Nothing Special   »   [go: up one dir, main page]

JPH1140869A - Metal-ceramic laminated thin film and forming method therefor - Google Patents

Metal-ceramic laminated thin film and forming method therefor

Info

Publication number
JPH1140869A
JPH1140869A JP9210120A JP21012097A JPH1140869A JP H1140869 A JPH1140869 A JP H1140869A JP 9210120 A JP9210120 A JP 9210120A JP 21012097 A JP21012097 A JP 21012097A JP H1140869 A JPH1140869 A JP H1140869A
Authority
JP
Japan
Prior art keywords
thin film
metal
tini
substrate
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9210120A
Other languages
Japanese (ja)
Other versions
JP3122759B2 (en
Inventor
Takashi Iijima
高志 飯島
Ekijiyun Kin
益準 金
Tokuo Sanada
徳雄 真田
Toshihiko Abe
利彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP09210120A priority Critical patent/JP3122759B2/en
Publication of JPH1140869A publication Critical patent/JPH1140869A/en
Application granted granted Critical
Publication of JP3122759B2 publication Critical patent/JP3122759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent mutual diffusion and diffusion between a substrate and an electrode material by a method wherein a barrier layer is provided in a specific alloy thin film, so as to restrain mutual diffusion, and furthermore a specific ferroelectric thin film is deposited thereon. SOLUTION: A Ti thin film serving as a barrier layer is deposited through a sputtering method on a laminated film formed of TiNi/SiO2 /Si substrate, so as to prevent mutual diffusion from occurring between Pt and TiNi. The barrier layer of Ti thin film is formed in thickness of 1 nm to 1 μm. Furthermore, a Pt thin film serving as a barrier layer for a ferroelectric body is formed on the laminated film, formed of TiNi/SiO2 /Si substrate where the Ti barrier layer is formed. Then, a thin film of lead titanate ferroelectric material is formed through a sol-gel method. by these processes, mutual diffusion can be restrained effectively. Thorough this setup, a superior metal-ceramic laminated thin film where two functional materials are effectively made use of can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Tiを含有するN
i系合金薄膜またはNiを含有するTi系合金薄膜とP
bTiO3 系強誘電体薄膜を用いた機能融合化材料にお
ける相互拡散のない良好な薄膜積層構造を備えた金属−
セラミックスの積層薄膜および同薄膜の形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ti-containing N
i-based alloy thin film or Ti-based alloy thin film containing Ni and P
Metals with good thin-film lamination structure without interdiffusion in functional fusion material using bTiO 3 -based ferroelectric thin film
The present invention relates to a laminated thin film of ceramics and a method for forming the same.

【0002】[0002]

【従来の技術】近年、圧電効果を示す強誘電体、磁気ひ
ずみ現象を利用した磁歪材料、熱効果を利用した形状記
憶合金などは、薄膜化することにより、微小変位制御用
のアクチュエータとしての利用が検討されている( 1)
G.Yi and M Sayer,Am.Ceram.Bull.,70 (1991) 1173.
2) T.Fukuda,H.Hosokai,H.Ohyama,H.Kashimoto and F.A
rai,Proc.IEEE MEMS'91 Workshop,(1991) 210. 3) A.
D.Johnson,J.D.Busch,C.A.Ray and C.Sloan,Mat.Res.So
c.Symp.Proc. 276 (1992) 151.参照)。そして、この薄
膜作製の手法を利用し、異なる機能を示す相の複合組織
化または積層化を行なうことにより、さらに高次な知的
な機能を示す材料の開発が行なわれている。このような
中で、Tiを含有するNi系合金またはNiを含有する
Ti系合金、特にTiNi形状記憶合金と圧電性を示す
チタン酸鉛(PbTiO3 )系強誘電体の積層薄膜構造
を構築することにより、温度および電場に対して選択的
に応答させ、かつ相互に機能を補い合える新たな機能融
合材料が考えられる。
2. Description of the Related Art In recent years, a ferroelectric material exhibiting a piezoelectric effect, a magnetostrictive material utilizing a magnetostrictive phenomenon, a shape memory alloy utilizing a thermal effect, and the like have been used as an actuator for controlling a small displacement by forming a thin film. Is being considered (1)
G. Yi and M Sayer, Am. Ceram. Bull., 70 (1991) 1173.
2) T. Fukuda, H. Hosokai, H. Ohyama, H. Kashimoto and FA
rai, Proc. IEEE MEMS'91 Workshop, (1991) 210.3) A.
D.Johnson, JDBusch, CARay and C.Sloan, Mat.Res.So
c. Symp. Proc. 276 (1992) 151.). By using this thin film production technique to form a composite structure or laminate of phases having different functions, materials having higher intellectual functions are being developed. Under such circumstances, a stacked thin film structure of a Ni-based alloy containing Ti or a Ti-based alloy containing Ni, particularly a TiNi shape memory alloy and a lead titanate (PbTiO 3 ) -based ferroelectric material exhibiting piezoelectricity is constructed. Thus, a new function fusion material that can selectively respond to temperature and electric field and complement each other can be considered.

【0003】強誘電体材料を使用する場合に注意しなけ
ればならないのは、主な強誘電体材料は結晶膜であり、
強誘電性をもつ結晶構造を得るためにはその材料で決ま
る限られた温度範囲での熱処理が必要となることであ
る。この温度が高ければ異種機能材料との間で、または
電極や選択された基板あるいは下地との間で相互拡散な
どが生じ、それぞれの材料が本来所有していたはずであ
る特性が失われるなどの悪影響がでることがある。この
ため、異種機能材料との組合せでは、そのまま積層する
ことには限界があることが多いので、他に対策を講ずる
必要がある。
When using a ferroelectric material, it should be noted that the main ferroelectric material is a crystalline film,
In order to obtain a ferroelectric crystal structure, heat treatment in a limited temperature range determined by the material is required. If this temperature is high, interdiffusion occurs between heterogeneous functional materials, or between electrodes, the selected substrate or base, etc., and the properties originally possessed by each material are lost. Adverse effects may occur. For this reason, in the case of a combination with a heterogeneous functional material, there is often a limit to the lamination as it is, and therefore, it is necessary to take other measures.

【0004】また、強誘電体キャパシタのための電極材
料として要求される特性は、電気抵抗が十分低い、強誘
電体材料との格子定数のミスマッチが小さい、耐熱性が
高い、反応性が低い、拡散バリア性が高い、下地や強誘
電体材料との密着性が良いことなどが要求されるが、異
なる機能を示す材料との兼ね合いで、いずれの電極材料
を使用するかということも問題となる。もしこのような
電極材料に適合するものが存在しなければ、その条件に
合う適当な材料を組み合わせて積層構造も検討しなけれ
ばならない。しかし、それに伴う副作用も発生するの
で、最適な条件の電極材料の選択は難しい問題を含んで
いる。
Further, characteristics required as an electrode material for a ferroelectric capacitor include a sufficiently low electric resistance, a small mismatch in lattice constant with the ferroelectric material, a high heat resistance, a low reactivity, High diffusion barrier properties and good adhesion to the underlayer and ferroelectric material are required, but the choice of which electrode material to use in conjunction with materials that exhibit different functions also poses a problem. . If there is no material suitable for such an electrode material, a laminated structure must be examined by combining materials suitable for the conditions. However, there are also side effects associated therewith, and selection of an electrode material under optimal conditions involves a difficult problem.

