なく
なり、この部分での触媒作用が低下する。However, even if the dimensions of the catalyst structure are set as described above, the purification performance as expected cannot be obtained, and the purification performance decreases relatively early.
In addition, there is a problem that clogging occurs. One of the causes is that the gas does not enter the catalyst layer 15 on the downstream side, and the catalytic action is not performed efficiently. That is, the passing gas generally enters the catalyst structure 11 at a high temperature, is cooled in the flow hole 12 and gradually decreases in volume, but the gas flow hole 12 is formed into a cylindrical shape having a constant passage cross-sectional area. As a result, the gas pressure decreases on the downstream side. Even if the gas temperature does not decrease, the gas pressure decreases on the downstream side due to gas flow resistance. Therefore, the gas is less likely to sneak into the catalyst layer 15 on the downstream side, and the catalytic action in this portion is reduced.
【0008】また、もう一つの原因として、下流側で還
元剤が不足するということが考えられる。つまり、流通
孔12に流入したガス流は、図7に示すように流通孔12の
壁面(触媒層)15に対して略層状に、即ち円筒の場合に
はガスの流れがあたかも同心円のストロー状Ga,G
b,Gcになって流れる。そのために、流通孔12の触媒
層15に接触するガス流部分GaのHC等の還元剤の大部
分が、流通孔12の入口12a付近の上流側で消費されて、
そのガス流部分Gaがそのまま壁面に沿って下流側に流
れるので、下流側では還元剤が不足して還元反応が殆ど
発生しない。[0008] Another cause is considered to be a shortage of reducing agent on the downstream side. That is, as shown in FIG. 7, the gas flow flowing into the flow hole 12 is substantially layered with respect to the wall surface (catalyst layer) 15 of the flow hole 12, that is, in the case of a cylinder, the gas flow is like a concentric straw shape. Ga, G
b and Gc. Therefore, most of the reducing agent such as HC in the gas flow portion Ga in contact with the catalyst layer 15 of the flow hole 12 is consumed on the upstream side near the inlet 12a of the flow hole 12,
Since the gas flow portion Ga directly flows downstream along the wall surface, the reducing agent runs short on the downstream side, and almost no reduction reaction occurs.
【0009】その一方で、未反応の還元剤が含まれてい
るガス流の中央部分Gcは触媒層に殆ど接触しないまま
出口12b側に流れるので、このガス流の中央部分Gcの
還元剤は下流側の還元反応に寄与せず、無駄に排出され
ることになり、還元剤によるガスの汚染と燃費の悪化に
つながる。また、下流側の還元反応を促すために、HC
等の還元剤を多く投入しても、触媒構造体11の上流側に
おいて、還元剤の濃度が過多となるので触媒活性の低下
をもたらすと共に、還元剤が流通孔12の内面に付着して
析出し、析出炭素(コーキング)3を生じ、この炭素の
析出によってガス中の還元剤が減少するので、下流側で
は還元剤が不足したままとなる。On the other hand, the central portion Gc of the gas stream containing the unreacted reducing agent flows to the outlet 12b side almost without contacting the catalyst layer. It does not contribute to the reduction reaction on the side and is exhausted wastefully, leading to gas pollution by the reducing agent and deterioration of fuel efficiency. Further, in order to promote a downstream reduction reaction, HC
Even if a large amount of a reducing agent such as is supplied, the concentration of the reducing agent becomes excessive on the upstream side of the catalyst structure 11, thereby lowering the catalytic activity, and the reducing agent adheres to the inner surface of the flow hole 12 and precipitates. As a result, precipitated carbon (caulking) 3 is generated, and the amount of the reducing agent in the gas is reduced by the precipitation of the carbon, so that the reducing agent remains insufficient on the downstream side.
【0010】また、図8に示すように、煤や析出炭素3
が入口12a側の壁面に付着して成長するため、触媒構造
体11の上流側では、ガスが触媒層15の活性成分と接触す
るを妨げるので、更に還元反応が低下する。その上、流
通孔12の目詰まりによりガス自体の通過が妨げられるの
で、更に触媒層15との接触が少なくなり、触媒構造体11
全体としての還元反応が不活発になり、期待通りの浄化
性能が得られないという結果になる。[0010] Further, as shown in FIG.
The gas adheres and grows on the wall surface on the inlet 12a side, so that the gas is prevented from contacting the active component of the catalyst layer 15 upstream of the catalyst structure 11, so that the reduction reaction is further reduced. In addition, since the passage of the gas itself is hindered by the clogging of the flow holes 12, the contact with the catalyst layer 15 is further reduced, and the catalyst structure 11
As a result, the reduction reaction as a whole becomes inactive, and the purification performance as expected cannot be obtained.
【0011】また、一般的に、ガス流通孔12の断面積を
小さくする程、触媒層15の接触面積は増大するが、流通
時の圧損が大きくなり、また目詰まりも発生し易くな
り、その上、製造も難しくなるという問題がある。これ
らの現象は、ハニカム触媒においても、また、ソリッド
触媒においても同様に発生するので、ソリッド触媒の装
置においても同じ問題が生じる。In general, as the cross-sectional area of the gas flow holes 12 is reduced, the contact area of the catalyst layer 15 is increased, but the pressure loss during the flow is increased and clogging is liable to occur. In addition, there is a problem that manufacturing becomes difficult. These phenomena occur in the same manner in the honeycomb catalyst and the solid catalyst, so that the same problem occurs in the solid catalyst device.
