Nothing Special   »   [go: up one dir, main page]

JPH11352140A - Vehicle speed measuring device - Google Patents

Vehicle speed measuring device

Info

Publication number
JPH11352140A
JPH11352140A JP10162454A JP16245498A JPH11352140A JP H11352140 A JPH11352140 A JP H11352140A JP 10162454 A JP10162454 A JP 10162454A JP 16245498 A JP16245498 A JP 16245498A JP H11352140 A JPH11352140 A JP H11352140A
Authority
JP
Japan
Prior art keywords
light
vehicle
vehicle speed
speed
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10162454A
Other languages
Japanese (ja)
Other versions
JP3473737B2 (en
Inventor
Masahiko Maruyama
真佐彦 丸山
Jiro Arai
二郎 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP16245498A priority Critical patent/JP3473737B2/en
Publication of JPH11352140A publication Critical patent/JPH11352140A/en
Application granted granted Critical
Publication of JP3473737B2 publication Critical patent/JP3473737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle speed measuring device which is small and excellent in convenience and economy, and by which the speed of a vehicle running on a road can be measured with high accuracy and displayed. SOLUTION: This vehicle speed measuring device 1 is equipped with a laser beam light emitting means 4, a deflection means 6 in which a galvanomirror deflecting the beam light to the two-dimensional direction is used, a light receiving means 5 by which reflected light of the laser beam light is received, a display control means 7 by which the measured speed of a vehicle is displayed, and a control means 2 by which the speed of the vehicle is calculated. The speed of a vehicle passing on a road can be measured and displayed by this device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、走行中の車の車
両速度を測定する車両速度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle speed measuring device for measuring the speed of a running vehicle.

【0002】[0002]

【従来の技術】従来の車両速度測定装置において、道路
を走行する車両に向かって電波を発射して、戻ってくる
電波と発射した電波の周波数のずれを計測し、速度を測
定するドップラー効果を使用するものが知られている。
2. Description of the Related Art A conventional vehicle speed measuring device emits a radio wave toward a vehicle traveling on a road, measures a frequency difference between a returning radio wave and the emitted radio wave, and measures a Doppler effect of measuring a speed. The ones to use are known.

【0003】また、従来の車両速度測定装置において、
道路上に設置した赤外線方式の速度センサから赤外線を
複数投射して、その下を通過する車両を赤外線センサの
反射光により検出し、進行方向の二点間の反射光の検出
時間の時間差により速度を測定するものも知られてい
る。
In a conventional vehicle speed measuring device,
A plurality of infrared rays are projected from an infrared speed sensor installed on the road, and vehicles passing below are detected by the reflected light of the infrared sensor, and the speed is determined by the time difference between the reflected light detection times between two points in the traveling direction. Some are also known to measure

【0004】図5に従来の赤外線センサ方式の車両速度
測定装置の一例概念図を示す。図5において、速度計測
センサ20は、赤外線発光部、反射赤外線受光部、位相
差検出部、演算部等で構成される。
FIG. 5 is a conceptual diagram showing an example of a conventional vehicle speed measuring device of the infrared sensor type. In FIG. 5, the speed measurement sensor 20 includes an infrared light emitting unit, a reflected infrared light receiving unit, a phase difference detecting unit, a calculating unit, and the like.

【0005】このように構成された速度計測センサ20
は、4系統の独立した赤外線発光部より発光ビーム(R
a、Rb、Rc、Rd)を出力し、反射ビーム(Ra
r、Rbr、Rcr、Rdr)を、それぞれ4系統の独
立した反射赤外線受光部で受光する。
[0005] The speed measuring sensor 20 constructed as described above
Are the light beams (R
a, Rb, Rc, Rd) and outputs the reflected beam (Ra
r, Rbr, Rcr, Rdr) are received by four independent reflected infrared light receiving units.

【0006】速度計測センサ20は、常時この4系統そ
れぞれの発光ビーム(Ra、Rb、Rc、Rd)と、反
射ビーム(Rar、Rbr、Rcr、Rdr)の位相差
を位相差検出部により検出し、速度計測センサ20と反
射面との距離を算出する。測定車両12は、速度を測定
する車両である。
The speed measuring sensor 20 always detects the phase difference between the light beams (Ra, Rb, Rc, Rd) and the reflected beams (Rar, Rbr, Rcr, Rdr) of each of the four systems by a phase difference detecting unit. Then, the distance between the speed measurement sensor 20 and the reflection surface is calculated. The measurement vehicle 12 is a vehicle that measures speed.

【0007】車両速度計測エリア内に測定車両12が存
在しない時は、発光ビームは路面で反射し、反射ビーム
との位相差は常に一定の値になっている。測定車両12
が、車両速度計測エリア内に進入し、4系統のうちのど
れかの発光ビームを通過すると、例えば発光ビームRa
は、測定車両12で反射し、発光ビームRaと、反射ビ
ームRarとの位相差が小さくなる。
When the measurement vehicle 12 does not exist in the vehicle speed measurement area, the light-emitting beam is reflected on the road surface, and the phase difference from the reflected beam always has a constant value. Measurement vehicle 12
Enters the vehicle speed measurement area and passes any one of the four emission beams, for example, the emission beam Ra
Is reflected by the measurement vehicle 12, and the phase difference between the light-emitting beam Ra and the reflected beam Rar is reduced.

【0008】この位相差を、位相差検出部により検出
し、速度計測センサ20と、測定車両12の反射面まで
の距離を演算部により算出し、測定車両12がない場合
の距離と測定車両12が存在する場合との路面の反射面
との距離とを比較する。この反射面の距離が設定値以下
の時、測定車両12が計測エリア内に進入したと検知
し、進行方向の2ヵ所、例えば、反射ビームRar、R
crまたは反射ビームRbr、Rdrによる車両検出時
の時間差を求めれば、予め発光ビームRa、Rb、R
c、Rdの放射点の距離が分っているので、演算部によ
り進行方向2ヵ所の放射点の距離Rを2ヵ所の通過時間
差Δtで除算(R/Δt)すれば、測定車両12の速度
が求められる。
The phase difference is detected by a phase difference detecting section, and the distance between the speed measuring sensor 20 and the reflection surface of the measuring vehicle 12 is calculated by the calculating section. Is compared with the distance between the road surface and the reflective surface. When the distance of the reflecting surface is equal to or less than the set value, it is detected that the measuring vehicle 12 has entered the measuring area, and two points in the traveling direction, for example, the reflected beams Rar, R
If the time difference at the time of vehicle detection based on the cr or the reflected beams Rbr and Rdr is obtained, the emission beams Ra, Rb, R
Since the distances of the radiation points c and Rd are known, if the distance R between the two radiation points in the traveling direction is divided by the transit time difference Δt (R / Δt) by the arithmetic unit, the speed of the measurement vehicle 12 is obtained. Is required.