【0005】また、上記TiNi形状記憶合金のような
Tiを含有するNi系合金またはNiを含有するTi系
合金においては、熱が付加されるとチタン酸鉛系(Pb
TiO3 系)強誘電体との間で、界面において酸素と反
応して酸化物層が新たに形成されるなど、かなり激しい
相互拡散を生じるので問題が多い。TiNi層はこのよ
うに強誘電体材料だけでなく、Si基板やPt電極材料
とも反応層を形成するという問題も発生する。
Further, in a Ti-containing Ni-based alloy such as the above-mentioned TiNi shape memory alloy or a Ni-containing Ti-based alloy, a lead titanate (Pb)
There is a lot of problem because considerably intense interdiffusion occurs between the ferroelectric substance and a TiO 3 -based ferroelectric substance, for example, a new oxide layer is formed by reacting with oxygen at the interface. As described above, the TiNi layer has a problem that a reaction layer is formed not only with the ferroelectric material but also with the Si substrate and the Pt electrode material.

【0006】このようなことから、従来はTiNi形状
記憶合金のようなTiを含有するNi系合金薄膜または
Niを含有するTi系合金薄膜とPbTiO3 系強誘電
体薄膜との機能を組み合わせた実用的かつ新しい機能材
料は実現していなかった。
[0006] For this reason, conventionally, a Ni-based alloy thin film containing Ti, such as a TiNi shape memory alloy, or a Ti-based alloy thin film containing Ni and a PbTiO 3 -based ferroelectric thin film are combined for practical use. A new and functional material has not been realized.

【0007】[0007]

【発明が解決しようとする課題】本発明は、TiNi形
状記憶合金のようなTiを含有するNi系合金またはN
iを含有するTi系合金とPbTiO3 系強誘電体との
機能を融合して新しい機能材料を実現させ、両機能材料
との間に効果的なバリア層を形成して相互拡散を防止す
るとともに、基板および電極材料との間での拡散も有効
に防止することのできる金属−セラミックス積層薄膜お
よび同薄膜の形成方法を提供する。また、本発明におい
ては誘電率および誘電損失ともに、単層の強誘電体膜と
同等の特性を保持し、かつこのような強誘電特性と形状
記憶特性が融合した機能素子が容易に得られる金属−セ
ラミックス積層薄膜および同薄膜の形成方法を提供す
る。
SUMMARY OF THE INVENTION The present invention relates to a Ti-containing Ni-based alloy such as TiNi shape memory alloy or N-based alloy.
A new functional material is realized by fusing the functions of the Ti-based alloy containing i and the PbTiO 3 -based ferroelectric material, and an effective barrier layer is formed between the two functional materials to prevent mutual diffusion and And a metal-ceramic laminated thin film capable of effectively preventing diffusion between a substrate and an electrode material, and a method for forming the same. In addition, in the present invention, both the dielectric constant and the dielectric loss are equivalent to those of a single-layer ferroelectric film, and a metal capable of easily obtaining a functional element in which such ferroelectric characteristics and shape memory characteristics are combined is easily obtained. -To provide a ceramic laminated thin film and a method for forming the same.

【0008】[0008]

【課題を解決するための手段】本発明は、 1 Tiを含有するNi系合金薄膜またはNiを含有す
るTi系合金薄膜の上に、相互拡散を抑制するためのバ
リア層を、さらにその上にPbTiO3 系強誘電体薄膜
を備えていることを特徴とする金属−セラミックス積層
薄膜 2 Tiを含有するNi系合金薄膜またはNiを含有す
るTi系合金薄膜とPbTiO3 系強誘電体薄膜との間
に、相互拡散を抑制するためのバリア層として、前記N
i系合金薄膜またはTi系合金薄膜側にTi、そしてP
bTiO3 系強誘電体薄膜側にPtの積層薄膜を備えて
いることを特徴とする金属−セラミックス積層薄膜 3 前記Ni系合金薄膜またはTi系合金薄膜がTi4
0〜60at%、残部NiであるTiNi合金であるこ
とを特徴とする上記1または2に記載の金属−セラミッ
クス積層薄膜 4 Ti薄膜およびPt薄膜のバリア層がそれぞれ1n
m〜1μmの膜厚を備えていることを特徴とする上記2
または3に記載の金属−セラミックス積層薄膜 5 前記Ni系合金薄膜においては主成分とするNiが
30at%以上、また前記Ti系合金薄膜においては主
成分とするTiが30at%以上含有することを特徴と
する上記1〜4に記載の金属−セラミックス積層薄膜 6 表面にSiO2 層を形成したSi基板上に積層され
ていることを特徴とする上記1〜5のそれぞれに記載の
金属−セラミックス積層薄膜 7 前記PbTiO3 系強誘電体薄膜がPZT(Pb
(Zr1-x Tix )O3 ,x<1)系強誘電体薄膜であ
ることを特徴とする上記1〜6のそれぞれに記載の金属
−セラミックス積層薄膜 8 基板上に、スパッタリングにより1〜3μmのTi
を含有するNi系合金薄膜またはNiを含有するTi系
合金薄膜を形成した後、該薄膜上にバリア層として、そ
れぞれ1nm〜1μm厚のTi薄膜およびPt薄膜をこ
の順にスパッタリングにより形成し、さらにこのバリア
層の上にチタン酸鉛系強誘電体薄膜をゾル・ゲル法によ
り形成することを特徴とする金属−セラミックス積層薄
膜の形成方法 9 基板上に1〜3μmのTi40〜60at%、残部
NiであるTiNi合金薄膜をスパッタリングにより形
成することを特徴とする上記7に記載の金属−セラミッ
クス積層薄膜の形成方法 10 基板としてSi基板を用いることを特徴とする上
記8または9に記載の金属−セラミックス積層薄膜の形
成方法 11 Si基板の表面に予め熱酸化によりSiO2 層を
形成することを特徴とする上記10に記載の金属−セラ
ミックス積層薄膜の形成方法に関する。
According to the present invention, a barrier layer for suppressing interdiffusion is further provided on a Ni-based alloy thin film containing 1 Ti or a Ti-based alloy thin film containing Ni. metal, characterized in that it comprises a PbTiO 3 based ferroelectric thin film - between the Ti-based alloy thin film and PbTiO 3 based ferroelectric thin film containing Ni-based alloy thin film or Ni containing ceramic multilayer thin film 2 Ti In addition, as a barrier layer for suppressing mutual diffusion,
Ti and P on the i-based alloy thin film or Ti-based alloy thin film side
a metal-ceramic laminated thin film characterized in that a laminated thin film of Pt is provided on the bTiO 3 -based ferroelectric thin film side 3 The Ni-based alloy thin film or the Ti-based alloy thin film is Ti4
The metal-ceramic laminated thin film 4 Ti thin film and the Pt thin film each having a barrier layer of 1 n each comprising a TiNi alloy of 0 to 60 at% and the balance being Ni.
(2) characterized in that it has a film thickness of m to 1 μm.
Or the metal-ceramic laminated thin film 5 described in 3 above, wherein the Ni-based alloy thin film contains 30 at% or more of Ni as a main component, and the Ti-based alloy thin film contains 30 at% or more of Ti as a main component. 6. The metal-ceramic laminated thin film according to any one of the above items 1 to 5, wherein the metal-ceramic laminated thin film is laminated on a Si substrate having an SiO 2 layer formed on a surface thereof. 7. The PbTiO 3 -based ferroelectric thin film is made of PZT (Pb
(Zr 1-x Ti x) O 3, x <1) system strong metal according to each of the 1 to 6, characterized in that a dielectric thin film - the ceramic multilayer thin film 8 on the substrate, 1 by sputtering 3μm Ti
After forming a Ni-based alloy thin film containing Ni or a Ti-based alloy thin film containing Ni, a Ti thin film and a Pt thin film each having a thickness of 1 nm to 1 μm are formed as a barrier layer on the thin film by sputtering in this order. 9. A method for forming a metal-ceramic laminated thin film, wherein a lead titanate-based ferroelectric thin film is formed on a barrier layer by a sol-gel method. 10. The method for forming a metal-ceramic multilayer thin film according to the above 7, wherein a certain TiNi alloy thin film is formed by sputtering. 10. The metal-ceramic multilayer according to the above 8 or 9, wherein a Si substrate is used as a substrate. 1 above, and forming a SiO 2 layer in advance by thermal oxidation method for forming 11 Si surface of the substrate of the thin film A method for forming a ceramic multilayer thin film - metal described.