【0012】その上、ソリッド触媒の構造体は、触媒原
料を加圧する押し出し成形で製造されるために、加圧に
より触媒層の隙間が潰されてガスの潜り込み効果が小さ
くなるという問題がある。更に、押し出し成形では、成
形できる形状が限られ、触媒構造体の流通孔の径や形状
や配列等が限定されるという問題がある。本発明は、上
述の問題を解決するためになされたものであり、その目
的は、浄化対象ガスの流通孔の形状を特殊な形状に形成
することにより、浄化対象ガスと還元剤又は酸化剤とを
効率良く触媒の活性成分に接触させることができて、還
元又は酸化等の化学反応を促進できて、効率良く浄化対
象ガスを清浄化できる触媒構造体を提供することにあ
る。In addition, since the structure of the solid catalyst is manufactured by extrusion molding that pressurizes the catalyst raw material, there is a problem that the gap between the catalyst layers is crushed by the pressurization, and the gas squeezing effect is reduced. Furthermore, extrusion molding has a problem that the shape that can be molded is limited, and the diameter, shape, arrangement, and the like of the flow holes in the catalyst structure are limited. The present invention has been made in order to solve the above-described problem, and an object of the present invention is to form a shape of a flow hole of a gas to be purified into a special shape, so that a gas to be purified and a reducing agent or an oxidizing agent are formed. It is an object of the present invention to provide a catalyst structure capable of efficiently contacting an active component of a catalyst, promoting a chemical reaction such as reduction or oxidation, and efficiently purifying a purification target gas.
【0013】また、本発明の第二の目的は、前記第一の
目的の触媒構造体を容易に製造できる方法を提供するこ
とにある。Another object of the present invention is to provide a method for easily producing the catalyst structure of the first object.
【0014】[0014]
【課題を解決するための手段】以上のような目的を達成
するための触媒構造体は、所定の間隔で略平行に設けら
れた多数のガス流通孔を有し、該ガス流通孔の内周面に
触媒層が形成されたガス浄化用の触媒構造体において、
該ガス流通孔をその通路断面積が入口部から出口部に向
かって縮小するテーパー形状に形成したもので、流通孔
全域でガス圧力を維持又は下流側に向かって圧力を徐々
に上昇させて流通孔全域で触媒層へのガスの潜り込み効
果を促進できると共に、流通路孔の中心軸方向に向かう
流れを発生して通過ガスの流れを乱して、通過ガス全体
を略均等に触媒成分に曝すことができ、触媒構造体全体
でガスと還元剤(又は酸化剤)とを触媒成分に効率よく
接触させて化学反応を促進できる。A catalyst structure for achieving the above-mentioned object has a large number of gas flow holes provided substantially in parallel at predetermined intervals, and an inner periphery of the gas flow hole. In a gas purifying catalyst structure having a catalyst layer formed on its surface,
The gas flow hole is formed in a tapered shape in which the passage cross-sectional area is reduced from the inlet portion to the outlet portion, and the gas flow is maintained by maintaining the gas pressure in the entire flow hole or gradually increasing the pressure toward the downstream side. In addition to promoting the effect of infiltration of the gas into the catalyst layer in the entire area of the hole, a flow toward the central axis of the flow passage hole is generated to disturb the flow of the passing gas, and the entire passing gas is substantially uniformly exposed to the catalyst component. Thus, the gas and the reducing agent (or the oxidizing agent) can be efficiently brought into contact with the catalyst component in the entire catalyst structure to promote the chemical reaction.
【0015】また、好ましくは、前記ガス流通孔に関
し、入口部の断面の穴直径が1〜3mm、前記出口部の
断面の穴直径が0.8〜1.5mmであるように形成す
る。そして、前記触媒構造体をソリッド触媒で形成する
ことにより、浄化対象ガスの触媒内への潜り込みを妨げ
る担体(ハニカム)の壁を省略して、通過ガスの潜り込
み効果を増大して、触媒活性成分との接触を増大させ
る。Preferably, the gas flow holes are formed such that the cross-sectional hole diameter of the inlet portion is 1 to 3 mm and the cross-sectional hole diameter of the outlet portion is 0.8 to 1.5 mm. By forming the catalyst structure with a solid catalyst, the wall of the carrier (honeycomb) that prevents the purification target gas from sneaking into the catalyst is omitted, the effect of escaping the passing gas is increased, and the catalytically active component is increased. Increase contact with
【0016】更に、前記触媒構造体の触媒原料を内包し
て前記触媒構造体の外周面を形成する筒状の雌型と、該
雌型の下部に挿入配置され、かつ、基板に前記ガス流通
孔形成用の針状突起を前記所定間隔で配列した雄型とで
成形型を組み立てる準備工程と、触媒原料にバインダー
を加えて混練してゾル状にする工程と、前記ゾル状混練
物を前記成形型内に流し込む工程と、前記成形型内の前
記ゾル状混練物内に、前記針状突起との間に隙間を有し
て配設される多数の平行な貫通孔を持つ担体を挿入する
工程と、前記成形型内の前記ゾル状混練物を乾燥固化す
る工程と、乾燥固化した後に前記成形型を分解して型抜
きして前記触媒構造体を成形する工程とからなる製造方
法で、ハニカム触媒構造体を製造する。Further, a cylindrical female mold which forms the outer peripheral surface of the catalyst structure by enclosing the catalyst raw material of the catalyst structure, and is inserted and arranged below the female mold, and the gas flow through the substrate is carried out. A preparation step of assembling a molding die with a male mold in which needle-shaped projections for forming holes are arranged at the predetermined intervals, a step of adding a binder to a catalyst raw material and kneading the mixture to form a sol, A step of pouring into a molding die, and inserting a carrier having a number of parallel through holes disposed with a gap between the needle-like projections into the sol-like kneaded material in the molding die. A step of drying and solidifying the sol-state kneaded material in the molding die, and a step of forming the catalyst structure by decomposing the molding die after the drying and solidification to release the mold, A honeycomb catalyst structure is manufactured.