【0009】Rは、発光ビームRa、Rcの路面間の距
離または発光ビームRb、Rd間の路面間の距離を表わ
し、Δtは、測定車両12が発光ビームRa、Rc間ま
たは発光ビームRb、Rd間を通過する時間差を表わ
す。
R represents the distance between the road surfaces of the light-emitting beams Ra and Rc or the road surface between the light-emitting beams Rb and Rd, and Δt denotes the distance between the light-emitting beams Ra and Rc or the light-emitting beams Rb and Rd. Represents the time difference between passing.

【0010】また、この車両速度計測エリアは、一車線
の道路の横幅が3.3mであることを考慮して、一辺が1.2
mの正方形の計測エリアにすることにより、測定車両1
2の速度は、このエリアで、確実に検出される。このよ
うに、従来の赤外線センサ方式の車両速度測定装置は、
指定エリア内の複数箇所の投射赤外線の光軸を横切る測
定車両12の時間差によって、通過する測定車両12の
車両速度測定ができるようになっている。
The vehicle speed measurement area has a side of 1.2 m in consideration of the width of a one-lane road being 3.3 m.
The measurement vehicle 1
A speed of 2 is reliably detected in this area. As described above, the conventional infrared sensor type vehicle speed measuring device is
The vehicle speed of the passing measuring vehicle 12 can be measured based on the time difference of the measuring vehicle 12 crossing the optical axis of the projected infrared ray at a plurality of locations in the designated area.

【0011】[0011]

【発明が解決しようとする課題】ドップラー効果の速度
測定法を使用した従来の車両速度測定装置は、発射した
電波を受信するアンテナの設置に伴う調整が難しい課題
がある。
A conventional vehicle speed measuring device using the Doppler effect speed measuring method has a problem that it is difficult to make adjustments in accordance with installation of an antenna for receiving emitted radio waves.

【0012】また、赤外線を複数投射する赤外線方式を
用いた従来の車両速度測定装置は、測定車両12の検出
を計測エリアの四隅のみで行っているために、計測エリ
アに進入しても2輪車等、赤外線の光軸を横切らない測
定車両12の場合は、速度を検出できない課題がある。
Further, in the conventional vehicle speed measuring device using an infrared ray method for projecting a plurality of infrared rays, since the detection of the measuring vehicle 12 is performed only at the four corners of the measuring area, two wheels are required even if the vehicle enters the measuring area. In the case of a measuring vehicle 12 that does not cross the optical axis of infrared rays, such as a car, there is a problem that the speed cannot be detected.

【0013】さらに、赤外線方式の発光、受光センサを
四組も必要とするので、装置が大型で複雑になり、価格
が高いという課題がある。また、赤外線を発光して、そ
の反射光を常に受光することから設置場所は、路面の上
方向に設置しなければ成らず、設置作業およびメンテナ
ンスが難しい課題がある。
Further, since four sets of infrared light-emitting and light-receiving sensors are required, there is a problem that the apparatus is large and complicated, and the price is high. In addition, since the device emits infrared rays and always receives the reflected light, the installation location must be installed above the road surface, and there is a problem that installation work and maintenance are difficult.

【0014】この発明は、このような課題を解決するた
めになされたもので、その目的は、装置の設置が容易
で、走行中の車両速度を高精度で測定することができる
車両速度測定装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to provide a vehicle speed measuring device capable of easily installing the device and measuring a running vehicle speed with high accuracy. Is to provide.

【0015】[0015]

【課題を解決するための手段】前記課題を解決するため
この発明に係る車両速度測定装置は、光ビームを発生す
る発光手段と、光ビームを2次元の所定の範囲に偏向す
る偏向手段と、2次元の所定の範囲から反射される光ビ
ームの反射光を受光する受光手段と、この受光手段が受
光した反射光に基づいて車両速度算出をする制御手段
と、この車両速度の情報を外部に表示出力する表示制御
手段とを備えたことを特徴とする。
In order to solve the above-mentioned problems, a vehicle speed measuring device according to the present invention comprises: a light emitting means for generating a light beam; a deflecting means for deflecting the light beam into a two-dimensional predetermined range; Light receiving means for receiving reflected light of a light beam reflected from a two-dimensional predetermined range; control means for calculating a vehicle speed based on the reflected light received by the light receiving means; Display control means for performing display output.

【0016】この発明に係る車両速度測定装置は、光ビ
ームを発生する発光手段と、光ビームを2次元の所定の
範囲に偏向する偏向手段と、2次元の所定の範囲から反
射される光ビームの反射光を受光する受光手段と、この
受光手段が受光した反射光に基づいて車両速度算出をす
る制御手段と、この車両速度の情報を外部に表示出力す
る表示制御手段とを備えたので、光ビームを二次元の所
定範囲(検出領域)で偏向することができ検出領域を通
過する、二輪車および四輪車等の全ての通過車両の速度
を測定することができる。
According to the present invention, there is provided a vehicle speed measuring apparatus comprising: a light emitting means for generating a light beam; a deflecting means for deflecting the light beam into a predetermined two-dimensional range; and a light beam reflected from the predetermined two-dimensional range. Light receiving means for receiving the reflected light, control means for calculating the vehicle speed based on the reflected light received by the light receiving means, and display control means for externally displaying and outputting information on the vehicle speed. The speed of all passing vehicles such as two-wheeled vehicles and four-wheeled vehicles that can deflect the light beam in a two-dimensional predetermined range (detection region) and pass through the detection region can be measured.

【0017】また、この発明に係る車両速度測定装置
は、制御手段に、2次元の所定の範囲の偏向駆動信号を
偏向手段に供給する偏向駆動手段と、一定の周期で発光
するように発光手段を制御する発光制御手段と、受光手
段からの情報を受けて位相差の検出を行う位相差検出手
段と、決められた周期の同期信号および位相差検出手段
からの信号に基づいて速度を算出する速度処理手段とを
備えたことを特徴とする。
Further, the vehicle speed measuring device according to the present invention is characterized in that the control means includes a deflection driving means for supplying a two-dimensional predetermined range of deflection driving signals to the deflection means, and a light emitting means for emitting light at a constant period. , A phase difference detecting means for receiving information from the light receiving means and detecting a phase difference, and calculating a speed based on a synchronization signal of a predetermined period and a signal from the phase difference detecting means. Speed processing means.