【0009】[0009]

【発明の実施の形態】本発明は、Ti40〜60at
%、残部NiであるTiNi形状記憶合金などのTiを
含有するNi系合金またはNiを含有するTi系合金と
PbTiO3 系強誘電体との機能融合材に関するもので
あるが、基板や両機能材の相互拡散、特にPbTiO3
系強誘電体薄膜は殆どが結晶膜であり、熱処理が必要と
なるため拡散の問題を抜きには語れないものである。ま
ず、Si基板への例えばTiNi形状記憶合金膜の形成
であるが、Si基板へ直接TiNi薄膜を形成した場合
には後述する比較例にも示すように、TiNi層中にS
iが拡散する。この拡散を阻止する方法として、Si
(100)基板を熱酸化させ、表面にSiO2 層を形成
するのが有効である。図6に、SiO2 /Si基板を用
い、基板温度450°Cで作製したTiNi膜の断面組
織を示す。また、この積層膜のX線回折結果を図7に示
す。この図6より、SiO2 とTiNi層の境界には反
応相が存在していないことが分かる。また、X線回折の
結果からも、SiはTiNi層に拡散しておらず、Si
2 層によりTiNi層へのSiの拡散が阻止でき、S
iO2 層は効果的なバリアとなることが分かる。なお、
TiNi膜は後述する実施例と同一の条件で、Ti−4
8at.%Ni合金ターゲットを用い、R.Fマグネト
ロンスパッタ装置を使用して形成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a Ni-based alloy containing Ti such as TiNi shape memory alloy or a Ni-containing Ti-based alloy such as a TiNi shape memory alloy and a PbTiO 3 -based ferroelectric material, and a substrate or both functional materials. Interdiffusion, especially PbTiO 3
Most of the ferroelectric thin films are crystalline films and require heat treatment, so that the problem of diffusion cannot be described without exception. First, for example, a TiNi shape memory alloy film is formed on a Si substrate. When a TiNi thin film is formed directly on a Si substrate, as shown in a comparative example described later, STi is formed in the TiNi layer.
i diffuses. As a method of preventing this diffusion, Si
It is effective to thermally oxidize the (100) substrate to form a SiO 2 layer on the surface. FIG. 6 shows a cross-sectional structure of a TiNi film formed using a SiO 2 / Si substrate at a substrate temperature of 450 ° C. FIG. 7 shows the result of X-ray diffraction of this laminated film. From FIG. 6, it can be seen that no reaction phase exists at the boundary between the SiO 2 and the TiNi layer. Also, from the result of X-ray diffraction, Si was not diffused into the TiNi layer,
The O 2 layer can prevent the diffusion of Si into the TiNi layer,
It can be seen that the iO 2 layer is an effective barrier. In addition,
The TiNi film is made of Ti-4 under the same conditions as the embodiment described later.
8 at. % Ni alloy target. It was formed using an F magnetron sputtering apparatus.

【0010】さらにX線回折の結果より、SiO2 /S
i基板上に作製したTiNi薄膜はオーステナイト相で
あるB2構造を示すとともに、(110)面が優先的に
配向することが分かった。一般に膜面の優先配向は成膜
初期段階の成膜様式に大きく左右されることが知られて
いる。酸化物は表面エネルギーが大きいため、B2構造
において最も低い表面エネルギーを持つ最密面である
(110)面が優先配向するものと考えられる。このよ
うにSi基板上のSiO2 層はバリアとして有効であ
る。
Further, from the result of the X-ray diffraction, it was found that SiO 2 / S
It was found that the TiNi thin film formed on the i-substrate showed a B2 structure which is an austenite phase and the (110) plane was preferentially oriented. In general, it is known that the preferential orientation of the film surface largely depends on the film forming method at the initial stage of film formation. Since the oxide has a large surface energy, it is considered that the (110) plane, which is the closest plane having the lowest surface energy in the B2 structure, is preferentially oriented. Thus, the SiO 2 layer on the Si substrate is effective as a barrier.

【0011】次に、PbTiO3 系強誘電体薄膜とTi
Ni界面における拡散であるが、後述の比較例に示すよ
うに、PbTiO3 系強誘電体薄膜とTiNiとの界面
で、酸素と反応したり化合物が形成したりして広い範囲
にわたり相互拡散を生ずる。なお、この場合のチタン酸
鉛(PbTiO3 )系強誘電体の薄膜は後述する実施例
と同一の条件でゾル・ゲル法により形成したものであ
る。この拡散阻止バリアとして考えたのが、PZT強誘
電体薄膜の電極材料として多く用いられているPtであ
る。このPtが電極材料として用いられる主な理由は強
誘電体材料との格子定数のミスマッチが小さい、反応性
が低い、高温耐性が優れている、細密充填構造であるF
CC(面心立方格子)構造をとるため自己配向が強いな
どである。
Next, a PbTiO 3 -based ferroelectric thin film and Ti
In the diffusion at the Ni interface, as shown in a comparative example described later, at the interface between the PbTiO 3 -based ferroelectric thin film and TiNi, mutual diffusion occurs due to reaction with oxygen or formation of a compound over a wide range. . In this case, the lead titanate (PbTiO 3 ) -based ferroelectric thin film was formed by a sol-gel method under the same conditions as in the examples described later. Pt, which is widely used as an electrode material for a PZT ferroelectric thin film, is considered as the diffusion blocking barrier. The main reason why Pt is used as an electrode material is that F has a small lattice mismatch with the ferroelectric material, low reactivity, excellent high-temperature resistance, and a close-packed structure.
Self-orientation is strong because it has a CC (face-centered cubic lattice) structure.

