Nothing Special   »   [go: up one dir, main page]

JPH115276A - Laminated plate - Google Patents

Laminated plate

Info

Publication number
JPH115276A
JPH115276A JP11549298A JP11549298A JPH115276A JP H115276 A JPH115276 A JP H115276A JP 11549298 A JP11549298 A JP 11549298A JP 11549298 A JP11549298 A JP 11549298A JP H115276 A JPH115276 A JP H115276A
Authority
JP
Japan
Prior art keywords
intermediate layer
laminate
resin
inorganic filler
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11549298A
Other languages
Japanese (ja)
Inventor
Yasushi Tominaga
康 富永
Takahiro Nakada
高弘 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11549298A priority Critical patent/JPH115276A/en
Publication of JPH115276A publication Critical patent/JPH115276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated plate wherein the inter-layer strength between a surface layer and an intermediate layer is excellent, the thickness precision is excellent by reducing a flow at the time of lamination forming, and the cost is reduced by not using a glass non-woven fabric which is expensive. SOLUTION: A surface layer comprises a base material wherein a glass woven fabric of which one surface or both surfaces are raised is impregnated with a thermosetting resin, and an intermediate layer comprises a composition wherein 10-300 wt.%, based on the resin, of an inorganic filler material is mixed with the thermosetting resin, and these are heat-press-formed to obtain this laminated plate, and it is preferable that the raised fiber length of the glass woven fabric is 50 μm or longer. Also, it is preferable to blend an inorganic fiber or an organic fiber in addition to the inorganic filler material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に電気機器、電
子機器、通信機器等に使用される印刷回路用積層板に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated board for a printed circuit used particularly for electric equipment, electronic equipment, communication equipment and the like.

【0002】[0002]

【従来の技術】プリント回路板は、近年電気機器の軽薄
短小化から小型化、高機能化の要求が強くなってきてい
る。特にプリント回路板に用いられる多層回路板用積層
板、ガラス布基材エポキシ樹脂積層板、CEM3タイプ
のエポキシ樹脂コンポジット積層板(ガラス不織布を中
間層基材とし、ガラス織布を表面層基材とした基材構成
で、これらにエポキシ樹脂を含浸し加熱加圧成形した積
層板)では、積層板の厚み精度(均一性)の向上が強く
要求されるようになってきた。更には、エポキシ樹脂コ
ンポジット積層板の性能を維持しつつ低コスト化の要求
が大きくなっている。
2. Description of the Related Art In recent years, there has been an increasing demand for printed circuit boards to be smaller and more sophisticated in order to reduce the weight and weight of electrical equipment. In particular, a laminated board for a multilayer circuit board used for a printed circuit board, a glass cloth base epoxy resin laminate, a CEM3 type epoxy resin composite laminate (a glass non-woven fabric as an intermediate layer base material, and a glass woven cloth as a surface layer base material) With such a base material configuration, a laminate obtained by impregnating these with an epoxy resin and heat-press molding) has been strongly required to improve the thickness accuracy (uniformity) of the laminate. Further, there is an increasing demand for cost reduction while maintaining the performance of the epoxy resin composite laminate.

【0003】従来ガラス織布を使用した積層板において
は、積層成形時に端面より樹脂が流れ出す現象(以下、
フローという)により積層板の周辺部の厚みが薄くなる
問題があった。更に最近においては、本発明者らにより
開発されたガラス不織布を使用しないコンポジット積層
板(特開平9−254331号公報)においては、ガラ
ス不織布が無いために成形時のフローが大きく良好な成
形ができないという問題があった。また、このコンポジ
ット積層板においては、ガラス織布と中間層の樹脂との
接着性(層間接着性)を向上させることも大きな課題と
なってきた。
Conventionally, in a laminated plate using a glass woven fabric, a phenomenon in which resin flows out from an end face during lamination molding (hereinafter, referred to as a resin).
(Referred to as a flow), the thickness of the peripheral portion of the laminated plate is reduced. More recently, in a composite laminate developed by the present inventors that does not use a glass nonwoven fabric (Japanese Patent Laid-Open No. 9-254331), the flow during molding is large due to the absence of the glass nonwoven fabric, and good molding cannot be performed. There was a problem. Also, in this composite laminate, it has been a major problem to improve the adhesiveness (interlayer adhesiveness) between the glass woven fabric and the resin of the intermediate layer.

【0004】[0004]

【発明が解決しようとする課題】本発明者は、層間接着
性の向上、曲げ強度や耐衝撃性の向上、積層成形時のフ
ローの低減による成形性向上、低コスト化等を目的とし
て種々研究した結果、ガラス織布の片面または両面を起
毛することにより、成形時に中間層の樹脂の流れを抑え
ることができ、かつ表面層ガラス織布と中間層の樹脂組
成物との接着性が向上し、好ましくは中間層に無機繊維
を加えることにより曲げ強度や耐衝撃性が向上するとの
知見を得、更にこの知見に基づき種々研究を進めて本発
明を完成するに至ったものである。
SUMMARY OF THE INVENTION The present inventor has made various studies for the purpose of improving interlayer adhesion, improving bending strength and impact resistance, improving formability by reducing the flow during lamination molding, and reducing costs. As a result, by raising one or both sides of the glass woven fabric, it is possible to suppress the flow of the resin of the intermediate layer during molding, and to improve the adhesion between the surface layer glass woven fabric and the resin composition of the intermediate layer. It has been found that bending strength and impact resistance are preferably improved by adding inorganic fibers to the intermediate layer, and the present invention has been completed by conducting various studies based on this finding.

【0005】[0005]

【課題を解決するための手段】本発明は、両表面層は、
少なくとも内面側が起毛したガラス織布に熱硬化性樹脂
を含浸した基材からなり、中間層は、熱硬化性樹脂に無
機充填材を前記樹脂に対して10〜300重量%混合さ
れた組成物からなり、これらを加熱加圧成形してなるこ
とを特徴とする積層板に関するものである。そして、好
ましくは表面に使用する片面または両面が起毛したガラ
ス織布の起毛の長さが50μm以上である積層板であ
る。また、積層板の曲げ強度や耐衝撃性をより向上させ
るために、中間層は、無機充填材に加えて、無機繊維又
は有機繊維が前記熱硬化性樹脂に対して0.01〜50
重量%混合された組成物からなることが好ましく、この
無機繊維又は有機繊維の繊維径は、好ましくは15μm
以下である。
According to the present invention, both surface layers are provided.
At least the inner surface side is made of a base material in which a thermosetting resin is impregnated in a glass woven fabric having a raised surface, and the intermediate layer is made of a composition obtained by mixing a thermosetting resin with an inorganic filler in an amount of 10 to 300% by weight based on the resin. The present invention relates to a laminate characterized in that these are formed by heating and pressing. Preferably, a glass woven fabric having one or both sides raised on the surface and having a raised length of 50 μm or more is used. Further, in order to further improve the bending strength and impact resistance of the laminate, the intermediate layer is formed by adding inorganic fibers or organic fibers to the thermosetting resin in an amount of 0.01 to 50 in addition to the inorganic filler.
% By weight, and the inorganic or organic fiber preferably has a fiber diameter of 15 μm.
It is as follows.