【0017】また、前記触媒構造体の触媒原料を内包し
て前記触媒構造体の外周面を形成する筒状の雌型と、該
雌型の下部に挿入配置され、かつ、基板に前記ガス流通
孔形成用の針状突起を前記所定間隔で配列した雄型とで
成形型を組み立てる準備工程と、触媒原料にバインダー
を加えて混練してゾル状にする工程と、前記ゾル状混練
物を前記成形型内に流し込む工程と、前記成形型内の前
記ゾル状混練物を乾燥固化する工程と、乾燥固化した後
に前記成形型を分解して型抜きして前記触媒構造体を成
形する工程とからなる製造方法で、前記ソリッド触媒で
形成された触媒構造体を製造する。Also, a cylindrical female mold enclosing the catalyst raw material of the catalyst structure and forming the outer peripheral surface of the catalyst structure, and inserted and disposed below the female mold, and the gas flow A preparation step of assembling a molding die with a male mold in which needle-shaped projections for forming holes are arranged at the predetermined intervals, a step of adding a binder to a catalyst raw material and kneading the mixture to form a sol, A step of pouring into a mold, a step of drying and solidifying the sol-like kneaded material in the mold, and a step of forming the catalyst structure by decomposing the mold after punching and drying and solidifying. The catalyst structure formed of the solid catalyst is manufactured by the following manufacturing method.
【0018】これらの製造方法を採用することにより、
触媒構造体のガス通路の穴径や穴の形状等を比較的自由
に形成することができ、上記の特殊な形状の触媒構造体
を容易に製造できる。しかも、製造時に押圧工程が無く
触媒層内の隙間の潰れを防止できるので、浄化対象ガス
がより潜り込し易くなって触媒活性成分との接触がより
多くなり、触媒構造体の浄化性能が向上する。By employing these manufacturing methods,
The diameter and the shape of the hole of the gas passage of the catalyst structure can be relatively freely formed, and the catalyst structure having the special shape described above can be easily manufactured. In addition, since there is no pressing step at the time of manufacture, the gap in the catalyst layer can be prevented from being collapsed, so that the gas to be purified is more easily sunk, and the contact with the catalytically active component is increased, thereby improving the purification performance of the catalyst structure. I do.
【0019】また、触媒原料の具体的なものとしては、
アルミナ(Al2 O3 )に触媒活性成分である白金(P
t)を担持させたものを粉末状にして、これをゾル状に
したものに、二酸化珪素(SiO2 )を主成分とするバ
インダーを加えたものが挙げられるが、特にこれに限定
されるものではなく、触媒原料は一般的に知られたもの
でも良く、また、バインダーもアルミナ系あるいは樹脂
系等、使用する触媒原料に対応したものを自由に選択し
て使用することができる。また、HC等の還元剤に限ら
ず、他の還元剤を添加する触媒原料に対しても適用でき
る。Further, specific examples of the catalyst raw material include:
Platinum (P), which is a catalytically active component, is added to alumina (Al2 O3).
t) is carried out in the form of a powder and the sol is added to the powder, and a binder containing silicon dioxide (SiO2) as a main component is added thereto. Instead, the catalyst raw material may be a generally known one, and the binder may be freely selected and used, such as an alumina-based or resin-based binder, corresponding to the catalyst raw material to be used. Further, the present invention can be applied not only to a reducing agent such as HC, but also to a catalyst raw material to which another reducing agent is added.
【0020】[0020]
【発明の実施の形態】以下、図面を用いて、本発明に係
る触媒構造体の実施の形態を説明する。本発明に係る実
施の形態の触媒構造体は、図1に示すように、円筒状の
外形をした触媒構造体1,1Aであり、その内部に所定
の間隔をおいて略平行に設けられた多数のガス流通孔2
を有し、浄化対象ガスGinをこのガス流通孔2の一端の
入口部2aから取り入れて、ガス流通孔2内部において
ガスを触媒作用で浄化して他端の出口部2bから浄化済
ガスGout にして放出するそして、図2に示すように、
触媒構造体1を、担体4に担持される触媒成分5で形成
されるガス流通孔2の通路断面積を入口部2aから出口
部2bに向かって縮小するように形成する。あるいは、
図3に示すように、ガスの潜り込み効果を妨げる担体
(ハニカム)の壁を取り除いたソリッド触媒で形成した
触媒構造体1Aとし、ガス流通孔2の通路断面積を入口
部2aから出口部2bに向かって縮小するように形成す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a catalyst structure according to the present invention will be described below with reference to the drawings. As shown in FIG. 1, a catalyst structure according to an embodiment of the present invention is a catalyst structure 1 or 1A having a cylindrical outer shape, and is provided substantially in parallel with a predetermined interval therein. Many gas circulation holes 2
The gas Gin to be purified is taken in from the inlet 2a at one end of the gas flow hole 2, and the gas is catalyzed inside the gas flow hole 2 to be purified gas Gout from the outlet 2b at the other end. And then, as shown in FIG.
The catalyst structure 1 is formed such that the cross-sectional area of the gas flow hole 2 formed by the catalyst component 5 supported on the support 4 is reduced from the inlet 2a toward the outlet 2b. Or,
As shown in FIG. 3, a catalyst structure 1A made of a solid catalyst in which a wall of a carrier (honeycomb) that hinders the gas infiltration effect is removed is used, and the cross-sectional area of the gas flow hole 2 is changed from the inlet 2a to the outlet 2b. It is formed so as to shrink toward.