【0012】そこで、Pb(Ti0.9Al0.1)O3 とT
iNi界面の拡散阻止層としてPtを用いた。すなわ
ち、TiNi/SiO2 /Si基板上にPt膜をスパッ
タリング法で形成し、その上にPb(Ti0.9Al0.1
3 を積層した。図8にこのようにして作製した膜の断
面を示す。これによると、Pb(Ti0.9Al0.1)O3
とPt層との間は、良好な界面を形成している。しか
し、Pt/TiNi層の境界付近には微細な粒と空孔か
らなる反応相が形成されている。X線分析の結果、この
ような層構造はPt層にはTiが、境界付近のTiNi
層にはNiが過剰に存在することにより、TiNi側の
TiがPt層に拡散し、反応相が形成されたものと考え
られる。
Therefore, Pb (Ti 0.9 Al 0.1 ) O 3 and T
Pt was used as a diffusion blocking layer at the iNi interface. That is, a Pt film is formed on a TiNi / SiO 2 / Si substrate by a sputtering method, and Pb (Ti 0.9 Al 0.1 ) is formed thereon.
O 3 was laminated. FIG. 8 shows a cross section of the film thus manufactured. According to this, Pb (Ti 0.9 Al 0.1 ) O 3
A good interface is formed between the Pt layer and the Pt layer. However, near the boundary of the Pt / TiNi layer, a reaction phase composed of fine grains and pores is formed. As a result of X-ray analysis, such a layer structure has Ti in the Pt layer and TiNi near the boundary.
It is considered that the presence of excessive Ni in the layer caused the Ti on the TiNi side to diffuse into the Pt layer, forming a reaction phase.

【0013】この積層膜構造のX線回折結果を図9に示
す。後記する前記図5と比較した場合TiO2 の形成が
抑制されるとともに、より鮮明なPb(Ti0.9
0.1)O3 のペロブスカイト構造のピークを示してい
ることが分かる。しかしTi3Ni4、TiNi3 のピー
クおよび図に示すようなPtTiの強いピークが見ら
れ、Pt層へのTiの拡散とNi過剰層の存在を示す組
織観察の結果と一致した。以上から、TiNi層とPb
(Ti0.9Al0.1)O3 の境界にPt層を形成した場
合、酸素のTiNi層への拡散を阻止することは可能と
なったが、Pt層へTiが拡散してしまうことが分かっ
た。したがって、この状態ではやはり拡散阻止のための
バリアとしてまだ欠陥があることが認識された。
FIG. 9 shows an X-ray diffraction result of the laminated film structure. Compared with FIG. 5 described later, the formation of TiO 2 is suppressed, and Pb (Ti 0.9 A
l 0.1 ) It can be seen that it shows the peak of the perovskite structure of O 3 . However, peaks of Ti 3 Ni 4 and TiNi 3 and a strong peak of PtTi as shown in the figure were observed, which were in agreement with the results of microstructure observation indicating the diffusion of Ti into the Pt layer and the presence of the Ni excess layer. From the above, the TiNi layer and Pb
When a Pt layer was formed at the boundary of (Ti 0.9 Al 0.1 ) O 3 , it was possible to prevent oxygen from diffusing into the TiNi layer, but it was found that Ti diffused into the Pt layer. Therefore, in this state, it was recognized that there was still a defect as a barrier for preventing diffusion.

【0014】そこでさらに、Pt層とTiNi層との界
面に他のバリアを設ける必要があり、PtとTiNiと
の相互拡散を防止するために、Ti薄膜のバリア層をス
パッタリングにより作製することを試みた。この結果、
Ti/TiNi層間には反応層が形成されておらず良好
な境界面を示し、Pt/Ti層はPb(Ti0.9
0.1)O3 とTiNi層間の拡散防止層として極めて
有効であることが分かった。なお、この結果の詳細につ
いては、実施例で再度述べることとする。上記において
は、主としてTiNiについて説明してきたが、Tiを
含有するNi系合金またはNiを含有するTi系合金一
般について言えることであり、本願発明はこれらを包含
するものである。特に、Ni系合金薄膜においては主成
分とするNiが30at%以上、またTi系合金薄膜に
おいては主成分とするTiが30at%以上含有する金
属−セラミックス積層薄膜において効果が著しい。ま
た、特に強誘電体としてPb(Ti0.9Al0.1)O3
例に挙げて説明してきたが、他のPbTiO3 系強誘電
体にも同様に適用できるものである。上記におけるTi
薄膜およびPt薄膜のバリア層はそれぞれ1nm〜1μ
mの膜厚とする。1nm未満ではバリア層として拡散防
止効果がなく、また1μmを超えると上記TiNi形状
記憶合金のようなTiを含有するNi系合金またはNi
を含有するTi系合金の機能およびPbTiO3 系強誘
電体の機能を有効に活用できないので、上記の膜厚の範
囲とするのが好ましい。
Therefore, it is necessary to provide another barrier at the interface between the Pt layer and the TiNi layer. In order to prevent interdiffusion between Pt and TiNi, an attempt has been made to form a barrier layer of a Ti thin film by sputtering. Was. As a result,
No reaction layer was formed between the Ti / TiNi layers, showing a good interface, and the Pt / Ti layer was composed of Pb (Ti 0.9 A
l 0.1 ) It was found to be extremely effective as a diffusion preventing layer between the O 3 and TiNi layers. The details of this result will be described again in Examples. In the above description, TiNi has been mainly described. However, the present invention can be generally applied to Ti-containing Ni-based alloys or Ni-containing Ti-based alloys, and the present invention includes these. In particular, the effect is remarkable in a metal-ceramic laminated thin film containing 30 at% or more of Ni as a main component in a Ni-based alloy thin film and 30 at% or more in a Ti-based alloy thin film. Although Pb (Ti 0.9 Al 0.1 ) O 3 has been particularly described as an example of a ferroelectric substance, the present invention can be similarly applied to other PbTiO 3 -based ferroelectric substances. Ti in the above
The barrier layers of the thin film and the Pt thin film are each 1 nm to 1 μm.
m. If it is less than 1 nm, there is no diffusion preventing effect as a barrier layer, and if it exceeds 1 μm, a Ti-containing Ni-based alloy such as the above-mentioned TiNi shape memory alloy or Ni
Since the function of the Ti-based alloy containing PbTiO 3 and the function of the PbTiO 3 -based ferroelectric cannot be effectively utilized, it is preferable to set the thickness within the above range.