【0006】本発明において、表面層に用いられるガラ
ス織布は、積層板成形時の中間層の樹脂組成物のフロー
を抑え、且つ表面層と中間層との接着性を大きくするた
めに、少なくとも内面側、即ち、中間層側に起毛が形成
される。起毛の長さは、限定するものではないが、成形
時樹脂組成物のフローを効果的に抑え、前記層間接着性
を向上させるためには50μm以上が好ましく、特にフ
ローをほぼ完全に止める必要のあるときは300μm以
上が好ましい。300μm未満ではフローを起毛繊維に
より完全には止められない。また50μm未満では成形
時樹脂組成物のフローがあり、積層板厚みのバラツキが
大きくなることがある。
[0006] In the present invention, the glass woven fabric used for the surface layer is at least used to suppress the flow of the resin composition of the intermediate layer at the time of forming the laminate and to increase the adhesion between the surface layer and the intermediate layer. The raised surface is formed on the inner surface side, that is, on the intermediate layer side. The length of the raised hair is not limited, but is preferably 50 μm or more in order to effectively suppress the flow of the resin composition during molding and improve the interlayer adhesion, and it is particularly necessary to stop the flow almost completely. In some cases, the thickness is preferably 300 μm or more. If it is less than 300 μm, the flow cannot be completely stopped by the raised fibers. If it is less than 50 μm, there is a flow of the resin composition during molding, and the variation in the thickness of the laminate may increase.

【0007】起毛の長さは、起毛させる方法によりその
限界があり、最大1500μm程度である。また、積層
板の厚みや中間層の樹脂組成物の流動性にもよるが、通
常は300μm以上ではフローを止める効果はほぼ満足
され、1000μm程度以上としてもこのフローを止め
る効果の向上はないので、これ以上の長さに起毛する必
要はない。ガラス織布の表面に起毛を形成する方法は、
ループ織り、あるいはニードルパンチ、ブラシ、エメ
リ、針布等による方法、ウォタージェットによる方法等
があるが、いずれの方法でもよい。ガラス織布はいかな
るものでもよいが、1平方メートルあたりの重量(単
量)が20〜300g/m2 のものが好ましい。300
g/m2 を越えるとドリル等による加工性が悪くなり、
20g/m2未満では強度が弱くなり起毛処理しにく
い。
The length of the raised hair has its limit depending on the method of raising the hair, and is about 1500 μm at the maximum. In addition, although it depends on the thickness of the laminate and the fluidity of the resin composition of the intermediate layer, the effect of stopping the flow is generally almost satisfied at 300 μm or more, and the effect of stopping this flow is not improved even at about 1000 μm or more. There is no need to brush to any longer length. The method of forming a brush on the surface of the glass woven fabric,
There are a loop weaving method, a method using a needle punch, a brush, an emery, a needle cloth, a method using a water jet, and the like, and any method may be used. The glass woven fabric may be of any type, but preferably has a weight (single amount) per square meter of 20 to 300 g / m 2 . 300
If it exceeds g / m 2 , workability with a drill or the like will deteriorate,
If it is less than 20 g / m 2 , the strength becomes weak, and it is difficult to raise the hair.

【0008】本発明の積層板において、起毛処理された
ガラス織布に対する熱硬化性樹脂と無機充填材(無機繊
維又は有機繊維を配合した場合はこれらも含む)との合
計量の割合は2.0〜10.0が好ましい。この範囲で
は、起毛処理されたガラス織布による無機充填材含有熱
硬化性樹脂組成物のフロー防止効果があり、積層板の特
性においても従来のものと同等以上のものとなる。2.
0未満では、コンポジット積層板としての特長、即ち、
良好な加工性、低コスト等が発揮されず、10.0を越
えると、ガラス織布の部分が少なくなり、強度等の機械
的特性が低下する。好ましくは2.5〜6.5である。
標準的な1.6mm厚の積層板では、この値は好ましく
は5.0〜6.0程度である。
[0008] In the laminated board of the present invention, the ratio of the total amount of the thermosetting resin and the inorganic filler (including inorganic fibers or organic fibers when they are blended) to the brushed glass woven fabric is 2. 0 to 10.0 is preferred. Within this range, the brushed glass woven fabric has an effect of preventing the flow of the thermosetting resin composition containing the inorganic filler, and the properties of the laminate are equivalent to or higher than those of the conventional laminate. 2.
If it is less than 0, the characteristics as a composite laminate, that is,
Good workability, low cost, etc. are not exhibited, and if it exceeds 10.0, the portion of the glass woven fabric is reduced, and mechanical properties such as strength are reduced. Preferably it is 2.5-6.5.
For a standard 1.6 mm thick laminate, this value is preferably on the order of 5.0-6.0.

【0009】本発明の積層板において、中間層には、熱
硬化性樹脂に無機充填材を加えることにより、打抜き加
工性や寸法安定性を維持向上させるとともに、厚み方向
(Z方向)の熱膨張を小さくするのでスルホール信頼性
を向上させることが可能である。また、従来では、ガラ
ス繊維不織布を中間層に構成していたが、これを使用し
ない事により、中間層のボイド(気泡の残存)を大きく
減らすことが可能となる。中間層に使用する無機充填材
としては、水酸化アルミニウム、炭酸カルシウム、クレ
ー、タルク、シリカ等である。好ましくは、耐燃性向上
のために水酸化アルミニウムを主成分とするものであ
り、無機充填材の分散を良くするために超微粒子シリカ
を配合することが好ましい。樹脂に対する混合割合は通
常10〜300重量%の範囲である。10重量%未満で
は、成形時樹脂組成物のフローが大きく、またスルーホ
ール信頼性の向上効果が小さく、300重量%を越える
と樹脂への無機充填材の混合及び積層板の成形が困難と
なる。無機充填材の混合、積層板の成形及び得られた積
層板の特性の点から、好ましくは30〜200重量%、
更に好ましくは60〜160重量部%ある。
In the laminate of the present invention, the intermediate layer is formed by adding an inorganic filler to a thermosetting resin to maintain and improve the punching workability and the dimensional stability, and to increase the thermal expansion in the thickness direction (Z direction). , The through hole reliability can be improved. Conventionally, the glass fiber nonwoven fabric is used for the intermediate layer, but by not using this, voids (remaining air bubbles) in the intermediate layer can be greatly reduced. Examples of the inorganic filler used for the intermediate layer include aluminum hydroxide, calcium carbonate, clay, talc, and silica. Preferably, the main component is aluminum hydroxide for improving the flame resistance, and it is preferable to mix ultrafine silica for improving the dispersion of the inorganic filler. The mixing ratio with respect to the resin is usually in the range of 10 to 300% by weight. If it is less than 10% by weight, the flow of the resin composition at the time of molding is large, and the effect of improving the reliability of the through hole is small. If it exceeds 300% by weight, it becomes difficult to mix the inorganic filler into the resin and mold the laminate. . From the viewpoint of the mixing of the inorganic filler, the formation of the laminate and the properties of the obtained laminate, preferably 30 to 200% by weight,
More preferably, the content is 60 to 160 parts by weight.