【0021】この流通孔2の形状は先端部をカットした
円錐形だけでなく先端部をカットした四角錐等の多角錐
等でもよい。この形状のガス流通孔2を有する触媒構造
体1,1Aによれば、次に述べる効果を奏することがで
きる。触媒構造体1、1Aのガス流通孔2の通路断面積
を入口2a側から出口2b側に縮小するテーパー状に形
成することにより、通過ガスがガス流通孔2内で冷却さ
れて体積を減少したとしても、流通孔2全域でガス圧力
を維持、または、下流側に向かって圧力を徐々に上昇さ
せることができるので、流通孔2全域で触媒成分5への
ガスの潜り込みSを促進できる。The shape of the flow hole 2 may be not only a conical shape with a cut end but also a polygonal pyramid such as a square pyramid with a cut end. According to the catalyst structures 1 and 1A having the gas flow holes 2 having this shape, the following effects can be obtained. By forming the passage cross-sectional area of the gas flow holes 2 of the catalyst structures 1 and 1A into a tapered shape that is reduced from the inlet 2a side to the outlet 2b side, the passing gas is cooled in the gas flow holes 2 to reduce the volume. However, since the gas pressure can be maintained in the entire flow hole 2 or gradually increased toward the downstream side, the gas infiltration S into the catalyst component 5 can be promoted in the entire flow hole 2.
【0022】また、出口部2bに向かって縮小するテー
パー状にガス流通孔2を形成したことによって、ガス流
通孔2の中心軸に垂直な方向Rの流れを発生して、通過
ガスの同心円状の層状の流れを乱すことができるので、
通過ガス全体を略均等に触媒成分5に曝すことができ
る。上記の潜り込み効果と混合効果により、効率良くガ
スと還元剤を触媒成分5に曝すことができるので、過剰
な還元剤を添加する必要がなくなり、還元剤からの炭素
の析出反応を抑制してコーキングを防止することがで
き、入口部2a近傍での目詰まりを防止することができ
る。そのため、ガス通路を確保して、ガスと還元剤を入
口部2a側からの出口部2b側まで流すことができるの
で、還元剤を触媒成分5に対して均等に添加することが
でき、ガス流通孔2の全域で効率よく還元反応を行うこ
とができる。Further, since the gas flow hole 2 is formed in a tapered shape which decreases toward the outlet 2b, a flow in the direction R perpendicular to the central axis of the gas flow hole 2 is generated, and concentric circles of the passing gas are generated. Can disturb the layered flow of
The entire passing gas can be almost uniformly exposed to the catalyst component 5. The gas and reducing agent can be efficiently exposed to the catalyst component 5 by the above-described sneaking effect and mixing effect, so that it is not necessary to add an excessive reducing agent, and the coking by suppressing the carbon deposition reaction from the reducing agent is suppressed. Can be prevented, and clogging near the entrance 2a can be prevented. Therefore, a gas passage can be secured, and the gas and the reducing agent can flow from the inlet 2a to the outlet 2b, so that the reducing agent can be uniformly added to the catalyst component 5, and the gas flow can be reduced. The reduction reaction can be efficiently performed in the entire area of the hole 2.
【0023】従って、触媒構造体1、1A全体で、通過
ガスと還元剤との混合物を触媒成分5に効率よく接触さ
せて、触媒作用による化学反応を促進できるので、通過
ガスに対する浄化性能を著しく向上することができる。
また、排気ガスと還元剤を略均等に触媒の活性成分に接
触させることができるので、排気ガス中に含まれてい
る、SOx,CO等の被毒物質も、同様に触媒構造体
1、1A全体に分散できるので、被毒物質による触媒作
用の低下も抑制できる。Accordingly, in the entire catalyst structure 1, 1A, the mixture of the passing gas and the reducing agent can be efficiently brought into contact with the catalyst component 5 to promote the chemical reaction by the catalytic action, so that the purification performance for the passing gas can be remarkably improved. Can be improved.
Further, since the exhaust gas and the reducing agent can be brought into contact with the active component of the catalyst almost equally, the poisoning substances such as SOx and CO contained in the exhaust gas also have the same effect on the catalyst structures 1, 1A. Since it can be dispersed throughout, it is possible to suppress a decrease in the catalytic action due to the poisoning substance.
【0024】その上、自動車の排気ガス処理の場合にお
いては、還元剤としての燃料を効率よく利用できるので
燃費を向上できる。更に、この触媒構造体1、1Aのガ
ス流通孔2を、入口穴径は3〜1mm程度、出口穴径は
1.5〜0.8mm程度として形成する。また、ディー
ゼルエンジンに使用する場合には出口穴径は1mm程度
迄の大きさにして、このガス流通孔2の目詰まりを防止
する。In addition, in the case of exhaust gas treatment of automobiles, fuel efficiency can be improved because fuel as a reducing agent can be efficiently used. Further, the gas flow holes 2 of the catalyst structures 1 and 1A are formed to have an inlet hole diameter of about 3 to 1 mm and an outlet hole diameter of about 1.5 to 0.8 mm. When used in a diesel engine, the diameter of the outlet hole is set to about 1 mm to prevent the gas flow hole 2 from being clogged.
【0025】ガス流通孔2をこの寸法に形成することに
より、ガス流量とガス流通孔2の全体圧損との関係を適
切な範囲に保ちながら、触媒成分5への潜り込み効果が
十分に得られるガス圧分布を実現して、排気ガスと還元
剤と触媒成分5との接触をガス流通孔2の全域で良好に
維持することができ、効率よく触媒作用を発揮すること
ができる。By forming the gas flow holes 2 to this size, the gas which can sufficiently obtain the effect of sneaking into the catalyst component 5 can be obtained while maintaining the relationship between the gas flow rate and the total pressure loss of the gas flow holes 2 in an appropriate range. By realizing the pressure distribution, the contact between the exhaust gas, the reducing agent, and the catalyst component 5 can be favorably maintained in the entire region of the gas flow hole 2, and the catalytic action can be efficiently exhibited.