【0018】また、この発明に係る車両速度測定装置
は、制御手段に、2次元の所定の範囲の偏向駆動信号を
偏向手段に供給する偏向駆動手段と、一定の周期で発光
するように発光手段を制御する発光制御手段と、受光手
段からの情報を受けて位相差の検出を行う位相差検出手
段と、決められた周期の同期信号および位相差検出手段
からの信号に基づいて速度を算出する速度処理手段とを
備えたので、単純な構成で、測定車両の速度測定が高精
度にできる。
Further, the vehicle speed measuring device according to the present invention is characterized in that the control means includes a deflection driving means for supplying a two-dimensional predetermined range of deflection driving signals to the deflection means, and a light emitting means for emitting light at a constant period. , A phase difference detecting means for receiving information from the light receiving means and detecting a phase difference, and calculating a speed based on a synchronization signal of a predetermined period and a signal from the phase difference detecting means. With the provision of the speed processing means, the speed of the measuring vehicle can be measured with high accuracy with a simple configuration.

【0019】さらに、この発明に係る偏向手段は、半導
体製造プロセスを用いた2次元方向に周期的に偏向でき
るガルバノミラーであることを特徴とする。
Further, the deflecting means according to the present invention is characterized in that the deflecting means is a galvanomirror capable of periodically deflecting in a two-dimensional direction using a semiconductor manufacturing process.

【0020】この発明に係る偏向手段は、半導体製造プ
ロセスを用いた2次元方向に周期的に偏向できるガルバ
ノミラーであるので、光源をコンパクトに構成して所定
範囲の投光を精度の高い2次元の偏向を行うことができ
る。
The deflecting means according to the present invention is a galvanomirror capable of periodically deflecting in a two-dimensional direction using a semiconductor manufacturing process. Can be performed.

【0021】[0021]

【発明の実施の形態】以下、この発明の実施の形態を添
付図面に基づいて説明する。なお、この発明は、光ビー
ムを偏向することによってコンパクトな装置で、走行中
の車両の速度を高精度に測定することができるものであ
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. According to the present invention, the speed of a running vehicle can be measured with high accuracy by deflecting the light beam with a compact device.

【0022】図1はこの発明に係る車両速度測定装置の
設置イメージ図である。図1において、車両速度測定装
置1は、道路102の上方向に道路脇からL字状に設け
られた支柱101に、車両速度測定装置1の中心部が道
路102のセンタ上方となるように設置する。
FIG. 1 is an installation image diagram of a vehicle speed measuring device according to the present invention. In FIG. 1, a vehicle speed measuring device 1 is installed on an upright 101 provided in an L-shape from the side of a road 102 such that the center of the vehicle speed measuring device 1 is above the center of the road 102. I do.

【0023】車両速度測定装置1は、発光部および受光
部が道路102の路面に対するように設置され、発光ビ
ームの測定範囲ABCD(2次元の範囲)は、この範囲
を通過する全ての車両の速度の測定ができる。
The vehicle speed measuring device 1 has a light-emitting unit and a light-receiving unit installed on the road surface of the road 102, and the measurement range ABCD (two-dimensional range) of the light-emitting beam is the speed of all vehicles passing through this range. Can be measured.

【0024】測定車両12が測定範囲ABCD内に進入
すると、車両速度測定装置1から投光した光ビームは、
測定車両12で反射され、車両速度測定装置1で、受光
した反射ビームと投光した光ビームの位相差が、測定車
両12が存在しないときの投光した光ビームと受光した
反射ビームの位相差と比べて小さくなり、測定車両12
が検知される。
When the measuring vehicle 12 enters the measuring range ABCD, the light beam emitted from the vehicle speed measuring device 1 becomes
The phase difference between the reflected beam received and the light beam projected by the vehicle speed measuring device 1 reflected by the measuring vehicle 12 is the phase difference between the projected light beam and the received reflected beam when the measuring vehicle 12 is not present. And the measurement vehicle 12
Is detected.

【0025】車両速度測定装置1は、測定範囲ABライ
ンを通過した時間とCDラインを通過した時間の時間差
を測定し、AC間またはBD間の距離は予め分かってい
るので、AC間の距離をABラインとCDライン間を通
過した時間差で除算すれば、測定車両の速度が分かる。
The vehicle speed measuring device 1 measures the time difference between the time passing through the measurement range AB line and the time passing through the CD line, and since the distance between AC or BD is known in advance, the distance between AC is determined. Dividing by the time difference between the AB line and the CD line gives the speed of the measured vehicle.

【0026】車両速度測定装置1は、測定車両12の速
度を測定すると、車両速度測定装置1から伝送路103
を介して速度データが表示手段13に伝送され、表示手
段13に記憶されるとともに、表示手段13に設けられ
たディスプレイおよびLED等の表示器に速度が表示さ
れる。
When the speed of the measuring vehicle 12 is measured, the vehicle speed measuring device 1
The speed data is transmitted to the display means 13 via the display unit 13 and stored in the display means 13, and the speed is displayed on a display provided on the display means 13 and a display such as an LED.

【0027】また、図1では、一例として車両速度測定
装置1を道路102の上方向の中心に設置したが、支柱
101の直立部の車両よりも高い任意の位置に設置して
もよい。
In FIG. 1, the vehicle speed measuring device 1 is installed at the center of the road 102 in the upward direction as an example. However, the vehicle speed measuring device 1 may be installed at an arbitrary position higher than the vehicle at the upright portion of the column 101.

【0028】図2はこの発明に係る車両速度測定装置の
要部ブロック構成図である。図2において、車両速度計
測装置1は、制御手段2、発光手段4、受光手段5、偏
向手段6、表示制御手段7を備える。なお、発光手段4
および偏向手段6は装置の発光部を構成し、受光手段5
は装置の受光部を構成する。
FIG. 2 is a block diagram of a main part of the vehicle speed measuring device according to the present invention. 2, the vehicle speed measurement device 1 includes a control unit 2, a light emitting unit 4, a light receiving unit 5, a deflecting unit 6, and a display control unit 7. The light emitting means 4
And the deflecting means 6 constitute a light emitting section of the apparatus, and the light receiving means 5
Constitutes a light receiving section of the device.