【0010】本発明においては、好ましくは、積層板の
曲げ強度や耐衝撃性を更に向上させるために、中間層の
熱硬化性樹脂に無機充填材とともに無機繊維又は有機繊
維を配合する。無機繊維又は有機繊維を配合することに
より、成形時の樹脂組成物のフローをより抑えることが
出来る。無機繊維としては、アルミナ繊維、ガラス繊維
等であり樹脂に対する配合割合は0.01〜50重量%
が好ましい。0.01重量%未満では曲げ強度、耐衝撃
性の向上効果が小さく、50重量%を越えると無機繊維
の混合及びプレス成形が困難となる。無機繊維の配合量
は、より好ましくは0.1〜10重量%、最も好ましく
は1〜5重量%である。また、有機繊維としては、合成
繊維、パルプ等であり、無機繊維に比較して配合量をよ
り多くすることができ、より好ましくは0.1〜15重
量%、最も好ましい配合割合は、1〜10重量%であ
る。これらの繊維の繊維径は15μm以下が好ましい
が、樹脂への混合の容易さから7μm以下がより好まし
い。15μmより太いとドリル等を使用した加工性にお
いて摩耗が大きくドリル折れの原因ともなることがあ
る。繊維の長さは、通常6mm以下であり、この長さよ
り長くなると樹脂への混合が容易ではなくなるが、繊維
径が15μm以下のものでは、繊維長がこれより長くて
も樹脂への混合が容易であり、少なくとも20mm程度
のものまで使用可能である。
In the present invention, preferably, in order to further improve the bending strength and impact resistance of the laminate, the thermosetting resin of the intermediate layer is mixed with an inorganic fiber or an organic fiber together with an inorganic filler. By blending inorganic fibers or organic fibers, the flow of the resin composition during molding can be further suppressed. As the inorganic fiber, alumina fiber, glass fiber, etc., and the compounding ratio to the resin is 0.01 to 50% by weight.
Is preferred. If it is less than 0.01% by weight, the effect of improving bending strength and impact resistance is small, and if it exceeds 50% by weight, mixing of inorganic fibers and press molding become difficult. The blending amount of the inorganic fibers is more preferably 0.1 to 10% by weight, and most preferably 1 to 5% by weight. The organic fiber is a synthetic fiber, pulp, or the like, and can be added in a larger amount than the inorganic fiber, more preferably 0.1 to 15% by weight, and the most preferable compounding ratio is 1 to 15. 10% by weight. The fiber diameter of these fibers is preferably 15 μm or less, and more preferably 7 μm or less from the viewpoint of ease of mixing with the resin. If the thickness is larger than 15 μm, the workability using a drill or the like may cause a large abrasion, which may cause the breakage of the drill. The length of the fiber is usually 6 mm or less. If the length is longer than this, mixing with the resin is not easy, but if the fiber diameter is 15 μm or less, mixing with the resin is easy even if the fiber length is longer than this. And can be used up to at least about 20 mm.

【0011】本発明において、中間層に用いられる熱硬
化性樹脂はエポキシ樹脂が好ましいが、このほか、ポリ
イミド樹脂、ポリエステル樹脂、フェノール樹脂などを
用いることができる。中間層の厚みは、最終の積層板に
厚み及び両表面層の起毛ガラス織布に厚みにより決まる
が、ガラス織布は中間層側の面に起毛を有しているの
で、中間層の厚みが2.0mm程度でも、成形時のフロ
ーを十分に止めることができる。中間層の厚み0.1m
m以下では、中間層の厚みが小さいのでフローが小さ
く、起毛したガラス織布を使用しなくてもよい。通常は
0.2〜2.0mm、好ましくは0.3〜1.8mm、
更に好ましく0.4〜1.6mm、であり、最も好まし
くは、0.6〜1.4mmである。また、表面層の起毛
したガラス織布の含浸に用いられる熱硬化性樹脂もエポ
キシ樹脂が好ましいが、中間層と同様、ポリイミド樹
脂、ポリエステル樹脂、フェノール樹脂などを用いるこ
とができる。かかる熱硬化性樹脂は樹脂のみでも使用す
ることができるが、水酸化アルミニウム等の無機充填材
を加えると耐トラッキング性を付与することが出来る。
In the present invention, the thermosetting resin used for the intermediate layer is preferably an epoxy resin. In addition, a polyimide resin, a polyester resin, a phenol resin and the like can be used. The thickness of the intermediate layer is determined by the thickness of the final laminated board and the thickness of the raised glass woven fabric on both surface layers. However, since the glass woven fabric has a raised surface on the intermediate layer side, the thickness of the intermediate layer is Even at about 2.0 mm, the flow during molding can be sufficiently stopped. 0.1m thickness of middle layer
Below m, the thickness of the intermediate layer is small, the flow is small, and it is not necessary to use a brushed glass woven fabric. Usually 0.2 to 2.0 mm, preferably 0.3 to 1.8 mm,
It is more preferably 0.4 to 1.6 mm, and most preferably 0.6 to 1.4 mm. The thermosetting resin used for impregnating the glass woven fabric with the raised surface layer is also preferably an epoxy resin, but a polyimide resin, a polyester resin, a phenol resin or the like can be used similarly to the intermediate layer. Such a thermosetting resin can be used alone, but when an inorganic filler such as aluminum hydroxide is added, tracking resistance can be imparted.

【0012】本発明の積層板は、表面層には起毛したガ
ラス織布を使用し、中間層は無機充填材を配合した熱硬
化性樹脂組成物からなるので、成形時にこの樹脂組成物
のフローを抑えることができ、表面層と中間層との接着
性も優れている。従って中間層にガラス不織布を使用し
ないにもかかわらず、積層板の厚み精度が極めて良好で
あり、打抜き加工性や寸法安定性を維持向上させるとと
もに、厚み方向(Z方向)の熱膨張を小さくするのでス
ルホール信頼性を向上させることが可能である。また、
中間層に無機充填材とともに無機繊維又は有機繊維を配
合することにより、曲げ強度や耐衝撃性が更に向上す
る。従って、積層板の性能が維持向上するとともに、成
形時の歩留まりの向上が図られ、高価なガラス不織布を
使用しないことと相まって、低コスト化を達成すること
ができる。さらに、起毛の長さを長くすることにより、
織布自体の強度が低下するので、打ち抜き等の加工性の
改善に効果があることもわかった。
The laminated board of the present invention uses a brushed glass woven fabric for the surface layer and a thermosetting resin composition containing an inorganic filler for the intermediate layer. And the adhesion between the surface layer and the intermediate layer is excellent. Therefore, despite the fact that no glass nonwoven fabric is used for the intermediate layer, the thickness accuracy of the laminate is extremely good, the punching workability and dimensional stability are maintained and improved, and the thermal expansion in the thickness direction (Z direction) is reduced. Therefore, it is possible to improve through hole reliability. Also,
By blending an inorganic fiber or an organic fiber with the inorganic filler in the intermediate layer, the bending strength and impact resistance are further improved. Therefore, the performance of the laminated plate is maintained and improved, and the yield at the time of molding is improved. In addition to using no expensive glass nonwoven fabric, cost reduction can be achieved. In addition, by increasing the length of the brushed,
It was also found that the strength of the woven fabric itself was reduced, which was effective in improving workability such as punching.

【0013】本発明の積層板を製造する方法としては、
たとえば次の方法がある。即ち、少なくとも内面側が起
毛したガラス織布の起毛面に無機充填材を混合した熱硬
化性樹脂を所定厚みで塗布し、その上に前記と同様の起
毛されたガラス織布を起毛面を内側にして重ね合わせ
る。その後、必要によりこの積層物の両表面から熱硬化
性樹脂を塗布し、硬化が進まない程度に加熱乾燥する。
このようにして得られた複合プリプレグを加熱加圧成形
することにより、目的とする積層板を得ることが出来
る。表面層として使用される起毛したガラス織布は、予
め、熱硬化性樹脂を含浸させておくこともでき、この場
合、成形前に前記積層物へ樹脂を含浸させる工程を省略
することができる。成形時の加熱加圧条件は、塗布され
た樹脂組成物の流動性にもよるが、通常のコンポジット
積層板の成形条件と同等又は成形時のフローを押さえる
ために圧力をやや低くする。即ち、温度150〜180
℃、圧力20〜70kg/cm2 、時間60〜120分
間が適当である。
The method for producing the laminate of the present invention includes:
For example, there are the following methods. That is, a thermosetting resin mixed with an inorganic filler is applied at a predetermined thickness to a raised surface of a glass woven fabric having at least an inner surface raised, and a brushed glass woven fabric similar to the above is formed with the raised surface facing the inside. And overlap. Thereafter, a thermosetting resin is applied from both surfaces of the laminate as necessary, and is heated and dried to such an extent that curing does not proceed.
By subjecting the composite prepreg thus obtained to heat and pressure molding, a target laminated board can be obtained. The brushed glass woven fabric used as the surface layer can be impregnated with a thermosetting resin in advance, and in this case, the step of impregnating the laminate with the resin before molding can be omitted. The heating and pressurizing conditions at the time of molding depend on the fluidity of the applied resin composition, but the pressure is slightly lower in order to suppress the flow at the time of molding or equivalent to the ordinary molding conditions of the composite laminate. That is, a temperature of 150 to 180
C., a pressure of 20 to 70 kg / cm 2 and a time of 60 to 120 minutes are appropriate.