【0026】そして、このソリッド触媒で触媒構造体1
Aを形成することにより、ガスの潜り込み効果を妨げる
担体を省くことができるので、ガスの触媒への潜り込み
効果を更に大きくすることができ、浄化効率を著しく向
上できる。次に上記の触媒構造体1,1Aの製造方法に
ついて、図3、図4を用いて以下に説明する。Then, the catalyst structure 1 is formed with the solid catalyst.
By forming A, it is possible to omit the carrier that hinders the gas spill-in effect, so that the gas spill-in effect in the catalyst can be further increased and the purification efficiency can be significantly improved. Next, a method for manufacturing the above-described catalyst structures 1 and 1A will be described below with reference to FIGS.
【0027】先ず、担体4を有する触媒構造体1の場合
には、準備工程として、触媒構造体1の触媒原料を内包
して触媒構造体1の外周面を形成する筒状の雌型21と、
この雌型21の下部に挿入配置され、かつ、基板にガス流
通孔2形成用の針状突起を所定間隔で配列した雄型22と
で成形型20を組み立てる。次に、ゾル状の触媒原料に一
定割合の液状のバインダーを加えよく攪拌して混練し、
このゾル状の触媒原料5aを図4(a)に示すように、
流し込み通路23から、成形型20内に流し込み、更に、図
4(b)に示すように、成形型20内のゾル状混練物5a
内に、針状突起との間に隙間を有して配設される多数の
平行な貫通孔を持つ担体4を挿入した後、ヒーター30に
より成形型20内のゾル状混練物5aを加熱して水分を蒸
発させて乾燥固化する。First, in the case of the catalyst structure 1 having the carrier 4, as a preparation step, a cylindrical female mold 21 including the catalyst raw material of the catalyst structure 1 and forming the outer peripheral surface of the catalyst structure 1 is formed. ,
The molding die 20 is assembled with the male die 22 which is inserted and arranged below the female die 21 and has needle-like projections for forming the gas flow holes 2 arranged on the substrate at predetermined intervals. Next, a certain ratio of a liquid binder is added to the sol-shaped catalyst raw material, mixed well, and kneaded,
As shown in FIG. 4 (a), this sol-form catalyst raw material 5a is
From the pouring passage 23, the sol-like kneaded material 5a in the mold 20 is poured into the mold 20 as shown in FIG.
After the carrier 4 having a large number of parallel through holes disposed with a gap between the needle-like projections is inserted therein, the sol-like kneaded material 5a in the mold 20 is heated by the heater 30. To evaporate the water to dry and solidify.
【0028】そして、図4(c)に示すように、乾燥固
化させた後に雌型21から雄型22を引き抜いて固化した触
媒構造体1を外す。また、触媒構造体1の形状によって
は、雄型22を上側に押して触媒構造体1を押し出しても
良い。そして、必要に応じて、図4(d)に示すよう
に、余剰部材7をカットライン8で切り離して触媒構造
体1を製造する。Then, as shown in FIG. 4C, after drying and solidification, the male mold 22 is pulled out from the female mold 21 and the solidified catalyst structure 1 is removed. Further, depending on the shape of the catalyst structure 1, the catalyst structure 1 may be extruded by pushing the male mold 22 upward. Then, as necessary, as shown in FIG. 4D, the surplus member 7 is cut off along the cut line 8 to manufacture the catalyst structure 1.
【0029】即ち、触媒部分5を加圧することにより隙
間が潰される押し出し成形をせずにバインダー等の接着
力のみを利用した型抜きによる成形法で製造する。ま
た、ソリッド触媒の触媒構造体1Aの場合には、準備と
して前記と同様に成形型20を組み立てる。そして、ゾル
状の触媒原料に一定割合の液状のバインダーを加えよく
攪拌して混練し、このゾル状の触媒原料5aを図5
(a)に示すように、流し込み通路23から、成形型20内
に流し込み、ヒーター30により、成形型20内のゾル状混
練物5aを加熱して水分を蒸発させて乾燥固化する。That is, the catalyst portion 5 is manufactured by a die-cutting molding method utilizing only the adhesive force of a binder or the like without performing extrusion molding in which a gap is crushed by pressing the catalyst portion 5. In the case of the catalyst structure 1A of the solid catalyst, the forming die 20 is assembled in the same manner as above in preparation. Then, a certain ratio of a liquid binder is added to the sol-shaped catalyst raw material, and the mixture is sufficiently stirred and kneaded.
As shown in (a), the sol-like kneaded material 5a in the molding die 20 is heated by the heater 30 to evaporate the moisture and solidify by drying.
【0030】次に、図5(b)に示すように、乾燥固化
させた後に雌型21と雄型22を分解して固化した触媒構造
体1Aを外す。そして、必要に応じて、図5(c)に示
すように、余剰部材7をカットライン8で切り離して触
媒構造体1を製造する。これらの製造方法により、次の
ような効果を奏することができる。即ち、触媒部分5の
隙間を潰さずに維持して触媒構造体1、1Aを製造でき
るので、ガスの潜り込み効果を更にアップでき、ガスの
潜り込み能力が高く、触媒の活性成分との接触面積が大
きい触媒構造体1、1Aを得ることができる。Next, as shown in FIG. 5B, after being dried and solidified, the female mold 21 and the male mold 22 are decomposed to remove the solidified catalyst structure 1A. Then, if necessary, as shown in FIG. 5C, the surplus member 7 is cut off along the cut line 8 to manufacture the catalyst structure 1. The following effects can be obtained by these manufacturing methods. That is, since the catalyst structures 1 and 1A can be manufactured while maintaining the gap of the catalyst portion 5 without being crushed, the gas sunk effect can be further improved, the gas sunk ability is high, and the contact area of the catalyst with the active component is reduced. Large catalyst structures 1 and 1A can be obtained.