【0029】制御手段2は、マイクロプロセッサを基本
に各種演算手段、処理手段、メモリ等で構成し、基準ク
ロックに基づいてタイミング信号を発生したり、各種制
御信号を生成する。
The control means 2 is composed of various arithmetic means, processing means, memory and the like based on a microprocessor, and generates a timing signal based on a reference clock and generates various control signals.

【0030】また、制御手段2は、測定範囲内に照射す
るレーザビーム光の角度の範囲を任意に設定することが
できるように、偏向駆動信号Vsにより、偏向手段6を
駆動する。
The control means 2 drives the deflecting means 6 by the deflection driving signal Vs so that the angle range of the laser beam to be irradiated within the measurement range can be set arbitrarily.

【0031】さらに、制御手段2は、受光手段5が受光
した反射光Lrの反射信号Lcを取込み、反射信号Lc
に基づいて位相差を演算し、測定車両を検知する。ま
た、制御手段2は、速度情報Vmを表示制御手段7に供
給する。
Further, the control means 2 takes in the reflected signal Lc of the reflected light Lr received by the light receiving means 5 and outputs the reflected signal Lc
Calculates the phase difference based on the detected vehicle and detects the measured vehicle. Further, the control unit 2 supplies the speed information Vm to the display control unit 7.

【0032】発光手段4は、例えばレーザ発振回路で構
成し、制御手段2から供給される発光制御信号Lkに対
応するレーザビーム光を発生し、光信号Lsを偏向手段
6に投光する。レーザビーム光は、例えば収束性が高い
赤外線レーザビーム光を用いる。なお、光信号Lsに
は、パルス変調を施し、反射光Lrによってどの光信号
Lsに対応するか判別できるようにする。
The light emitting means 4 is constituted by, for example, a laser oscillation circuit, generates a laser beam light corresponding to the light emission control signal Lk supplied from the control means 2, and projects the light signal Ls to the deflecting means 6. As the laser beam, for example, an infrared laser beam having high convergence is used. The optical signal Ls is pulse-modulated so that it can be determined which optical signal Ls corresponds to the reflected light Lr.

【0033】受光手段5は、フォトダイオード等の受光
素子で構成し、測定範囲ABCD内に照射された光信号
Lsの反射光Lrを受光して、電気信号の反射信号Lc
に変換し、制御手段2に供給する。
The light receiving means 5 comprises a light receiving element such as a photodiode, receives the reflected light Lr of the optical signal Ls applied to the measuring range ABCD, and receives the reflected signal Lc of the electric signal.
And supplies it to the control means 2.

【0034】表示制御出力手段7は、バッファメモリ、
モデム等で構成し、制御手段2から供給される速度情報
Vmに基づいて、外部の表示手段13に測定車両12の
速度を表示するための表示出力信号Voを出力する。
The display control output means 7 includes a buffer memory,
A display output signal Vo for displaying the speed of the measurement vehicle 12 is output to the external display means 13 based on the speed information Vm supplied from the control means 2.

【0035】偏向手段6は、半導体プロセスで製造され
容易に2次元方向に偏向できるガルバノミラーで構成
し、制御手段2から供給される偏向駆動信号Vsに基づ
いてガルバノミラーをX−Yの2次元方向に変位させ、
発光手段4から発光される光信号Lsを偏向させ、測定
範囲ABCDの範囲内にある測定車両12を検出する。
偏向手段6は、発光手段4から発光される光信号Lsの
反射光Lrを反射させて、受光手段5に入力する。
The deflecting means 6 is constituted by a galvanomirror which is manufactured in a semiconductor process and can be easily deflected in two-dimensional directions. The galvanomirror is driven by the XY two-dimensional based on a deflection driving signal Vs supplied from the control means 2. Displacement in the direction
The light signal Ls emitted from the light emitting means 4 is deflected to detect the measurement vehicle 12 within the measurement range ABCD.
The deflecting unit 6 reflects the reflected light Lr of the optical signal Ls emitted from the light emitting unit 4 and inputs the reflected light Lr to the light receiving unit 5.

【0036】図3はこの発明に係る車両速度測定装置の
別実施の形態要部ブロック構成図である。なお、図2に
示す構成要素と同一のものは同一符号で示した。図3に
おいて、車両速度計測装置1は、制御手段2、発光手段
4、受光手段5、表示制御手段7、発光用偏向手段1
4、受光用偏向手段15を備える。
FIG. 3 is a block diagram of a main part of another embodiment of the vehicle speed measuring device according to the present invention. The same components as those shown in FIG. 2 are denoted by the same reference numerals. In FIG. 3, a vehicle speed measuring device 1 includes a control unit 2, a light emitting unit 4, a light receiving unit 5, a display control unit 7, a light emitting deflection unit 1
4. The light receiving deflection means 15 is provided.

【0037】図3で図2の実施例と異なる部分のみを説
明すると、図3において、発光用偏向手段14は、半導
体プロセスで製造され容易に2次元方向に偏向できるガ
ルバノミラーで構成し、制御手段2から供給される偏向
駆動信号Vsに基づいてガルバノミラーをX−Yの2次
元方向に変位させ、発光手段4から発光される光信号L
sを偏向させ、測定範囲ABCDの範囲内にある測定車
両12を検出する。
Referring to FIG. 3, only the parts different from the embodiment of FIG. 2 will be described. In FIG. 3, the light-emitting deflecting means 14 is constituted by a galvanomirror which is manufactured in a semiconductor process and can be easily deflected in two-dimensional directions. The galvanomirror is displaced in the X-Y two-dimensional direction based on the deflection drive signal Vs supplied from the means 2, and the light signal L emitted from the light emitting means 4
s is deflected to detect a measurement vehicle 12 within the measurement range ABCD.

【0038】受光用偏向手段15は、発光用偏向手段1
4と同様に半導体プロセスを用いた2次元のガルバノミ
ラーで構成し、発光手段4から発光される光信号Lsの
反射光Lrを反射させて、受光手段5に入力する。
The light-receiving deflecting means 15 includes the light-emitting deflecting means 1.
As in the case of 4, a two-dimensional galvanometer mirror using a semiconductor process is used. The reflected light Lr of the optical signal Ls emitted from the light emitting means 4 is reflected and input to the light receiving means 5.