【0015】以上より明らかなように、Tiを含有する
Ni系合金薄膜またはNiを含有するTi系合金薄膜と
PbTiO3 系強誘電体薄膜との間に、相互拡散を抑制
するためのバリア層として、前記Ni系合金薄膜または
Ti系合金薄膜側にTi、そしてPbTiO3 系強誘電
体薄膜側にPtの積層薄膜を備えていることは、金属−
セラミックス積層薄膜の機能を融合させる上で、極めて
有効であることが分かる。なお、上記説明および後述す
る実施例において、PbTiO3 系強誘電体薄膜の形成
にはゾル・ゲル法を使用し、TiNi薄膜ならびにTi
およびPtのバリア層の形成にスパッタリング法を使用
して説明した。これらの薄膜の形成法は本発明の金属−
セラミックス積層薄膜を形成する上で安定した有効な方
法である。しかし、これら以外の薄膜形成法であっても
同様の現象が起きるものであり、他の薄膜形成法の使用
を妨げるものではない。したがって、本発明においては
上記以外の薄膜形成法を任意に適用でき、本発明は上記
以外の薄膜形成法をも包含するものである。
As apparent from the above, a barrier layer for suppressing interdiffusion between a Ni-containing alloy thin film containing Ti or a Ti-based alloy thin film containing Ni and a PbTiO 3 -based ferroelectric thin film is provided. The multilayer thin film of Ti on the Ni-based alloy thin film or Ti-based alloy thin film side and Pt on the PbTiO 3 -based ferroelectric thin film side
It turns out that it is extremely effective in integrating the functions of the ceramic laminated thin film. In the above description and examples described later, the PbTiO 3 -based ferroelectric thin film is formed by the sol-gel method, and the TiNi thin film and Ti
And the formation of the Pt barrier layer has been described using the sputtering method. The method for forming these thin films is based on the metal of the present invention.
This is a stable and effective method for forming a ceramic laminated thin film. However, similar phenomena occur even in other thin film forming methods, and do not prevent the use of other thin film forming methods. Therefore, in the present invention, a thin film forming method other than the above can be arbitrarily applied, and the present invention includes a thin film forming method other than the above.

【0016】[0016]

【実施例および比較例】次に、実施例を示す。基板に
は、Si(100)基板材料を用い、これを熱酸化させ
てSiO2 層を形成したSiO2 /Si基板を使用し
た。このSiO2 /Si基板上に、Ti−48at.%
Ni合金ターゲットを用い、R.Fマグネトロンスパッ
タ装置を使用して、投入電力400W、基板温度450
°Cで薄膜1〜3μmのTiNi薄膜を作製した。
Examples and Comparative Examples Next, examples will be described. As the substrate, an SiO 2 / Si substrate having a SiO 2 layer formed by thermally oxidizing a Si (100) substrate material was used. This SiO 2 / Si substrate, Ti-48at. %
Using a Ni alloy target, Using an F magnetron sputtering apparatus, input power 400 W, substrate temperature 450
At 1 ° C., a TiNi thin film having a thickness of 1 to 3 μm was prepared.

【0017】上記のTiNi/SiO2 /Si基板から
なる積層膜上にPtとTiNiとの相互拡散を防止する
ために、Ti薄膜のバリア層をスパッタリングにより作
製した。このTi薄膜のバリア層の膜厚は1nm〜1μ
mの範囲に調節するが、本実施例においては150nm
とした。さらに、上記のバリア層を形成したTi/Ti
Ni/SiO2 /Si基板からなる積層膜上に強誘電体
のためのバリア層Pt薄膜を形成した。これも同様に膜
厚は1nm〜1μmの範囲で調節するが、本実施例では
150nmとした。
In order to prevent interdiffusion between Pt and TiNi, a barrier layer of a Ti thin film was formed on the laminated film composed of the TiNi / SiO 2 / Si substrate by sputtering. The thickness of the barrier layer of this Ti thin film is 1 nm to 1 μm.
m in the range of 150 nm in this embodiment.
And Further, Ti / Ti having the above-mentioned barrier layer formed thereon
A barrier layer Pt thin film for a ferroelectric was formed on a laminated film composed of a Ni / SiO 2 / Si substrate. Also in this case, the film thickness is similarly adjusted in the range of 1 nm to 1 μm.

【0018】次に、チタン酸鉛系強誘電体の薄膜をゾル
・ゲル法により形成した。出発原料として酢酸鉛三水化
物、チタンイソプロポキシド、アルミニウムイソプロポ
キシドを用い、最終組成がPb(Ti0.9Al0.1)O3
となるように前駆体溶液を作製した。この溶液を用い3
000rpmでのスピンコート、乾燥および480°C
での有機物熱分解を20回繰り返した後、昇温速度30
°C/secで600〜700°C、1分間の焼成をO
2 雰囲気中で行い、膜厚300nmのPb(Ti0.9
0.1)O3 薄膜をPt/Ti/TiNi/SiO2
Si基板からなる積層薄膜上に形成した。
Next, a thin film of a lead titanate ferroelectric was formed by a sol-gel method. As a starting material, lead acetate trihydrate, titanium isopropoxide, and aluminum isopropoxide were used, and the final composition was Pb (Ti 0.9 Al 0.1 ) O 3
A precursor solution was prepared such that Using this solution 3
Spin coating at 000 rpm, drying and 480 ° C
The organic matter pyrolysis was repeated 20 times, and then the temperature was raised 30 times.
Calcination at 600-700 ° C for 1 minute at ° C / sec.
2 Pb (Ti 0.9 A)
l 0.1 ) O 3 thin film is converted to Pt / Ti / TiNi / SiO 2 /
It was formed on a laminated thin film composed of a Si substrate.

【0019】このようにして得られたPb(Ti0.9
0.1)O3 /Pt/Ti/TiNi/SiO2 /Si
基板からなる積層膜のPb(Ti0.9Al0.1)O3 表面
の結晶組織を図1に示す。また、Pb(Ti0.9
0.1)O3 /Pt/Ti/TiNi積層構造の断面組
織を図2に、X線回折結果を図3に示す。なお、薄膜の
評価に際し、薄膜の結晶構造はX線回折により調べた。
また、結晶組織の観察および解釈はエネルギー分散型X
線分析装置を備えた走査型電子顕微鏡(SEM)を用い
た。誘電的性質を調べるために、薄膜上部に直径0.5
mmのAu電極を蒸着法により作製し、比誘電率を測定
した。
The thus obtained Pb (Ti 0.9 A)
l 0.1 ) O 3 / Pt / Ti / TiNi / SiO 2 / Si
FIG. 1 shows the crystal structure of the Pb (Ti 0.9 Al 0.1 ) O 3 surface of the laminated film composed of the substrate. In addition, Pb (Ti 0.9 A
FIG. 2 shows the cross-sectional structure of the l 0.1 ) O 3 / Pt / Ti / TiNi laminated structure, and FIG. 3 shows the result of X-ray diffraction. In evaluating the thin film, the crystal structure of the thin film was examined by X-ray diffraction.
In addition, the observation and interpretation of the crystal structure are based on the energy dispersive X
A scanning electron microscope (SEM) equipped with a line analyzer was used. In order to investigate the dielectric properties, a diameter of 0.5
mm Au electrode was prepared by a vapor deposition method, and the relative dielectric constant was measured.

【0020】図1に示すように、平均結晶粒径は約50
nmで、緻密な組織になっていることがわかる。これは
Pb(Ti1-x Alx )O3 の単層膜と同様の結晶組織
である。また、図2から明らかなように、Ti/TiN
i層間には反応層が形成されておらず良好な境界面を示
している。さらに図3のX線回折結果より、TiNi層
ではB2構造が支配的であることから、Pt/Ti層は
Pb(Ti0.9Al0.1 )O3 とTiNi層間の拡散防止
層として有効であることが分かる。
As shown in FIG. 1, the average grain size is about 50
It can be seen that the structure is dense in nm. this is
Pb (Ti1-x Alx ) OThree Crystal structure similar to single-layer film
It is. As is clear from FIG. 2, Ti / TiN
No reaction layer was formed between the i-layers, indicating a good interface.
doing. Furthermore, from the X-ray diffraction results of FIG.
Since the B2 structure is dominant in the Pt / Ti layer,
Pb (Ti0.9Al0.1 ) OThree Of diffusion between Ti and TiNi layers
It turns out that it is effective as a layer.