【0031】更に、触媒構造体1、1Aのガスの流通孔
2の穴径や穴の形状等を比較的自由に成形できるので、
上記のような特殊な形状の触媒構造体1、1Aを容易に
製造できる。Further, the diameter and shape of the gas flow holes 2 of the catalyst structures 1 and 1A can be relatively freely formed.
The catalyst structures 1 and 1A having the special shapes as described above can be easily manufactured.
【0032】[0032]
【発明の効果】以上の説明したように、本発明によれ
ば、触媒構造体のガス流通孔の通路断面積を入口部から
出口部に向かって縮小するテーパー状に形成したので、
流通孔全域でガス圧力を維持、または、下流側に向かっ
て圧力を徐々に上昇でき、流通孔全域で触媒層へのガス
の潜り込み効果を促進できる。As described above, according to the present invention, the passage cross-sectional area of the gas flow hole of the catalyst structure is formed in a tapered shape decreasing from the inlet to the outlet.
The gas pressure can be maintained in the entire flow hole or the pressure can be gradually increased toward the downstream side, and the effect of gas sneaking into the catalyst layer can be promoted in the entire flow hole.
【0033】また、出口部側に向かって縮小するテーパ
ー状にガスの流通通路を形成したことによって、ガス流
通孔の中心軸方向に向かう流れを発生して通過ガスの流
れを乱すことができるので、通過ガス全体を略均等に触
媒層に曝すことができる。従って、触媒構造体全体でガ
スと還元剤(又は酸化剤)とを触媒成分に効率よく接触
させることができ、化学反応を促進できるので、触媒構
造体の浄化性能を向上させて、浄化対象ガスの浄化を効
率良く行うことができる。しかも、効率良く化学反応を
促進できるので、還元剤を有効に利用できる。Further, since the gas flow passage is formed in a tapered shape which is reduced toward the outlet side, a flow toward the central axis of the gas flow hole can be generated to disturb the flow of the passing gas. In addition, the entire passing gas can be substantially uniformly exposed to the catalyst layer. Therefore, the gas and the reducing agent (or the oxidizing agent) can be efficiently brought into contact with the catalyst component in the entire catalyst structure, and the chemical reaction can be promoted. Therefore, the purification performance of the catalyst structure is improved, and the purification target gas is improved. Can be efficiently purified. Moreover, since the chemical reaction can be efficiently promoted, the reducing agent can be used effectively.
【0034】そして、上記の触媒構造体をソリッド触媒
で形成することにより、担体(ハニカム)の壁が省かれ
るので、ガスの触媒への潜り込み効果を更に大きくする
ことができ、浄化効率を更に向上できる。また、バイン
ダー等の接着力を利用して成形する型抜き成形法による
製造方法を採用することにより、上記のような特殊な形
状の触媒構造体を容易に製造でき、更に、製造の際に加
圧工程が無く触媒層の隙間の潰れを防止できるため、触
媒層内へのガスの潜り込み効果を大きく維持でき、ガス
と還元剤と触媒活性成分との接触を多くすることができ
るので、触媒構造体のガス浄化性能を著しく向上するこ
とができる。By forming the above-mentioned catalyst structure with a solid catalyst, the wall of the carrier (honeycomb) can be omitted, so that the effect of the gas sneaking into the catalyst can be further increased and the purification efficiency can be further improved. it can. In addition, by adopting a manufacturing method based on a die-cutting molding method in which molding is performed by utilizing the adhesive force of a binder or the like, a catalyst structure having a special shape as described above can be easily manufactured. Since there is no pressure step and the gap of the catalyst layer can be prevented from being crushed, the effect of gas sneaking into the catalyst layer can be largely maintained, and the contact between the gas, the reducing agent and the catalytically active component can be increased. The gas purification performance of the body can be significantly improved.
【図1】本発明に係る触媒構造体を示す斜視図である。FIG. 1 is a perspective view showing a catalyst structure according to the present invention.
【図2】本発明に係る触媒構造体の流通孔部分を示す側
断面図である。FIG. 2 is a side sectional view showing a flow hole portion of the catalyst structure according to the present invention.
【図3】本発明に係るソリッド触媒による触媒構造体の
流通孔部分を示す側断面図である。FIG. 3 is a side sectional view showing a flow hole portion of a catalyst structure using a solid catalyst according to the present invention.
【図4】本発明に係る触媒構造体を製造する方法を示す
側断面図で、(a)は触媒原料を型材に詰めた状態を、
(b)は担体を挿入した状態を、(c)は型抜きの状態
を、また、(d)は、余剰部材を切断した状態を示す。FIG. 4 is a side sectional view showing a method for producing a catalyst structure according to the present invention, wherein (a) shows a state where a catalyst material is packed in a mold;
(B) shows a state in which the carrier is inserted, (c) shows a state in which the carrier is cut out, and (d) shows a state in which the surplus member is cut.
【図5】本発明に係るソリッド触媒による触媒構造体を
製造する方法を示す側断面図で、(a)は触媒原料を型
材に詰めた状態を、(b)は型抜きの状態を、また、
(c)は、余剰部材を切断した状態を示す。FIGS. 5A and 5B are side sectional views showing a method for producing a catalyst structure using a solid catalyst according to the present invention, wherein FIG. 5A shows a state in which a catalyst material is packed in a mold material, FIG. ,
(C) shows the state where the surplus member was cut.