【0039】図3は、発光用偏向手段14と、反射光L
rを反射させ受光手段5に入力する受光用偏向手段15
を別々に設け、制御手段2からの共通の偏向駆動信号V
sにより、発光用偏向手段14と受光用偏向手段15と
は同期を取って偏向し、反射光Lrを受光手段5に入力
している。偏向を別々に行うことによりレスポンスが速
くなり、精度よい車両速度測定が可能になる。
FIG. 3 shows the light emitting deflection means 14 and the reflected light L
deflecting means 15 for reflecting r and inputting it to light receiving means 5
Are provided separately, and the common deflection drive signal V
As a result, the light-emitting deflecting means 14 and the light-receiving deflecting means 15 are deflected in synchronization with each other, and the reflected light Lr is input to the light-receiving means 5. By performing the deflection separately, the response becomes faster, and accurate vehicle speed measurement becomes possible.

【0040】このように、この発明に係る車両速度測定
手段1は、光ビームを発生する発光手段4と、光ビーム
を2次元の所定の範囲に偏向する偏向手段6(または発
光用偏向手段14)と、光信号Lsの反射光Lrを受光
する受光手段5(または受光用偏向手段15)と、受光
手段5(または受光用偏向手段15)が受光した反射光
Lrに基づいて車両速度を算出する制御手段2を備えた
ので、光信号Lsと反射光Lrとから、測定範囲を通過
する測定車両12の、車両速度を測定することができ
る。
As described above, the vehicle speed measuring means 1 according to the present invention includes the light emitting means 4 for generating a light beam, and the deflecting means 6 (or the light emitting deflecting means 14) for deflecting the light beam into a predetermined two-dimensional range. ), The light receiving means 5 (or light receiving deflection means 15) for receiving the reflected light Lr of the optical signal Ls, and the vehicle speed is calculated based on the reflected light Lr received by the light receiving means 5 (or light receiving deflection means 15). Since the control means 2 is provided, the vehicle speed of the measurement vehicle 12 passing through the measurement range can be measured from the optical signal Ls and the reflected light Lr.

【0041】図4はこの発明に係る制御手段の要部ブロ
ック構成図である。図4において、制御手段2は、速度
処理手段8、偏向駆動手段9、発光制御手段10、位相
差検出手段11を備える。速度処理手段8は、水晶発振
器、分周器、同期信号発生手段、各種演算手段、メモリ
等で構成し、同期制御、速度算出、表示制御を行う。
FIG. 4 is a block diagram of a main part of the control means according to the present invention. In FIG. 4, the control unit 2 includes a speed processing unit 8, a deflection driving unit 9, a light emission control unit 10, and a phase difference detection unit 11. The speed processing means 8 is composed of a crystal oscillator, a frequency divider, a synchronizing signal generating means, various arithmetic means, a memory, and the like, and performs synchronization control, speed calculation, and display control.

【0042】また、速度処理手段8は、スキャン時間、
位相差の測定を正確に行うために水晶発振器で基準周波
数を発生し、それを分周器で分周した周波数を基本にし
て、同期制御信号Vtを生成し、同期制御信号Vtを偏
向駆動手段9、発光制御手段10および位相差検出手段
11に供給して同期制御を行う。
Further, the speed processing means 8 has a scan time,
In order to accurately measure the phase difference, a reference frequency is generated by a crystal oscillator, and a synchronization control signal Vt is generated based on the frequency obtained by dividing the reference frequency by a frequency divider. 9, supply to the light emission control means 10 and the phase difference detection means 11 to perform synchronization control.

【0043】さらに、速度処理手段8は、位相差検出手
段11から入力される車両検知信号Vcにより、測定範
囲ABCD内に進入通過する測定車両12を検知し、さ
らに測定範囲ABラインとCDラインの2点間を通過す
る時間より、ABラインとCDラインの2点間の距離を
AB、CD間を通過する時間差で除算して、速度を算出
し、表示制御手段7に速度情報Vmを供給する。
Further, the speed processing means 8 detects the measurement vehicle 12 entering and passing within the measurement range ABCD based on the vehicle detection signal Vc input from the phase difference detection means 11, and further detects the measurement range AB line and the CD line. The speed is calculated by dividing the distance between the two points of the AB line and the CD line by the time difference between the AB and CD from the time of passing between the two points, and the speed is calculated, and the speed information Vm is supplied to the display control means 7. .

【0044】偏向駆動手段9は、スイープジェネレータ
等の信号発生手段で構成し、偏向手段6の反射板を偏向
駆動信号Vsにより、図1の測定範囲ABCDをカバー
するように、X軸方向、Y軸方向に偏向駆動する。な
お、偏向駆動手段9は、偏向手段6の偏向を図1に示す
測定範囲A〜EをAB、CDのラインにだけ当たるよう
に、偏向手段6を断続的に駆動するように構成してもよ
い。
The deflection driving means 9 is composed of a signal generating means such as a sweep generator. The deflection plate 6 of the deflection means 6 is controlled by the deflection driving signal Vs to cover the measuring range ABCD of FIG. It is driven to deflect in the axial direction. Note that the deflection driving means 9 may be configured to drive the deflection means 6 intermittently so that the deflection of the deflection means 6 hits the measurement ranges A to E shown in FIG. Good.

【0045】発光制御手段10は、例えばパルス発生回
路で構成し、速度処理手段8からの同期制御信号Vtに
合せて、一定の周期でレーザビーム光が発光するように
発光手段4を発光制御信号Lkにより制御する。
The light emission control means 10 is composed of, for example, a pulse generation circuit, and controls the light emission means 4 to emit a laser beam at a constant cycle in accordance with the synchronization control signal Vt from the speed processing means 8. It is controlled by Lk.

【0046】位相差検出手段11は、演算回路、バッフ
ァメモリ等で構成され、受光手段5から供給される反射
信号Lcと、速度処理手段8から供給される同期制御信
号Vtとに基づいて、位相差を検出して測定車両12を
検知し、車両検知信号Vcを速度処理手段8に出力す
る。なお、位相差は、測定車両12がない時は常に一定
値であり、位相差の変化が連続した時に測定車両12が
進入したと判定する。
The phase difference detecting means 11 comprises an arithmetic circuit, a buffer memory and the like. The phase difference detecting means 11 detects a position based on the reflection signal Lc supplied from the light receiving means 5 and the synchronization control signal Vt supplied from the speed processing means 8. The measurement vehicle 12 is detected by detecting the phase difference, and a vehicle detection signal Vc is output to the speed processing means 8. Note that the phase difference is always a constant value when there is no measurement vehicle 12, and it is determined that the measurement vehicle 12 has entered when the change in the phase difference is continuous.