【0014】[0014]

【実施例】以下に本発明の実施例及び比較例(従来例)
を示す。「部」及び「%」はそれぞれ「重量部」及び
「重量%」を示す。
Examples of the present invention and comparative examples (conventional examples) are described below.
Is shown. “Parts” and “%” indicate “parts by weight” and “% by weight”, respectively.

【0015】実施例1 エポキシ樹脂ワニス〔1a〕を以下の組成で調製した。 (1)臭素化エポキシ樹脂(油化シェル製 Ep−1046) 100部 (2)ジシアンジアミド 4 (3)2−エチル−4−メチルイミダゾール 0.15 (4)メチルセロソルブ 30 (5)アセトン 60 続いてこのエポキシ樹脂ワニス〔1a〕の固形分100
部に対して、次の無機充填材を配合し、無機充填材含有
ワニス〔2a〕を調製した。 (1)シリカ(龍森製 クリスタライト VX−3) 25部 (2)ギブサイト型水酸化アルミニウム (昭和電工製,ハイジライトH−42) 70 (3)超微粉末シリカ(シオノギ製薬製 カープレックス) 5 次に、単量210g/m2 のガラス織布(日東紡績製 W
E-18K RB-84 )の片面を針布により600〜800μm
の長さに起毛させ、その起毛させた面に前記無機充填材
含有ワニス〔2a〕を、乾燥後の膜厚が1.4mmにな
るようにナイフコーターで塗工し、加熱装置で150
℃、3分間加熱乾燥した。その上面に同様に片面を起毛
させた単重210g/m2 のガラス織布(日東紡績製 W
E-18K RB-84 )を起毛面が内側となるように重ね合わ
せ、次いで、両表面に前記ワニス〔1a〕をロールコー
ターにより塗布し、加熱装置で150℃、3分間加熱乾
燥して複合プリプレグを得た。このプリプレグを所定の
長さ(2m)に切断し、その両面に18μm厚の銅箔を
重ね、成形温度165℃、圧力30kg/cm2 で90
分間積層成形して、厚さ1.6mm、中間層の厚み1.
4mmの銅張積層板を得た。
Example 1 An epoxy resin varnish [1a] was prepared with the following composition. (1) 100 parts of brominated epoxy resin (Ep-1046 manufactured by Yuka Shell) (2) dicyandiamide 4 (3) 2-ethyl-4-methylimidazole 0.15 (4) methylcellosolve 30 (5) acetone 60 The solid content of this epoxy resin varnish [1a] is 100
The following inorganic filler was blended with respect to each part to prepare an inorganic filler-containing varnish [2a]. (1) 25 parts of silica (Crystalite VX-3, manufactured by Tatsumori) (2) Gibbsite type aluminum hydroxide (Hygilite H-42, manufactured by Showa Denko) 70 (3) Ultrafine powdered silica (Carplex manufactured by Shionogi Pharmaceutical) 5 Next, a single-piece glass woven fabric of 210 g / m 2 (Nitto Boseki W
One side of E-18K RB-84) is 600 ~ 800μm with needle cloth
The inorganic filler-containing varnish [2a] is coated on the raised surface with a knife coater so that the film thickness after drying is 1.4 mm, and 150 mm is applied with a heating device.
C. for 3 minutes. A glass woven fabric with a single weight of 210 g / m 2 (Nitto Boseki W
E-18K RB-84) is overlapped so that the raised surface is on the inside, and then the varnish [1a] is applied to both surfaces by a roll coater, and heated and dried at 150 ° C. for 3 minutes with a heating device to prepare a composite prepreg. I got This prepreg is cut to a predetermined length (2 m), and copper foil having a thickness of 18 μm is laminated on both surfaces thereof, and is molded at a molding temperature of 165 ° C., a pressure of 30 kg / cm 2 and a pressure of 90 kg.
For 1.6 minutes, thickness 1.6 mm, thickness of intermediate layer 1.
A 4 mm copper-clad laminate was obtained.

【0016】実施例2 実施例1で使用したエポキシ樹脂ワニス〔1a〕に、こ
の固形分100部に対して、次の配合の無機充填材を配
合し、無機充填材含有ワニス〔2b〕を調製した。 (1)シリカ(龍森製 クリスタライト VX−3) 25部 (2)ギブサイト型水酸化アルミニウム (昭和電工製,ハイジライトH−42) 70 (3)超微粉末シリカ(シオノギ製薬製 カープレックス) 5 (4)アルミナ繊維(ニチアス製 T/#5100) 5 繊維径 2.5μm、繊維長 平均15mm 以下、実施例1と同様の工程を経て、厚さ1.6mm、
中間層の厚み1.4mmの銅張積層板を得た。
Example 2 The epoxy resin varnish [1a] used in Example 1 was mixed with the following inorganic filler with respect to 100 parts of the solid content to prepare a varnish [2b] containing the inorganic filler. did. (1) 25 parts of silica (Crystalite VX-3, manufactured by Tatsumori) (2) Gibbsite type aluminum hydroxide (Hygilite H-42, manufactured by Showa Denko) 70 (3) Ultrafine powdered silica (Carplex manufactured by Shionogi Pharmaceutical) 5 (4) Alumina fiber (Nichias T / # 5100) 5 Fiber diameter 2.5 μm, fiber length average 15 mm or less, through the same process as in Example 1, thickness 1.6 mm,
A copper-clad laminate having an intermediate layer with a thickness of 1.4 mm was obtained.

【0017】比較例1 実施例1で使用した無機充填材含有ワニス〔2a〕を、
起毛処理をしていない単重210g/m2 のガラス織布
(日東紡績製 WE-18K RB-84 )の片面に、乾燥後の膜厚
が1.4mmになるようにナイフコーターで塗工し、加
熱装置で150℃、3分間加熱乾燥した。その上面に同
様に起毛処理をしていない単重210g/m2 のガラス
織布(日東紡績製 WE-18K RB-84 )を重ね合わせ、両表
面に前記エポキシ樹脂ワニス〔1a〕をロールコーター
により塗布し、加熱装置で150℃、3分間加熱乾燥し
て複合プリプレグを得た。以下、実施例1と同様にし
て、厚さ約1.6mmの銅張積層板を得た。得られた銅
張積層板は、成形時に端面からのフローが大きく、この
ため、厚み精度が大きく劣るものであった。
Comparative Example 1 The varnish [2a] containing the inorganic filler used in Example 1 was
One surface of a glass woven fabric (WE-18K RB-84 manufactured by Nitto Boseki Co., Ltd.) with a single weight of 210 g / m 2 that has not been raised is coated with a knife coater so that the film thickness after drying is 1.4 mm. And dried by heating at 150 ° C. for 3 minutes using a heating device. A glass woven fabric of a single weight of 210 g / m 2 (Nitto Boseki WE-18K RB-84), which is also not brushed, is superposed on the upper surface, and the epoxy resin varnish [1a] is coated on both surfaces by a roll coater. It was applied and heated and dried at 150 ° C. for 3 minutes with a heating device to obtain a composite prepreg. Thereafter, in the same manner as in Example 1, a copper-clad laminate having a thickness of about 1.6 mm was obtained. The obtained copper-clad laminate had a large flow from the end face at the time of molding, and therefore had a very poor thickness accuracy.