【図6】触媒構造体を備えた触媒コンバータを示す斜視
図である。FIG. 6 is a perspective view showing a catalytic converter having a catalyst structure.
【図7】従来技術の触媒構造体のセル部分を示す横断面
図である。FIG. 7 is a cross-sectional view showing a cell portion of a conventional catalyst structure.
【図8】従来技術の触媒構造体のセル部分の煤及び炭素
析出分の状況を示す模式図である。FIG. 8 is a schematic diagram showing the state of soot and carbon deposits in a cell portion of a conventional catalyst structure.
1,1A,11 触媒構造体 1e,11e セル 2 ガス流通孔(流通路) 2a 入口 2b 出口 3 煤及び析出炭素 4 担体(担持体) 5 触媒層 7 余剰部材 8 カットライン 20 成形型 21 雌型 22 雄型 23 流し込み通路 30 ヒーター 31 排気温度センサ
ー C 触媒コンバーター Gin 浄化対象ガス Gout 浄化済ガス S 潜り込み1, 1A, 11 Catalyst structure 1e, 11e Cell 2 Gas flow hole (flow passage) 2a Inlet 2b outlet 3 Soot and deposited carbon 4 Carrier (support) 5 Catalyst layer 7 Surplus member 8 Cut line 20 Mold 21 Female 22 Male type 23 Inflow passage 30 Heater 31 Exhaust temperature sensor C Catalytic converter Gin Purified gas Gout Purified gas S Sink
Claims (5)
ガス流通孔を有し、該ガス流通孔の内周面に触媒層が形
成されたガス浄化用の触媒構造体において、該ガス流通
孔をその通路断面積が入口部から出口部に向かって縮小
するテーパー形状に形成した触媒構造体。1. A gas purification catalyst structure having a plurality of gas flow holes provided substantially in parallel at predetermined intervals and having a catalyst layer formed on an inner peripheral surface of the gas flow holes. A catalyst structure in which a flow hole is formed in a tapered shape in which a passage cross-sectional area decreases from an inlet to an outlet.
穴直径が1〜3mm、前記出口部の断面の穴直径が0.
8〜1.5mmであるように形成した請求項1に記載の
触媒構造体。2. The gas flow hole according to claim 1, wherein a diameter of a cross section of an inlet portion is 1 to 3 mm, and a diameter of a cross section of the outlet portion is 0.
The catalyst structure according to claim 1, wherein the catalyst structure is formed to have a thickness of 8 to 1.5 mm.
た請求項1又は2に記載の触媒構造体。3. The catalyst structure according to claim 1, wherein the catalyst structure is formed of a solid catalyst.
記触媒構造体の外周面を形成する筒状の雌型と、該雌型
の下部に挿入配置され、かつ、基板に前記ガス流通孔形
成用の針状突起を前記所定間隔で配列した雄型とで成形
型を組み立てる準備工程と、触媒原料にバインダーを加
えて混練してゾル状にする工程と、前記ゾル状混練物を
前記成形型内に流し込む工程と、前記成形型内の前記ゾ
ル状混練物内に、前記針状突起との間に隙間を有して配
設される多数の平行な貫通孔を持つ担体を挿入する工程
と、前記成形型内の前記ゾル状混練物を乾燥固化する工
程と、乾燥固化した後に前記成形型を分解して型抜きし
て前記触媒構造体を成形する工程とからなる請求項1又
は2に記載の触媒構造体の製造方法。4. A cylindrical female mold that includes a catalyst material of the catalyst structure and forms an outer peripheral surface of the catalyst structure, and is inserted and arranged below the female mold, and the gas flow through the substrate. A preparation step of assembling a molding die with a male mold in which needle-shaped projections for forming holes are arranged at the predetermined intervals, a step of adding a binder to a catalyst raw material and kneading the mixture to form a sol, A step of pouring into a molding die, and inserting a carrier having a number of parallel through holes disposed with a gap between the needle-like projections into the sol-like kneaded material in the molding die. A step of drying and solidifying the sol-like kneaded material in the molding die; and a step of disassembling the molding die after the drying and solidifying to form a die and molding the catalyst structure. 3. The method for producing a catalyst structure according to item 2.