【0047】このように、この発明に係る制御手段2
は、偏向手段6を制御する偏向駆動手段9と、発光手段
4を制御する発光制御手段10と、受光手段5からの反
射信号Lcより位相差を検出し、測定車両12を検知す
る位相差検出手段11と、測定車両12を検知した時間
より、図1の測定範囲ABCDを通過する時間の測定を
行い、測定車両12の速度を演算する速度処理手段8を
備えたので、測定範囲を通過する測定車両12の速度を
高精度に測定することができる。
As described above, the control means 2 according to the present invention
Is a deflection driving means 9 for controlling the deflection means 6, a light emission control means 10 for controlling the light emitting means 4, and a phase difference detection for detecting a measurement vehicle 12 by detecting a phase difference from a reflected signal Lc from the light receiving means 5. Based on the means 11 and the time at which the measuring vehicle 12 is detected, the time required to pass through the measuring range ABCD in FIG. 1 is measured, and the speed processing means 8 for calculating the speed of the measuring vehicle 12 is provided. The speed of the measurement vehicle 12 can be measured with high accuracy.

【0048】図5はこの発明に係る偏向手段として用い
るガルバノミラーの構成図である。図5において、ガル
バノミラー30は、半導体基板であるシリコン基板32
の上下面を、それぞれホウケイ酸ガラス等からなる上側
ガラス基板33,下側ガラス基板34で上下方向からサ
ンドイッチ状に重ね合わせ、接合して3層構造とする。
FIG. 5 is a configuration diagram of a galvanomirror used as a deflection means according to the present invention. In FIG. 5, a galvanomirror 30 includes a silicon substrate 32 which is a semiconductor substrate.
The upper and lower surfaces are sandwiched from above and below on an upper glass substrate 33 and a lower glass substrate 34 made of borosilicate glass or the like, and joined to form a three-layer structure.

【0049】上側ガラス基板33および下側ガラス基板
34は、それぞれ中央部に、例えば超音波加工によって
形成した凹部33A,34Aを設け、シリコン基板32
に接合する場合、凹部33A,34Aがそれぞれシリコ
ン基板32側となるように配置する。このような配置に
より、反射ミラー38を設ける可動板35の揺動空間を
形成するとともに、密閉構造とする。
The upper glass substrate 33 and the lower glass substrate 34 are provided with concave portions 33A and 34A formed by, for example, ultrasonic processing at the center, respectively.
In this case, the concave portions 33A and 34A are arranged so as to be on the silicon substrate 32 side. With such an arrangement, a swing space of the movable plate 35 on which the reflection mirror 38 is provided is formed, and a closed structure is provided.

【0050】シリコン基板32には、枠状に形成された
外側可動板35Aと、外側可動板35Aの内側に軸支さ
れる内側可動板35Bとからなる平板状の可動板35を
設ける。外側可動板35Aは、第1のトーションバー3
6A,36Aによってシリコン基板32に軸支され、内
側可動板35Bは、第1のトーションバー36A,36
Aと軸方向が直交する第2のトーションバー36B,3
6Bで外側可動板35Aの内側に軸支点される。外側可
動板35A,内側可動板35B,第1のトーションバー
36Aおよび第2のトーションバー36Bは、シリコン
基板32に異方性エッチングによって一体成形し、シリ
コン基板32と同一の材料で形成する。
The silicon substrate 32 is provided with a flat movable plate 35 composed of an outer movable plate 35A formed in a frame shape and an inner movable plate 35B pivotally supported inside the outer movable plate 35A. The outer movable plate 35A includes the first torsion bar 3
6A and 36A, the inner movable plate 35B is supported by the first torsion bars 36A and 36A.
A second torsion bar 36B, 3 whose axial direction is orthogonal to A
At 6B, it is pivotally supported inside the outer movable plate 35A. The outer movable plate 35A, the inner movable plate 35B, the first torsion bar 36A, and the second torsion bar 36B are integrally formed on the silicon substrate 32 by anisotropic etching, and are formed of the same material as the silicon substrate 32.

【0051】外側可動板35Aの上面に、シリコン基板
32の上面に形成した一対の外側電極端子39A,39
Aに第1のトーションバー36Aの一方の部分を介して
両端がそれぞれ電気的に接続される平面コイル37Aが
絶縁層で被覆されて形成される。一方、内側可動板35
Bの上面に、シリコン基板32の上面に形成した一対の
内側電極端子39B,39Bに第2のトーションバー3
6Bから外部可動板35A部分を通り、第1のトーショ
ンバー36Aの他方を介してそれぞれ電気的に接続され
る平面コイル37Bが絶縁層で被覆されて形成される。
A pair of outer electrode terminals 39A, 39A formed on the upper surface of the silicon substrate 32 are formed on the upper surface of the outer movable plate 35A.
A is formed by coating a planar coil 37A, which is electrically connected to both ends of the first torsion bar 36A via one portion of the first torsion bar 36A, with an insulating layer. On the other hand, the inner movable plate 35
B, a pair of inner electrode terminals 39B, 39B formed on the upper surface of the silicon
A planar coil 37B that is electrically connected to the first torsion bar 36A via the other portion of the first movable torsion bar 36A from the base coil 6B is covered with an insulating layer.

【0052】平面コイル37A,平面コイル37Bは、
電解メッキによる電鋳コイル法で形成する。なお、外側
可動板35A,内側電極端子39Bは、シリコン基板3
2上に電鋳コイル法により平面コイル37A,37Bと
同時に形成する。平面コイル37Bで囲まれた内側可動
板35Bの中央部には、反射ミラー38を形成する。
The plane coil 37A and the plane coil 37B are
It is formed by an electroformed coil method by electrolytic plating. The outer movable plate 35A and the inner electrode terminal 39B are connected to the silicon substrate 3
2 are formed simultaneously with the planar coils 37A and 37B by an electroformed coil method. A reflection mirror 38 is formed at the center of the inner movable plate 35B surrounded by the plane coil 37B.