【0018】比較例2 比較例1において、実施例1で使用した無機充填材含有
ワニス〔2a〕の代わりに、実施例2で使用した無機充
填材含有ワニス〔2b〕を使用した以外は、比較例1と
同様にして、厚さ約1.6mmの銅張積層板を得た。得
られた銅張積層板は、比較例1と同様に、成形時に端面
からのフローが大きく、厚み精度が大きく劣るものであ
った。
Comparative Example 2 Comparative Example 1 was repeated except that the inorganic filler-containing varnish [2b] used in Example 2 was used in place of the inorganic filler-containing varnish [2a] used in Example 1. In the same manner as in Example 1, a copper-clad laminate having a thickness of about 1.6 mm was obtained. As in Comparative Example 1, the obtained copper-clad laminate had a large flow from the end face at the time of molding and had a significantly poor thickness accuracy.

【0019】比較例3(従来例) 実施例1で使用した無機充填材含有ワニス〔2a〕をガ
ラス不織布(日本バイリーン製 EP4075 )に、樹脂及び
無機充填材の合計含有量が中間層全体に対して90%に
なるように含浸し、加熱装置で150℃、3分間加熱乾
燥して、ガラス不織布プリプレグを得た。一方、実施例
1で使用したエポキシ樹脂ワニス〔1a〕を起毛処理を
していないガラス織布(日東紡績製 WE-18K RB-84 )に
樹脂含有量が40%になるように含浸し、加熱装置で1
50℃、3分間加熱乾燥してガラス織布プリプレグを得
た。次に前記ガラス不織布プリプレグを3枚重ね合わせ
て中間層とし、両表面層としてガラス織布プリプレグを
配置し、さらにその両面に18μm厚の銅箔を重ね、成
形温度165℃、圧力60kg/cm2 で90分間積層
成形して、厚さ1.6mmの銅張積層板を得た。
Comparative Example 3 (Conventional Example) The varnish [2a] containing the inorganic filler used in Example 1 was applied to a glass nonwoven fabric (EP4075 manufactured by Nippon Vilene) and the total content of the resin and the inorganic filler relative to the entire intermediate layer. And dried by heating at 150 ° C. for 3 minutes with a heating device to obtain a glass nonwoven fabric prepreg. On the other hand, the epoxy resin varnish [1a] used in Example 1 was impregnated into a glass woven cloth (WE-18K RB-84 manufactured by Nitto Boseki Co., Ltd.) that had not been brushed so that the resin content was 40%, and heated. 1 on device
It was dried by heating at 50 ° C. for 3 minutes to obtain a glass woven prepreg. Next, the three glass non-woven fabric prepregs were laminated to form an intermediate layer, glass woven prepregs were disposed as both surface layers, and a copper foil having a thickness of 18 μm was further laminated on both surfaces thereof, at a molding temperature of 165 ° C. and a pressure of 60 kg / cm 2. For 90 minutes to obtain a copper-clad laminate having a thickness of 1.6 mm.

【0020】実施例3 無機充填材含有ワニス〔2c〕を以下の組成で調製し
た。 (1)臭素化エポキシ樹脂(油化シェル製 Ep−1046) 100部 (2)ジシアンジアミド 4 (3)2−エチル−4−メチルイミダゾール 0.15 (4)ギブサイト型水酸化アルミニウム (昭和電工製,ハイジライトH−42) 80 (5)超微粉末シリカ(シオノギ製薬製 カープレックス) 20 (6)メチルセロソルブ 50 次に、単量210g/m2 のガラス織布(日東紡績製 W
E-18K RB-84 )の片面を針布により600〜800μm
の長さに起毛させ、その起毛させた面に前記無機充填材
含有ワニス〔2c〕を、乾燥後の膜厚が1.4mmにな
るようにナイフコーターで塗工し、加熱装置で150
℃、3分間加熱乾燥した。その上面に同様に片面を起毛
させた単重210g/m2 のガラス織布(日東紡績製 W
E-18K RB-84 )を起毛面が内側となるように重ね合わせ
た。次いで、両表面に次の配合のエポキシ樹脂ワニス
〔3a〕をロールコーターにより塗布して、加熱装置で
150℃、3分間加熱乾燥し複合プリプレグを得た。 (1)臭素化エポキシ樹脂(油化シェル製 Ep−1046) 80部 (2)ノボラック型エポキシ樹脂(油化シェル製 E−180) 20 (3)ジシアンジアミド 4 (4)2−エチル−4−メチルイミダゾール 0.15 (5)メチルセロソルブ 200 この複合プリプレグを所定長さ(2m)に切断した後、
その上下に厚さ18μmの銅箔を重ね合わせ、温度16
5℃、圧力20kg/cm2 で90分間加熱加圧成形し
て、厚さ1.6mmの銅張積層板を作製した。
Example 3 A varnish [2c] containing an inorganic filler was prepared with the following composition. (1) 100 parts of brominated epoxy resin (Ep-1046 manufactured by Yuka Shell) (2) Dicyandiamide 4 (3) 2-ethyl-4-methylimidazole 0.15 (4) Gibbsite type aluminum hydroxide (manufactured by Showa Denko, (Heidilite H-42) 80 (5) Ultrafine powder silica (Carplex manufactured by Shionogi Pharmaceutical Co., Ltd.) 20 (6) Methyl cellosolve 50 Next, a glass woven fabric with a single weight of 210 g / m 2 (Witto Nitto Boseki)
One side of E-18K RB-84) is 600 ~ 800μm with needle cloth
The inorganic filler-containing varnish [2c] is coated on the raised surface with a knife coater so as to have a dried film thickness of 1.4 mm.
C. for 3 minutes. A glass woven fabric with a single weight of 210 g / m 2 (Nitto Boseki W
E-18K RB-84) was overlapped so that the brushed side was inside. Next, an epoxy resin varnish [3a] having the following composition was applied to both surfaces by a roll coater, and dried by heating at 150 ° C. for 3 minutes with a heating device to obtain a composite prepreg. (1) 80 parts of brominated epoxy resin (Ep-1046 manufactured by Yuka Shell) (2) Novolak type epoxy resin (E-180 manufactured by Yuka Shell) 20 (3) dicyandiamide 4 (4) 2-ethyl-4-methyl Imidazole 0.15 (5) Methyl cellosolve 200 After cutting this composite prepreg to a predetermined length (2 m),
A copper foil with a thickness of 18 μm is overlaid on top and bottom of the
It was heated and pressed at 5 ° C. under a pressure of 20 kg / cm 2 for 90 minutes to produce a 1.6 mm-thick copper-clad laminate.