【0021】次に、Pb(Ti0.9Al0.1)O3 膜の誘
電的性質を調べた。該膜の比誘電率(ε)は281であ
り、誘電損失(tanδ)は0.011であった。これ
は、従来のPb(Ti1-x Alx )O3 単層膜と同等の
誘電的性質であった。(Pt基板上に作製したPb(T
1-x Alx )O3 薄膜の報告例「T.Iijim and N.Sana
da,Proceedings of the 2nd International Meeting of
Pacific Rim CeramicScieties.,in pres」参照) これより明らかなように、Pt/Ti層をバリア(拡散
阻止層)として用いることにより、TiNi膜上に強誘
電体であるPb(Ti0.9Al0.1)O3 層を、その誘電
的性質を損なうことなく形成できることがわかる。
Next, the dielectric properties of the Pb (Ti 0.9 Al 0.1 ) O 3 film were examined. The dielectric constant (ε) of the film was 281 and the dielectric loss (tan δ) was 0.011. This was a dielectric property equivalent to that of the conventional Pb (Ti 1-x Al x ) O 3 single-layer film. (Pb (T fabricated on Pt substrate
i 1-x Al x) reported cases of O 3 thin film "T.Iijim and N.Sana
da, Proceedings of the 2nd International Meeting of
Pacific Rim CeramicScieties., In pres ”) As is clear from the above, by using a Pt / Ti layer as a barrier (diffusion blocking layer), a ferroelectric Pb (Ti 0.9 Al 0.1 ) O is formed on the TiNi film. It can be seen that three layers can be formed without compromising their dielectric properties.

【0022】次に比較例を示す。Si基板上に直接Ti
Ni層およびPb(Ti0.9Al0.1)O3 を形成した。
薄膜の形成方法は実施例と同じ条件なので、ここでの記
述は省略する。図4に700°C、1分間焼成したPb
(Ti0.9Al0.1)O3 /TiNi/Siの積層膜の断
面組織を示す。この図から明らかなように、それぞれの
層間に拡散層が大きく現われているのが分かる。X線分
析の結果Pb(Ti0.9Al0.1 )O3 とTiNi層間に
Ni過剰の領域が存在することが分かった。
Next, a comparative example will be described. Ti directly on Si substrate
Ni layer and Pb (Ti0.9Al0.1) OThree Was formed.
Since the method of forming the thin film is the same as that of the embodiment,
The description is omitted. FIG. 4 shows Pb fired at 700 ° C. for 1 minute.
(Ti0.9Al0.1) OThree / TiNi / Si laminated film break
Shows the surface texture. As is clear from this figure,
It can be seen that a large diffusion layer appears between the layers. X-ray component
Pb (Ti0.9Al0.1 ) OThree Between the TiNi layer
It was found that there was a Ni-excess region.

【0023】図5は、この積層膜のX線回折結果を示
す。TiNiのB2相とPb(Ti0. 9Al0.1)O3
ペロブスカイト相以外に、ルチル(TiO2 )、TiN
3 、Ti3Ni4 およびパイロクロア相(Pb2Ti2
6 )のピークが見られる。TiO2 はTiNi層のT
iがPb(Ti0.9Al0.1 )O3 の界面において、酸
素と反応して形成されたと考えられる。そして、この結
果Pb(Ti0.9Al0 .1)O3 とTiNi層間にNi過
剰の拡散層が形成されたと予想される。また、TiNi
とSiとの界面の拡散層はX線分析の結果より、TiN
i層中にSiが拡散したものと考えられる。いずれの拡
散も、TiNi薄膜およびPb(Ti0.9Al0.1)O3
薄膜の結晶構造および組成に影響を与えるので好ましく
ない。
FIG. 5 shows the results of X-ray diffraction of this laminated film.
You. TiNi B2 phase and Pb (Ti0. 9Al0.1) OThree of
In addition to the perovskite phase, rutile (TiOTwo ), TiN
iThree , TiThreeNiFour And pyrochlore phase (PbTwoTiTwo
O6 ) Peak is seen. TiOTwo Is the T of the TiNi layer
i is Pb (Ti0.9Al0.1 ) OThree At the interface of
It is thought that it was formed by reacting with element. And this conclusion
Fruit Pb (Ti0.9Al0 .1) OThree Ni over between TiNi layer
It is expected that an extra diffusion layer was formed. Also, TiNi
From the result of X-ray analysis, the diffusion layer at the interface between
It is considered that Si diffused into the i-layer. Any expansion
In addition, TiNi thin film and Pb (Ti0.9Al0.1) OThree 
Preferred because it affects the crystal structure and composition of the thin film
Absent.

【0024】上記比較例に示すように、TiNi形状記
憶合金などのTiを含有するNi系合金薄膜またはNi
を含有するTi系合金薄膜とPbTiO3 系強誘電体薄
膜を用いた機能融合化材料を作製する場合において、こ
のままの状態で両機能材料を積層しても本来の持つべき
機能が著しく低減してしまう。したがって、両者および
基板との相互拡散を阻止することが必要となることが分
かる。このことから、本発明の実施例に示すように、T
iを含有するNi系合金薄膜またはNiを含有するTi
系合金薄膜とPbTiO3 系強誘電体薄膜との間に、前
記Ni系合金薄膜またはTi系合金薄膜側にTi、そし
てPbTiO3 系強誘電体薄膜側にPtの積層薄膜を備
けることにより、相互拡散を効果的に抑制できる。これ
により両機能材料を生かした優れた金属−セラミックス
積層薄膜が得られる。なお、上記実施例に挙げたいくつ
かの材料はあくまで一例にすぎず、本発明の要旨を逸脱
しない範囲において、種々変更し得るものである。そし
て、本発明はこれらを全て包含するものである。
As shown in the above comparative example, a Ni-based alloy thin film containing Ti, such as a TiNi shape memory alloy, or Ni
In the case of producing a function-combined material using a Ti-based alloy thin film containing PbTiO 3 and a PbTiO 3 -based ferroelectric thin film, even if both functional materials are laminated in this state, the functions that should be possessed are significantly reduced. I will. Therefore, it is understood that it is necessary to prevent mutual diffusion between both of them and the substrate. From this, as shown in the embodiment of the present invention, T
Ni-based alloy thin film containing i or Ti containing Ni
Between the system alloy thin film and PbTiO 3 based ferroelectric thin film, the Ni-based alloy thin film or a Ti-based alloy thin film side Ti, and by kicking Bei the laminated thin film of Pt in PbTiO 3 based ferroelectric thin film side, Mutual diffusion can be effectively suppressed. As a result, an excellent metal-ceramic laminated thin film utilizing both functional materials can be obtained. It should be noted that some of the materials described in the above embodiments are merely examples, and various modifications can be made without departing from the spirit of the present invention. The present invention includes all of them.