【0053】上側ガラス基板33および下側ガラス基板
34には、それぞれ2個づつ対となった円柱状の永久磁
石40A〜43A,40B〜43Bが図のように配置さ
れている。上側ガラス基板33の対向する永久磁石40
A,41Aと、下側ガラス基板34の対向する永久磁石
40B,41Bとで外側可動板35A上の平面コイル3
7Aに磁界を作用させ、平面コイル37Aに流す駆動電
流との相互作用で外側可動板35Aを回動させる。
On the upper glass substrate 33 and the lower glass substrate 34, two pairs of cylindrical permanent magnets 40A to 43A and 40B to 43B are arranged as shown in FIG. Opposing permanent magnets 40 on upper glass substrate 33
A, 41A and the opposing permanent magnets 40B, 41B of the lower glass substrate 34 form a planar coil 3 on the outer movable plate 35A.
A magnetic field acts on 7A, and the outer movable plate 35A is rotated by interaction with a drive current flowing through the planar coil 37A.

【0054】一方、上側ガラス基板33の対向する永久
磁石42A,43Aと、下側ガラス基板34の対向する
永久磁石42B,43Bとで内側可動板35B上の平面
コイル37Bに磁界を作用させ、平面コイル37Bに流
す駆動電流との相互作用で内側可動板35Bを回動させ
る。
On the other hand, the opposing permanent magnets 42A and 43A of the upper glass substrate 33 and the opposing permanent magnets 42B and 43B of the lower glass substrate 34 apply a magnetic field to the planar coil 37B on the inner movable plate 35B, and The inner movable plate 35B is rotated by interaction with the drive current flowing through the coil 37B.

【0055】対向した永久磁石40Aと41Aは、上下
の極性が互いに反対、例えば永久磁石40Aの上面がS
極ならば、永久磁石41Aの上面はN極となるよう配置
し、しかも、磁束が可動板35の平面コイル部分に対し
て平行に横切るように配置する。他の対向した永久磁石
42Aと43A、永久磁石40Bと41B、永久磁石4
2Bと43Bについても同様である。
The opposing permanent magnets 40A and 41A have opposite polarities, for example, the upper surface of the permanent magnet 40A is S
If it is a pole, the upper surface of the permanent magnet 41A is arranged so as to be an N pole, and furthermore, the magnetic flux is arranged so as to cross in parallel with the plane coil portion of the movable plate 35. Other opposed permanent magnets 42A and 43A, permanent magnets 40B and 41B, permanent magnet 4
The same applies to 2B and 43B.

【0056】上下方向で対向する永久磁石40Aと40
Bとの関係は、上下の極性は同じ、例えば永久磁石40
Aの上面がS極ならば、永久磁石40Bの上面もS極と
なるように配置する。他の上下方向で対向する永久磁石
41Aと41B、永久磁石42Aと42B、永久磁石4
3Aと43Bも同様に配置する。これにより、可動板3
5の両端部で互いに相反する方向に力が作用する。
The permanent magnets 40A and 40 opposing each other in the vertical direction
The relationship with B is that the upper and lower polarities are the same, for example, the permanent magnet 40
If the upper surface of A is the S pole, the upper surface of the permanent magnet 40B is also arranged to be the S pole. Other vertically facing permanent magnets 41A and 41B, permanent magnets 42A and 42B, permanent magnet 4
3A and 43B are similarly arranged. Thereby, the movable plate 3
Forces act in opposite directions at both ends of 5.

【0057】下側ガラス基板34の下面には、平面コイ
ル37A,37Bとそれぞれ電磁結合するよう配置され
た検出コイル45A,45Bと検出コイル46A,46
Bがパターンで形成される。検出コイル45A,45B
は、第1のトーションバー36Aに対して対称に配置さ
れ、検出コイル46A,46Bは、第2のトーションバ
ー36Bに対して対称に配置される。
On the lower surface of the lower glass substrate 34, detection coils 45A and 45B and detection coils 46A and 46, which are arranged so as to be electromagnetically coupled to the planar coils 37A and 37B, respectively.
B is formed in a pattern. Detection coil 45A, 45B
Are arranged symmetrically with respect to the first torsion bar 36A, and the detection coils 46A and 46B are arranged symmetrically with respect to the second torsion bar 36B.

【0058】一対の検出コイル45A,45Bは、外側
可動板35Aの変位角を検出するためのもので、平面コ
イル37Aに流す駆動電流に重畳して流す検出用電流に
基づいて発生する平面コイル37Aと検出コイル45
A,45Bとの相互インダクタンスが外側可動板35A
の角度変位によって変化し、この相互インダクタンスの
変化から外側可動板35Aの変位角を検出することがで
きる。
The pair of detection coils 45A and 45B are for detecting the displacement angle of the outer movable plate 35A, and are formed based on a detection current which is superimposed on a drive current which flows through the plane coil 37A and which is generated based on the detection current. And detection coil 45
A, the mutual inductance with 45B is outside movable plate 35A
The displacement angle of the outer movable plate 35A can be detected from the mutual inductance change.

【0059】一方、一対の検出コイル46A,46Bも
同様にして内側可動板35Bの変位角を検出することが
できる。なお、外側可動板35Aの変位を、例えばX軸
方向の変位に対応させ、内側可動板35Bの変位をY軸
方向の変位に対応させることにより、反射ミラー38の
2次元の変位が可能となる。
On the other hand, the pair of detection coils 46A and 46B can detect the displacement angle of the inner movable plate 35B in the same manner. The displacement of the outer movable plate 35A corresponds to, for example, the displacement in the X-axis direction, and the displacement of the inner movable plate 35B corresponds to the displacement in the Y-axis direction, whereby the two-dimensional displacement of the reflection mirror 38 becomes possible. .

【0060】このようにこの発明に係る偏向手段6は、
半導体製造プロセスを用いた2次元の偏向が容易にでき
るガルバノミラー30であるので、車両が走行する道路
上の小さな空間でも精度の高い2次元の偏向を行うこと
ができる。
As described above, the deflecting means 6 according to the present invention comprises:
Since the galvanometer mirror 30 can easily perform two-dimensional deflection using a semiconductor manufacturing process, highly accurate two-dimensional deflection can be performed even in a small space on a road on which a vehicle travels.