【0021】実施例4 実施例3で使用した無機充填材含有ワニス〔2c〕を、
下記の無機充填材含有ワニス〔2d〕に変更した以外は
実施例3と同様にして厚さ1.6mmの銅張積層板を作
製した。無機充填材含有ワニス〔2d〕の配合は次の通
りである。 (1)臭素化エポキシ樹脂(油化シェル製 Ep−1046) 80部 (2)ノボラック型エポキシ樹脂(油化シェル製 E−180) 20 (3)ジシアンジアミド 4 (4)2−エチル−4−メチルイミダゾール 0.15 (5)ギブサイト型水酸化アルミニウム (昭和電工製,ハイジライトH−42) 80 (6)超微粉末シリカ(シオノギ製薬製 カープレックス) 20 (7)アルミナ繊維(ニチアス製 T/#5100) 5 繊維径 2.5μm、繊維長 平均15mm (8)メチルセロソルブ 50
Example 4 The varnish [2c] containing an inorganic filler used in Example 3 was
A 1.6 mm-thick copper-clad laminate was produced in the same manner as in Example 3, except that the following varnish containing an inorganic filler [2d] was used. The composition of the inorganic filler-containing varnish [2d] is as follows. (1) 80 parts of brominated epoxy resin (Ep-1046 manufactured by Yuka Shell) (2) Novolak type epoxy resin (E-180 manufactured by Yuka Shell) 20 (3) dicyandiamide 4 (4) 2-ethyl-4-methyl Imidazole 0.15 (5) Gibbsite-type aluminum hydroxide (manufactured by Showa Denko, Hijilite H-42) 80 (6) Ultrafine powdered silica (Carplex manufactured by Shionogi Pharmaceutical Co., Ltd.) 20 (7) Alumina fiber (manufactured by Nichias T / # 5100) 5 Fiber diameter 2.5 μm, fiber length average 15 mm (8) Methyl cellosolve 50

【0022】実施例5 エポキシ樹脂ワニス〔1b〕を以下の組成で調製した。 (1)臭素化エポキシ樹脂(油化シェル製 Ep−1046) 80部 (2)ノボラック型エポキシ樹脂(油化シェル製 E−180) 20 (2)ジシアンジアミド 4 (3)2−エチル−4−メチルイミダゾール 0.15 (4)メチルセロソルブ 30 (5)アセトン 60 また、無機充填材含有ワニス〔2e〕を以下の組成で調製した。 (1)臭素化エポキシ樹脂(油化シェル製 Ep−1046) 60部 (2)ノボラック型エポキシ樹脂(油化シェル製 E−180) 40 (3)ジシアンジアミド 4 (4)2−エチル−4−メチルイミダゾール 0.15 (5)水酸化アルミニウム 110 (昭和電工製,ハイジライトH−42) (6)シリカ(龍森製 クリスタライト VX−3) 20 (7)超微粒子シリカ(シオノギ製薬製 カープレックス) 20 (8)メチルセロソルブ 50 次に、単量210g/m2 のガラス織布(日東紡績製 W
E-18K RB-84 )の片面を針布により600〜800μm
の長さに起毛させ、その起毛させた面に前記無機充填材
含有ワニス〔2e〕を、乾燥後の膜厚が1.4mmにな
るようにナイフコーターで塗工し、加熱装置で150
℃、3分間加熱乾燥した。その上面に同様に片面を起毛
させた単重210g/m2 のガラス織布(日東紡績製 W
E-18K RB-84 )を起毛面が内側となるように重ね合わ
せ、次いで、両表面に前記エポキシ樹脂ワニス〔1b〕
をロールコーターにより塗布し、加熱装置で150℃、
3分間加熱乾燥して複合プリプレグを得た。このプリプ
レグを所定の長さ(2m)に切断し、その両面に18μ
m厚の銅箔を重ね、成形温度165℃、圧力30kg/
cm2 で90分間積層成形して、厚さ1.6mmの銅張
積層板を得た。
Example 5 An epoxy resin varnish [1b] was prepared with the following composition. (1) 80 parts of brominated epoxy resin (Ep-1046 manufactured by Yuka Shell) (2) Novolak type epoxy resin (E-180 manufactured by Yuka Shell) 20 (2) dicyandiamide 4 (3) 2-ethyl-4-methyl Imidazole 0.15 (4) Methyl cellosolve 30 (5) Acetone 60 A varnish [2e] containing an inorganic filler was prepared with the following composition. (1) 60 parts of brominated epoxy resin (Ep-1046 manufactured by Yuka Shell) (2) Novolak type epoxy resin (E-180 manufactured by Yuka Shell) 40 (3) dicyandiamide 4 (4) 2-ethyl-4-methyl Imidazole 0.15 (5) Aluminum hydroxide 110 (Heidilite H-42, manufactured by Showa Denko) (6) Silica (Crystalite VX-3, manufactured by Tatsumori) 20 (7) Ultrafine silica (Carplex manufactured by Shionogi Pharmaceutical Co., Ltd.) 20 (8) Methyl cellosolve 50 Next, a glass woven fabric of a single weight of 210 g / m 2 (W
One side of E-18K RB-84) is 600 ~ 800μm with needle cloth
The inorganic filler-containing varnish [2e] is coated on the raised surface with a knife coater so that the film thickness after drying is 1.4 mm, and 150 mm is applied with a heating device.
C. for 3 minutes. A glass woven fabric with a single weight of 210 g / m 2 (Nitto Boseki W
E-18K RB-84) is overlapped so that the raised surface is on the inside, and then the epoxy resin varnish [1b] is applied to both surfaces.
Is applied by a roll coater, and heated at 150 ° C.
The resultant was dried by heating for 3 minutes to obtain a composite prepreg. This prepreg is cut into a predetermined length (2 m), and 18 μm
m thick copper foil, forming temperature 165 ° C, pressure 30kg /
It was laminated and molded at 90 cm 2 for 90 minutes to obtain a copper-clad laminate having a thickness of 1.6 mm.

【0023】実施例6 実施例5で使用した無機充填材含有ワニス〔2e〕を、
下記の無機充填材含有ワニス〔2f〕に変更した以外は
実施例5と同様にして厚さ1.6mmの銅張積層板を作
製した。無機充填材含有ワニス〔2f〕の配合は次の通
りである。 (1)臭素化エポキシ樹脂(油化シェル製 Ep−1046) 60部 (2)ノボラック型エポキシ樹脂(油化シェル製 E−180) 40 (3)ジシアンジアミド 4 (4)2−エチル−4−メチルイミダゾール 0.1 (5)水酸化アルミニウム 110 (昭和電工製,ハイジライトH−42) (6)シリカ(龍森製 クリスタライト VX−3) 10 (7)繊維状パルプ(日本製紙製 KCフロック W-100) 10 (8)超微粒子シリカ(シオノギ製薬製 カープレックス) 20 (9)メチルセロソルブ 50
Example 6 The varnish [2e] containing an inorganic filler used in Example 5 was
A 1.6 mm-thick copper-clad laminate was produced in the same manner as in Example 5, except that the following varnish [2f] containing an inorganic filler was used. The composition of the inorganic filler-containing varnish [2f] is as follows. (1) 60 parts of brominated epoxy resin (Ep-1046 manufactured by Yuka Shell) (2) Novolak type epoxy resin (E-180 manufactured by Yuka Shell) 40 (3) dicyandiamide 4 (4) 2-ethyl-4-methyl Imidazole 0.1 (5) Aluminum hydroxide 110 (manufactured by Showa Denko, Heidilite H-42) (6) Silica (Tatsumori Crystallite VX-3) 10 (7) Fibrous pulp (Nippon Paper KC Floc W) -100) 10 (8) Ultrafine silica (Carplex, Shionogi Pharmaceutical Co., Ltd.) 20 (9) Methyl cellosolve 50