記触媒構造体の外周面を形成する筒状の雌型と、該雌型
の下部に挿入配置され、かつ、基板に前記ガス流通孔形
成用の針状突起を前記所定間隔で配列した雄型とで成形
型を組み立てる準備工程と、触媒原料にバインダーを加
えて混練してゾル状にする工程と、前記ゾル状混練物を
前記成形型内に流し込む工程と、前記成形型内の前記ゾ
ル状混練物を乾燥固化する工程と、乾燥固化した後に前
記成形型を分解して型抜きして前記触媒構造体を成形す
る工程とからなる請求項3に記載の触媒構造体の製造方
法。5. A cylindrical female mold that forms the outer peripheral surface of the catalyst structure by enclosing the catalyst raw material of the catalyst structure, and is inserted and arranged below the female mold, and the gas flow through the substrate. A preparation step of assembling a molding die with a male mold in which needle-shaped projections for forming holes are arranged at the predetermined intervals, a step of adding a binder to a catalyst raw material and kneading the mixture to form a sol, A step of pouring into a mold, a step of drying and solidifying the sol-like kneaded material in the mold, and a step of forming the catalyst structure by decomposing the mold after punching and drying and solidifying. The method for producing a catalyst structure according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9243994A JPH1182005A (en) | 1997-09-09 | 1997-09-09 | Catalyst structure and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9243994A JPH1182005A (en) | 1997-09-09 | 1997-09-09 | Catalyst structure and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1182005A true JPH1182005A (en) | 1999-03-26 |
Family
ID=17112143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9243994A Pending JPH1182005A (en) | 1997-09-09 | 1997-09-09 | Catalyst structure and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1182005A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002349231A (en) * | 2001-05-24 | 2002-12-04 | Isuzu Motors Ltd | Diesel particulate filter |
JP2006070832A (en) * | 2004-09-03 | 2006-03-16 | National Institute Of Advanced Industrial & Technology | Exhaust emission control structure body and method for manufacturing the same |
WO2009005371A1 (en) * | 2007-07-04 | 2009-01-08 | Yara International Asa | Method for producing catalysts and catalysts thereof |
JP2009097409A (en) * | 2007-10-16 | 2009-05-07 | Yanmar Co Ltd | Black smoke purifying device |
US10494970B2 (en) | 2017-07-05 | 2019-12-03 | Denso International America, Inc. | Emissions control substrate |
US10870077B2 (en) | 2016-12-27 | 2020-12-22 | Denso Corporation | Porous honeycomb filter |
CN113232243A (en) * | 2021-01-16 | 2021-08-10 | 温州南冠机械有限公司 | SCR denitration catalyst production mold and production method thereof |
CN116328484A (en) * | 2023-04-13 | 2023-06-27 | 陕西赫星节能环保科技有限公司 | Organic waste gas treatment system with catalytic combustion structure for workshops |
-
1997
- 1997-09-09 JP JP9243994A patent/JPH1182005A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002349231A (en) * | 2001-05-24 | 2002-12-04 | Isuzu Motors Ltd | Diesel particulate filter |
JP4506034B2 (en) * | 2001-05-24 | 2010-07-21 | いすゞ自動車株式会社 | Diesel particulate filter |
JP2006070832A (en) * | 2004-09-03 | 2006-03-16 | National Institute Of Advanced Industrial & Technology | Exhaust emission control structure body and method for manufacturing the same |
EP3335781A1 (en) * | 2007-07-04 | 2018-06-20 | YARA International ASA | Method to produce catalysts and catalysts thereof |
WO2009005371A1 (en) * | 2007-07-04 | 2009-01-08 | Yara International Asa | Method for producing catalysts and catalysts thereof |
AU2008271375B2 (en) * | 2007-07-04 | 2012-12-13 | Yara International Asa | Method for producing catalysts and catalysts thereof |
EA018747B1 (en) * | 2007-07-04 | 2013-10-30 | Яра Интернэшнл Аса | Method for producing catalysts |
US9084987B2 (en) | 2007-07-04 | 2015-07-21 | Yara International Asa | Method for producing catalysts and catalysts thereof |
JP2009097409A (en) * | 2007-10-16 | 2009-05-07 | Yanmar Co Ltd | Black smoke purifying device |
US10870077B2 (en) | 2016-12-27 | 2020-12-22 | Denso Corporation | Porous honeycomb filter |
US10494970B2 (en) | 2017-07-05 | 2019-12-03 | Denso International America, Inc. | Emissions control substrate |
CN113232243A (en) * | 2021-01-16 | 2021-08-10 | 温州南冠机械有限公司 | SCR denitration catalyst production mold and production method thereof |
CN113232243B (en) * | 2021-01-16 | 2022-12-06 | 温州南冠机械有限公司 | SCR denitration catalyst production mold and production method thereof |
CN116328484A (en) * | 2023-04-13 | 2023-06-27 | 陕西赫星节能环保科技有限公司 | Organic waste gas treatment system with catalytic combustion structure for workshops |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7740809B2 (en) | Exhaust gas-cleaning apparatus | |
JP5368959B2 (en) | Exhaust gas treatment equipment | |
EP3313553B1 (en) | Catalytic wall-flow filter having a membrane | |
EP1290318B1 (en) | Reactor for treating exhaust gas | |
CN105247179A (en) | Catalyzed filter for treating exhaust gases | |
CN105247178A (en) | Catalyzed filter for treating exhaust gases | |
EP2236205A2 (en) | Honeycomb Catalyst article | |
JP2009106913A (en) | Selectively reducing catalyst | |
JP5799938B2 (en) | Exhaust gas purification catalyst | |
JP2004084666A (en) | Removal of soot fine particles from exhaust gas of diesel engine | |
KR20160016968A (en) | Three-way catalytic converter | |
DE10323607A1 (en) | Device for cleaning exhaust gases from a combustion engine to remove nitrogen oxides and soot particles comprises an oxidation catalyst, a particle filter and an SCR catalyst | |
JPH0160652B2 (en) | ||
JPH1182005A (en) | Catalyst structure and its production | |
JP2003184546A (en) | Method and device for catalytic conversion of gaseous pollutant in exhaust gas of combustion engine | |
JP3327054B2 (en) | Exhaust gas purification catalyst | |
JP4412641B2 (en) | Exhaust gas purification device and exhaust gas purification method | |
JP2005519212A (en) | Treatment of exhaust gas from internal combustion engines | |
JP7321258B2 (en) | Honeycomb body having a series of passages with different hydraulic diameters and its manufacturing method | |
RU2018120361A (en) | OXIDATION CATALYST | |
JP4131783B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP5112815B2 (en) | Exhaust purification device | |
JP2018003811A (en) | Oxidation catalyst and exhaust emission control system | |
JP2600192B2 (en) | Exhaust gas purification converter | |
FR2918706A1 (en) | DEVICE FOR TREATING GASEOUS EMISSIONS OF AN ENGINE. |