【0025】[0025]

【発明の効果】本発明によれば、TiNi形状記憶合金
のようなTiを含有するNi系合金またはNiを含有す
るTi系合金とPbTiO3 系強誘電体との機能を融合
して新しい機能材料を実現させ、両機能材料との間に効
果的なバリア層を形成して相互拡散を防止するととも
に、基板および電極材料との間での拡散も有効に防止す
ることのできる金属−セラミックス積層薄膜および同薄
膜の形成方法を提供する。また、本発明においては誘電
率および誘電損失ともに、単層の強誘電体膜と同等の特
性を保持し、かつこのような強誘電特性と形状記憶特性
が融合した機能素子が容易に得られる金属−セラミック
ス積層薄膜を提供できるという特徴を有している。
According to the present invention, a new functional material is obtained by combining the functions of a Ti-containing Ni-based alloy such as a TiNi shape memory alloy or a Ni-containing Ti-based alloy with a PbTiO 3 -based ferroelectric. And a metal-ceramic laminated thin film capable of forming an effective barrier layer between both functional materials to prevent interdiffusion and also effectively prevent diffusion between the substrate and the electrode material. And a method for forming the same thin film. In addition, in the present invention, both the dielectric constant and the dielectric loss are equivalent to those of a single-layer ferroelectric film, and a metal capable of easily obtaining a functional element in which such ferroelectric characteristics and shape memory characteristics are combined is easily obtained. -It has the feature that a ceramic laminated thin film can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、Pt/Ti/TiNi/SiO2
Siからなる積層膜上のPb(Ti0.9Al0.1)O3
ペロブスカイト単相を示す顕微鏡(SEM)写真であ
る。
FIG. 1 is a graph showing Pt / Ti / TiNi / SiO 2 /
5 is a microscope (SEM) photograph showing a single phase of perovskite of Pb (Ti 0.9 Al 0.1 ) O 3 on a laminated film made of Si.

【図2】 図2は、600°Cで1分間焼成したPb
(Ti0.9Al0.1)O3 /Pt/Ti/TiNi積層膜
の断面の顕微鏡(SEM)写真である。
FIG. 2 shows Pb fired at 600 ° C. for 1 minute.
(Ti 0.9 Al 0.1) O 3 / Pt / Ti / TiNi microscope of the cross section of the laminated film (SEM) photographs.

【図3】 図3は、図2の積層構造体のX線回折パター
ンである。
FIG. 3 is an X-ray diffraction pattern of the laminated structure of FIG.

【図4】 図4は、700°Cで1分間焼成したPb
(Ti0.9Al0.1)O3 /TiNi/Si積層膜の断面
の顕微鏡(SEM)写真である。
FIG. 4 shows Pb fired at 700 ° C. for 1 minute.
(Ti 0.9 Al 0.1) O 3 / TiNi / Si multilayer film of the cross section of the microscope (SEM) photographs.

【図5】 図5は、図4の積層構造体のX線回折パター
ンである。
FIG. 5 is an X-ray diffraction pattern of the laminated structure of FIG.

【図6】 図6は、450°Cで形成したTiNi/S
iO2 /Si膜の断面の顕微鏡(SEM)写真である。
FIG. 6 shows TiNi / S formed at 450 ° C.
5 is a microscope (SEM) photograph of a cross section of the iO 2 / Si film.

【図7】 図7は、図6の積層構造体のX線回折パター
ンである。
FIG. 7 is an X-ray diffraction pattern of the laminated structure of FIG.

【図8】 図8は、600°Cで1分間焼成したPb
(Ti0.9Al0.1)O3 /Pt/TiNi積層膜の断面
の顕微鏡(SEM)写真である。
FIG. 8 shows Pb fired at 600 ° C. for 1 minute.
(Ti 0.9 Al 0.1) O 3 / Pt / TiNi microscope of the cross section of the laminated film (SEM) photographs.

【図9】 図9は、図8の積層構造体のX線回折パター
ンである。
FIG. 9 is an X-ray diffraction pattern of the laminated structure of FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01B 3/12 302 H01B 3/12 302 H01L 27/04 H01L 27/10 451 21/822 27/04 C 27/10 451 27/10 651 27/108 21/8242 // C22K 1:00 (72)発明者 阿部 利彦 宮城県仙台市宮城野区苦竹4丁目2番1号 東北工業技術研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01B 3/12 302 H01B 3/12 302 H01L 27/04 H01L 27/10 451 21/822 27/04 C 27/10 451 27 / 10 651 27/108 21/8242 // C22K 1:00 (72) Inventor Toshihiko Abe 4-2-1 Kutake, Miyagino-ku, Sendai, Miyagi Prefecture Inside Tohoku Institute of Technology