【0024】比較例4 実施例5で使用した無機充填材含有ワニス〔2e〕を、
起毛処理をしていない単重210g/m2 のガラス織布
(日東紡績製 WE-18K RB-84 )の片面に、乾燥後の膜厚
が1.4mmになるようにナイフコーターで塗工し、加
熱装置で150℃、3分間加熱乾燥した。その上面に同
様に起毛処理をしていない単重210g/m2 のガラス
織布(日東紡績製 WE-18K RB-84 )を重ね合わせ、両表
面に前記エポキシ樹脂ワニス〔1b〕をロールコーター
により塗布し、加熱装置で150℃、3分間加熱乾燥し
て複合プリプレグを得た。以下、実施例1と同様にし
て、厚さ約1.6mmの銅張積層板を得た。得られた銅
張積層板は、成形時に端面からのフローが大きく、この
ため、厚み精度が大きく劣るものであった。
Comparative Example 4 The varnish [2e] containing an inorganic filler used in Example 5 was
One surface of a glass woven fabric (WE-18K RB-84 manufactured by Nitto Boseki Co., Ltd.) with a single weight of 210 g / m 2 that has not been raised is coated with a knife coater so that the film thickness after drying is 1.4 mm. And dried by heating at 150 ° C. for 3 minutes using a heating device. A glass woven fabric (210 g / m 2 single weight, WE-18K RB-84, manufactured by Nitto Boseki Co., Ltd.) that has not been brushed similarly is superposed on the upper surface, and the epoxy resin varnish [1b] is coated on both surfaces by a roll coater. It was applied and heated and dried at 150 ° C. for 3 minutes with a heating device to obtain a composite prepreg. Thereafter, in the same manner as in Example 1, a copper-clad laminate having a thickness of about 1.6 mm was obtained. The obtained copper-clad laminate had a large flow from the end face at the time of molding, and therefore had a very poor thickness accuracy.

【0025】比較例5 比較例4において、実施例5で使用した無機充填材含有
ワニス〔2e〕の代わりに、実施例6で使用した無機充
填材含有ワニス〔2f〕を使用した以外は、比較例4と
同様にして、厚さ約1.6mmの銅張積層板を得た。得
られた銅張積層板は、比較例4と同様に、成形時に端面
からのフローが大きく、厚み精度が大きく劣るものであ
った。
Comparative Example 5 Comparative Example 4 was repeated except that the inorganic filler-containing varnish [2f] used in Example 6 was used in place of the inorganic filler-containing varnish [2e] used in Example 5. In the same manner as in Example 4, a copper-clad laminate having a thickness of about 1.6 mm was obtained. As in Comparative Example 4, the obtained copper-clad laminate had a large flow from the end face at the time of molding and had a significantly poor thickness accuracy.

【0026】比較例6(従来例) 無機充填材含有エポキシ樹脂ワニス〔2g〕を以下の組
成で調製した。 (1)臭素化エポキシ樹脂(油化シェル製 Ep−1046) 80部 (2)ノボラック型エポキシ樹脂(油化シェル製 E−180) 20 (3)ジシアンジアミド 4 (4)2−エチル−4−メチルイミダゾール 0.1 (5)水酸化アルミニウム 70 (昭和電工製,ハイジライトH−42) (6)シリカ(龍森製 クリスタライト VX−3) 10 (7)超微粒子シリカ(シオノギ製薬製 カープレックス) 20 (8)メチルセロソルブ 50 この無機充填材含有ワニス〔2g〕をガラス不織布(日
本バイリーン製 EP4075 )に、樹脂と無機充填材の合計
含有量が中間層全体に対して90%になるように含浸
し、加熱装置で150℃、3分間加熱乾燥して、ガラス
不織布プリプレグを得た。一方、実施例5で使用したエ
ポキシ樹脂ワニス〔1b〕を起毛処理をしていないガラ
ス織布(日東紡績製 WE-18K RB-84 )に樹脂含有量が4
0%になるように含浸し、加熱装置で150℃、3分間
加熱乾燥してガラス織布プリプレグを得た。次に前記ガ
ラス不織布プリプレグを3枚重ね合わせて中間層とし、
両表面層としてガラス織布プリプレグを配置し、さらに
その両面に18μm厚の銅箔を重ね、成形温度165
℃、圧力60kg/cm2 で90分間積層成形して、厚
さ1.6mmの銅張積層板を得た。
Comparative Example 6 (Conventional Example) An epoxy resin varnish [2 g] containing an inorganic filler was prepared with the following composition. (1) 80 parts of brominated epoxy resin (Ep-1046 manufactured by Yuka Shell) (2) Novolak type epoxy resin (E-180 manufactured by Yuka Shell) 20 (3) dicyandiamide 4 (4) 2-ethyl-4-methyl Imidazole 0.1 (5) Aluminum hydroxide 70 (Heidilite H-42 manufactured by Showa Denko) (6) Silica (Crystalite VX-3 manufactured by Tatsumori) 10 (7) Ultrafine silica (Carplex manufactured by Shionogi Pharmaceutical Co., Ltd.) 20 (8) Methyl cellosolve 50 This inorganic filler-containing varnish [2 g] is impregnated into a glass nonwoven fabric (EP4075 manufactured by Japan Vilene) so that the total content of the resin and the inorganic filler is 90% with respect to the entire intermediate layer. Then, it was dried by heating at 150 ° C. for 3 minutes with a heating device to obtain a glass nonwoven fabric prepreg. On the other hand, the epoxy resin varnish [1b] used in Example 5 was added to a glass woven fabric (WE-18K RB-84, manufactured by Nitto Boseki Co., Ltd.) that had not been brushed to have a resin content of 4%.
It was impregnated so as to have a concentration of 0% and dried by heating at 150 ° C. for 3 minutes with a heating device to obtain a woven prepreg of glass fabric. Next, three pieces of the glass nonwoven fabric prepreg are laminated to form an intermediate layer,
A glass woven prepreg was disposed as both surface layers, and a copper foil having a thickness of 18 μm was laminated on both surfaces thereof.
Lamination molding was performed at a temperature of 60 ° C. and a pressure of 60 kg / cm 2 for 90 minutes to obtain a copper-clad laminate having a thickness of 1.6 mm.

【0027】以上の実施例及び比較例において得られた
銅張積層板について、以下の特性をを測定した。その結
果を表1に示す。実施例6は、他の実施例に比較して打
ち抜き性がより優れた結果が得られた。
The following characteristics were measured for the copper clad laminates obtained in the above Examples and Comparative Examples. Table 1 shows the results. In Example 6, the result that the punching property was more excellent than the other examples was obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】<測定方法> 1.積層成形時のフロー 500×500mmの積層板を成形したとき、プリプレ
グ端面より流れ出した樹脂の最大流れ長さを測定した。 2.層間引き剥がし強さ エッチングにより銅箔を除去したのち、積層板を10m
m巾にカットして、表面層と中間層との接着強度をテン
シロンにて測定した。 3.曲げ強さ(縦方向) JIS−C6481に準じて測定した。 4.落球衝撃試験 250gの鉄球を積層板に対して落下させ積層板が割れ
る高さを測定した。 5.半田耐熱性 25mm角の銅張り積層板の試験片を、260℃の半田
槽にフロートしてふくれるまでの時間を測定した。 6.打ち抜き性 ASTM D617により測定した。 7.厚み精度 1000mm角の銅張り積層板のコーナー部4箇所と辺
の中央部4箇所及び中央部をマイクロメーターで測定し
て以下の計算によりバラツキを求めた。 〔(測定の最大値−最小値)/平均値〕X100
(%) 8.Z方向の熱膨張率 50℃から200℃まで加熱したときの基板の厚み方向
の膨張率を測定した(TMAによる)。
<Measurement method> Flow of Laminate Molding When a laminate having a size of 500 × 500 mm was molded, the maximum flow length of the resin flowing out from the end face of the prepreg was measured. 2. Interlayer peel strength After removing the copper foil by etching, laminate
After cutting to a width of m, the adhesive strength between the surface layer and the intermediate layer was measured with Tensilon. 3. Flexural strength (longitudinal direction) Measured according to JIS-C6481. 4. Falling ball impact test A 250 g iron ball was dropped on the laminate, and the height at which the laminate broke was measured. 5. Solder heat resistance A test piece of a copper-clad laminate of 25 mm square was floated in a solder bath at 260 ° C., and the time required until the test piece was blown was measured. 6. Punchability Measured according to ASTM D617. 7. Thickness Accuracy Four corner portions and four center portions and a center portion of a 1000 mm square copper-clad laminate were measured with a micrometer, and variations were obtained by the following calculation. [(Maximum value of measurement-minimum value) / average value] X100
(%) 8. Thermal expansion coefficient in Z direction The expansion coefficient in the thickness direction of the substrate when heated from 50 ° C to 200 ° C was measured (by TMA).