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 Tiを含有するNi系合金薄膜またはN
iを含有するTi系合金薄膜の上に、相互拡散を抑制す
るためのバリア層を、さらにその上にPbTiO3 系強
誘電体薄膜を備えていることを特徴とする金属−セラミ
ックス積層薄膜。
1. A Ni-based alloy thin film containing Ti or N
A metal-ceramic laminated thin film comprising: a barrier layer for suppressing interdiffusion on a Ti-based alloy thin film containing i; and a PbTiO 3 -based ferroelectric thin film on the barrier layer.
【請求項2】 Tiを含有するNi系合金薄膜またはN
iを含有するTi系合金薄膜とPbTiO3 系強誘電体
薄膜との間に、相互拡散を抑制するためのバリア層とし
て、前記Ni系合金薄膜またはTi系合金薄膜側にT
i、そしてPbTiO3 系強誘電体薄膜側にPtの積層
薄膜を備えていることを特徴とする金属−セラミックス
積層薄膜。
2. A Ni-based alloy thin film containing Ti or N
As a barrier layer for suppressing interdiffusion between the Ti-based alloy thin film containing i and the PbTiO 3 -based ferroelectric thin film, T
A metal-ceramic multilayer thin film comprising a Pt multilayer thin film on the side of a PbTiO 3 -based ferroelectric thin film.
【請求項3】 前記Ni系合金薄膜またはTi系合金薄
膜がTi40〜60at%、残部NiであるTiNi合
金であることを特徴とする請求項1または2に記載の金
属−セラミックス積層薄膜。
3. The metal-ceramic multilayer thin film according to claim 1, wherein the Ni-based alloy thin film or the Ti-based alloy thin film is a TiNi alloy having a Ti content of 40 to 60 at% and a balance of Ni.
【請求項4】 Ti薄膜およびPt薄膜のバリア層がそ
れぞれ1nm〜1μmの膜厚を備えていることを特徴と
する請求項2または3に記載の金属−セラミックス積層
薄膜。
4. The metal-ceramic laminated thin film according to claim 2, wherein the barrier layers of the Ti thin film and the Pt thin film each have a thickness of 1 nm to 1 μm.
【請求項5】 前記Ni系合金薄膜においては主成分と
するNiが30at%以上、また前記Ti系合金薄膜に
おいては主成分とするTiが30at%以上含有するこ
とを特徴とする請求項1〜4に記載の金属−セラミック
ス積層薄膜。
5. The Ni-based alloy thin film according to claim 1, wherein Ni as a main component is not less than 30 at%, and Ti as a main component is not less than 30 at% in the Ti-based alloy thin film. 5. The metal-ceramic laminated thin film according to 4.
【請求項6】 表面にSiO2 層を形成したSi基板上
に積層されていることを特徴とする請求項1〜5のそれ
ぞれに記載の金属−セラミックス積層薄膜。
6. The metal-ceramic laminated thin film according to claim 1, wherein the metal-ceramic laminated thin film is laminated on a Si substrate having a SiO 2 layer formed on a surface thereof.
【請求項7】 前記PbTiO3 系強誘電体薄膜がPZ
T(Pb(Zr1-xTix )O3 ,x<1)系強誘電体
薄膜であることを特徴とする請求項1〜6のそれぞれに
記載の金属−セラミックス積層薄膜。
7. The PbTiO 3 -based ferroelectric thin film is made of PZ
T (Pb (Zr 1-x Ti x) O 3, x <1) system strong metal according to each of claims 1 to 6, characterized in that a dielectric thin film - ceramic multilayer thin film.
【請求項8】 基板上に、スパッタリングにより1〜3
μmのTiを含有するNi系合金薄膜またはNiを含有
するTi系合金薄膜を形成した後、該薄膜上にバリア層
として、それぞれ1nm〜1μm厚のTi薄膜およびP
t薄膜をこの順にスパッタリングにより形成し、さらに
このバリア層の上にチタン酸鉛系強誘電体薄膜をゾル・
ゲル法により形成することを特徴とする金属−セラミッ
クス積層薄膜の形成方法。
8. On a substrate, 1 to 3
After forming a Ni-based alloy thin film containing Ti or a Ti-based alloy thin film containing Ni, a 1 nm-1 μm thick Ti thin film and P
t thin film is formed by sputtering in this order, and a lead titanate-based ferroelectric thin film is further formed on this barrier layer by sol.
A method for forming a metal-ceramic laminated thin film, characterized by being formed by a gel method.
【請求項9】 基板上に1〜3μmのTi40〜60a
t%、残部NiであるTiNi合金薄膜をスパッタリン
グにより形成することを特徴とする請求項8に記載の金
属−セラミックス積層薄膜の形成方法。
9. Ti40 to 60a of 1 to 3 μm on a substrate
The method for forming a metal-ceramic multilayer thin film according to claim 8, wherein the TiNi alloy thin film having t% and the balance of Ni is formed by sputtering.
【請求項10】 基板としてSi基板を用いることを特
徴とする請求項8または9に記載の金属−セラミックス
積層薄膜の形成方法。
10. The method for forming a metal-ceramic multilayer thin film according to claim 8, wherein a Si substrate is used as the substrate.
【請求項11】 Si基板の表面に予め熱酸化によりS
iO2 層を形成することを特徴とする請求項10に記載
の金属−セラミックス積層薄膜の形成方法。
11. The surface of a Si substrate is previously subjected to thermal oxidation to form S
method of forming a ceramic multilayer thin film - metal according to claim 10, characterized in that to form the iO 2 layers.
JP09210120A 1997-07-18 1997-07-18 Metal-ceramic laminated thin film and method of forming the same Expired - Lifetime JP3122759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09210120A JP3122759B2 (en) 1997-07-18 1997-07-18 Metal-ceramic laminated thin film and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09210120A JP3122759B2 (en) 1997-07-18 1997-07-18 Metal-ceramic laminated thin film and method of forming the same

Publications (2)

Publication Number Publication Date
JPH1140869A true JPH1140869A (en) 1999-02-12
JP3122759B2 JP3122759B2 (en) 2001-01-09

Family

ID=16584135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09210120A Expired - Lifetime JP3122759B2 (en) 1997-07-18 1997-07-18 Metal-ceramic laminated thin film and method of forming the same

Country Status (1)

Country Link
JP (1) JP3122759B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299514A (en) * 1999-04-15 2000-10-24 Murata Mfg Co Ltd Electronic component and manufacture thereof
US6162649A (en) * 1998-12-22 2000-12-19 Hyundai Electronics Industries Co., Ltd. Method of manufacturing ferroelectric memory device
CN102383094A (en) * 2010-09-06 2012-03-21 鸿富锦精密工业(深圳)有限公司 Shell and manufacturing method thereof
JP2015509134A (en) * 2011-10-28 2015-03-26 韓国機械材料技術院 Titanium-nickel alloy thin film and method for producing titanium-nickel alloy thin film using co-sputtering method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162649A (en) * 1998-12-22 2000-12-19 Hyundai Electronics Industries Co., Ltd. Method of manufacturing ferroelectric memory device
JP2000299514A (en) * 1999-04-15 2000-10-24 Murata Mfg Co Ltd Electronic component and manufacture thereof
CN102383094A (en) * 2010-09-06 2012-03-21 鸿富锦精密工业(深圳)有限公司 Shell and manufacturing method thereof
JP2015509134A (en) * 2011-10-28 2015-03-26 韓国機械材料技術院 Titanium-nickel alloy thin film and method for producing titanium-nickel alloy thin film using co-sputtering method

Also Published As

Publication number Publication date
JP3122759B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
TW574422B (en) Lead zirconate titanate dielectric thin film composites on metallic foils
US5191510A (en) Use of palladium as an adhesion layer and as an electrode in ferroelectric memory devices
JP2006245619A (en) Method for manufacturing piezoelectric substance element
JP2001007298A (en) Composite iridium-metal-oxygen barrier structure where barrier is formed of heat-resistant metal and method of forming the same
JP3435633B2 (en) Thin film laminate, thin film capacitor, and method of manufacturing the same
JP3122759B2 (en) Metal-ceramic laminated thin film and method of forming the same
US6139971A (en) Stratified structure with a ferroelectric layer and process for producing the same
JP4419332B2 (en) Substrate surface structure of perovskite oxide film, substrate and perovskite oxide film
JP2006310744A (en) Thin film capacitor and semiconductor device
JP2995290B2 (en) Method of forming PZT-based ferroelectric thin film
JP4144043B2 (en) Method for manufacturing piezoelectric thin film element
JP2000260958A (en) Composite iridium barrier structure and its formation
JP4543545B2 (en) Method for forming electrode structure of piezoelectric thin film resonator
JP4029162B2 (en) Method for manufacturing piezoelectric element
JP6720665B2 (en) Ferroelectric element and manufacturing method thereof
JP3583638B2 (en) Ferroelectric capacitor and method of manufacturing the same
JPH04206871A (en) Semiconductor device and manufacture thereof
JP2004530584A (en) Method for producing nickel-coated copper substrate and thin film composite including the substrate
JPH0951079A (en) Semiconductor element and manufacture thereof
JPH11243032A (en) Thin-film capacitor
JP2942128B2 (en) Thin film capacitor and method of manufacturing the same
JP2008074109A (en) Inkjet type recording head
JPH09139474A (en) Dielectric thin film element and its manufacture
JP2000232206A (en) Ferroelectric memory
JPH02222513A (en) Ceramic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000919

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term