【0030】[0030]

【発明の効果】本発明の積層板は、起毛されたガラス織
布を用いているので、表面層と中間層との層間接着性が
優れている。そして、積層成形時のフローが小さいか殆
どないので、積層板の厚み精度が優れている。高価なガ
ラス不織布を使用しないこと及び成形時の歩留まりの向
上により、積層板の低コスト化を達成することができ
る。また、中間層の樹脂に無機充填材、又は無機充填材
に加えて無機繊維又は有機繊維が配合されていることに
より、曲げ強度、耐衝撃性の向上が達成される。
Since the laminated board of the present invention uses a brushed glass woven fabric, the interlayer adhesion between the surface layer and the intermediate layer is excellent. And since the flow at the time of lamination molding is small or almost nonexistent, the lamination plate has excellent thickness accuracy. By not using an expensive glass nonwoven fabric and improving the yield at the time of molding, the cost of the laminated board can be reduced. In addition, when an inorganic filler or an inorganic fiber or an organic fiber is added to the resin of the intermediate layer in addition to the inorganic filler, the bending strength and the impact resistance are improved.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 両表面層は、少なくとも内面側が起毛し
たガラス織布に熱硬化性樹脂を含浸した基材からなり、
中間層は、熱硬化性樹脂に無機充填材を前記樹脂に対し
て10〜300重量%混合された組成物からなり、これ
らを加熱加圧成形してなることを特徴とする積層板。
1. Both surface layers are made of a substrate in which a thermosetting resin is impregnated into a glass woven fabric having at least an inner surface raised,
The laminate is characterized in that the intermediate layer is made of a composition in which a thermosetting resin is mixed with an inorganic filler in an amount of 10 to 300% by weight based on the resin, and these are formed by heating and pressing.
【請求項2】 中間層は、無機繊維又は有機繊維が熱硬
化性樹脂に対して0.01〜50重量%混合された組成
物からなる請求項1記載の積層板。
2. The laminate according to claim 1, wherein the intermediate layer is made of a composition in which inorganic fibers or organic fibers are mixed at 0.01 to 50% by weight with respect to the thermosetting resin.
【請求項3】 中間層の樹脂に混合される無機繊維又は
有機繊維の繊維径が15μm以下である請求項2記載の
積層板。
3. The laminate according to claim 2, wherein the fiber diameter of the inorganic fiber or the organic fiber mixed with the resin of the intermediate layer is 15 μm or less.
【請求項4】 表面層のガラス織布に対する積層板全体
に含まれる熱硬化性樹脂と無機充填材との合計量の割合
が、2.0〜10.0である請求項1、2又は3記載の
積層板。
4. The ratio of the total amount of the thermosetting resin and the inorganic filler contained in the entire laminate to the glass woven fabric of the surface layer is 2.0 to 10.0. A laminate as described.
【請求項5】 ガラス織布の起毛長さが50μm以上で
ある請求項1、2、3又は4記載の積層板。
5. The laminated board according to claim 1, wherein the raised length of the glass woven fabric is 50 μm or more.
【請求項6】 中間層の厚みが、0.2〜2.0mmで
ある請求項1,2、3、4又は5記載の積層板。
6. The laminate according to claim 1, wherein the intermediate layer has a thickness of 0.2 to 2.0 mm.
【請求項7】 中間層の厚みが、0.6〜1.4mmで
ある請求項6記載の積層板。
7. The laminate according to claim 6, wherein the thickness of the intermediate layer is 0.6 to 1.4 mm.
【請求項8】 中間層は、熱硬化性樹脂に無機充填材を
前記樹脂に対して100〜150重量%混合された組成
物からなる請求項1,2,3,4,5,6又は7記載の
積層板。
8. The intermediate layer is composed of a composition obtained by mixing a thermosetting resin with an inorganic filler in an amount of 100 to 150% by weight based on the weight of the resin. A laminate as described.
JP11549298A 1997-04-24 1998-04-24 Laminated plate Pending JPH115276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11549298A JPH115276A (en) 1997-04-24 1998-04-24 Laminated plate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP10790697 1997-04-24
JP9-107906 1997-04-24
JP10981897 1997-04-25
JP9-109818 1997-04-25
JP11549298A JPH115276A (en) 1997-04-24 1998-04-24 Laminated plate

Publications (1)

Publication Number Publication Date
JPH115276A true JPH115276A (en) 1999-01-12

Family

ID=27311101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11549298A Pending JPH115276A (en) 1997-04-24 1998-04-24 Laminated plate

Country Status (1)

Country Link
JP (1) JPH115276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651325A (en) * 1983-02-28 1987-03-17 Hughes Aircraft Company RF-pumped infrared laser using transverse gas flow
JP2012231140A (en) * 2011-04-14 2012-11-22 Sumitomo Bakelite Co Ltd Laminate, circuit board, and semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651325A (en) * 1983-02-28 1987-03-17 Hughes Aircraft Company RF-pumped infrared laser using transverse gas flow
JP2012231140A (en) * 2011-04-14 2012-11-22 Sumitomo Bakelite Co Ltd Laminate, circuit board, and semiconductor package

Similar Documents

Publication Publication Date Title
JP3119577B2 (en) Laminated board
JPH0221667B2 (en)
US6117516A (en) Laminate and process for producing the same
JPH115276A (en) Laminated plate
JP3343722B2 (en) Method for producing composite prepreg and laminate
JP2007277463A (en) Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same
JP2612129B2 (en) Laminated board
JP2720726B2 (en) Composite laminate
JPH1017684A (en) Production of prepreg and laminate
JPH09254331A (en) Laminated sheet
JPH064310B2 (en) Electric laminate
JP3327366B2 (en) Manufacturing method of laminated board
JPH11236456A (en) Resin sheet, metallic foil-clad laminate and multilayer printed wiring board
JPH08174736A (en) Laminated sheet
JPH06112611A (en) Laminated board for printed circuit
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JPH05261870A (en) Laminated sheet for printed circuit board
JPH05309789A (en) Production of composite copper clad laminated sheet
JPH07176843A (en) Laminated board for printed circuit
JP2935329B2 (en) Manufacturing method of metal foil clad laminate
JP3596819B2 (en) Printed circuit laminate
JPH05327150A (en) Laminated plate for printed circuit
JPH10338758A (en) Production of prepreg and laminated sheet
JPH10337785A (en) Manufacture of laminate
JP2007001230A (en) Method for manufacturing laminate