【0061】なお、本実施の形態では、図2に示すよう
に車両速度測定装置1を一体型としたが、発光手段4、
偏向手段6および受光手段5を一体型として、図1に示
す支柱101に設置するようにしてもよい。さらに、受
光手段5を発光手段4、偏向手段6と別の配置にしても
よい。
In this embodiment, the vehicle speed measuring device 1 is integrated as shown in FIG.
The deflecting means 6 and the light receiving means 5 may be integrated and installed on the support 101 shown in FIG. Further, the light receiving means 5 may be arranged differently from the light emitting means 4 and the deflecting means 6.

【0062】[0062]

【発明の効果】以上説明したように、この発明に係る車
両速度測定装置は、光ビームを発生する発光手段と、光
ビームを2次元の所定の範囲に偏向する偏向手段と、2
次元の所定の範囲から反射される光ビームの反射光を受
光する受光手段と、この受光手段が受光した反射光に基
づいて車両速度算出をする制御手段と、この車両速度の
情報を外部に表示出力する表示制御手段とを備えたの
で、光ビームを二次元の所定範囲(検出領域)で偏向す
ることができ、検出領域を通過する、二輪車および四輪
車等の全ての通過車両の速度を測定することができ車両
の速度違反や渋滞等の車両の通行状況の監視をすること
ができる。
As described above, the vehicle speed measuring device according to the present invention comprises: a light emitting means for generating a light beam; a deflecting means for deflecting the light beam into a predetermined two-dimensional range;
A light receiving means for receiving the reflected light of the light beam reflected from the predetermined dimension; a control means for calculating a vehicle speed based on the reflected light received by the light receiving means; and displaying the information on the vehicle speed to the outside Output display control means, the light beam can be deflected in a predetermined two-dimensional range (detection area), and the speed of all passing vehicles such as motorcycles and four-wheel vehicles passing through the detection area can be controlled. It is possible to measure and monitor the traffic situation of the vehicle such as speeding of the vehicle and traffic jam.

【0063】また、この発明に係る車両速度測定装置
は、制御手段に、2次元の所定の範囲の偏向駆動信号を
偏向手段に供給する偏向駆動手段と、一定の周期で発光
するように発光手段を制御する発光制御手段と、受光手
段からの情報を受けて位相差の検出を行う位相差検出手
段と、決められた周期の同期信号および位相差検出手段
からの信号に基づいて速度を算出する速度処理手段とを
備えたので、単純な構成で、測定車両の速度測定が高精
度にでき、経済性に優れている。
Further, in the vehicle speed measuring device according to the present invention, the control means includes a deflection driving means for supplying a two-dimensional predetermined range of deflection driving signals to the deflection means, and a light emitting means for emitting light at a constant cycle. , A phase difference detecting means for receiving information from the light receiving means and detecting a phase difference, and calculating a speed based on a synchronization signal of a predetermined period and a signal from the phase difference detecting means. With the provision of the speed processing means, the speed of the measuring vehicle can be measured with high accuracy with a simple configuration, and the economy is excellent.

【0064】さらに、この発明に係る偏向手段は、半導
体製造プロセスを用いた2次元方向に周期的に偏向でき
るガルバノミラーであるので、車両が走行する道路上の
小さな空間で、精度の高い2次元の偏向を行うことがで
きる。
Further, the deflecting means according to the present invention is a galvanomirror which can be periodically deflected in a two-dimensional direction using a semiconductor manufacturing process. Can be performed.

【0065】よって、装置の設置が容易で、走行中の車
両の速度を高精度で測定することができる車両速度測定
装置を提供することができる。
Accordingly, it is possible to provide a vehicle speed measuring device that can be easily installed and can measure the speed of a running vehicle with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る車両速度測定装置の設置イメー
ジ図
FIG. 1 is an installation image diagram of a vehicle speed measuring device according to the present invention.

【図2】この発明に係る車両速度測定装置の要部ブロッ
ク構成図
FIG. 2 is a block diagram of a main part of a vehicle speed measuring device according to the present invention.

【図3】この発明に係る車両速度測定装置の別実施の形
態要部ブロック構成図
FIG. 3 is a block diagram of a main part of another embodiment of the vehicle speed measuring device according to the present invention.

【図4】この発明に係る制御手段の要部ブロック構成図FIG. 4 is a block diagram of a main part of control means according to the present invention.

【図5】この発明に係る偏向手段として用いるガルバノ
ミラーの構成図
FIG. 5 is a configuration diagram of a galvanometer mirror used as a deflection unit according to the present invention.

【図6】従来の赤外線センサ方式の車両速度測定装置の
一例概念図
FIG. 6 is a conceptual diagram of an example of a conventional vehicle speed measuring device using an infrared sensor.

【符号の説明】[Explanation of symbols]

1…車両速度測定装置、2…制御手段、、4…発光手
段、5…受光手段、6…偏向手段、7…表示制御手段、
8…速度処理手段、9…偏向駆動手段、10…発光制御
手段、11…位相差検出手段、12…車両、13…表示
手段、14…発光用偏向手段、15…受光用偏向手段、
20…速度計測センサ、30…ガルバノミラー、101
…支柱、102…道路、103…伝送路、Lc…反射信
号、Lk…発光制御信号、Lr…反射光、Ls…光信
号、Ra〜Rd…発光ビーム、Rar〜Rdr…反射ビ
ーム、Vc…車両検知信号、Vm…速度情報、Vo…表
示出力信号、Vr…速度計測センサ、Vs…偏向駆動信
号、Vt…同期制御信号。
DESCRIPTION OF SYMBOLS 1 ... Vehicle speed measuring device, 2 ... Control means, 4 ... Light emitting means, 5 ... Light receiving means, 6 ... Deflection means, 7 ... Display control means,
8 speed processing means, 9 deflection driving means, 10 light emission control means, 11 phase difference detection means, 12 vehicle, 13 display means, 14 light emission deflection means, 15 light reception deflection means,
20: speed measurement sensor, 30: galvanometer mirror, 101
... Prop, 102 ... Road, 103 ... Transmission path, Lc ... Reflection signal, Lk ... Light emission control signal, Lr ... Reflection light, Ls ... Light signal, Ra-Rd ... Light emission beam, Rar-Rdr ... Reflection beam, Vc ... Vehicle Detection signal, Vm: speed information, Vo: display output signal, Vr: speed measurement sensor, Vs: deflection drive signal, Vt: synchronization control signal.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 道路を走行中の車の速度を測定する車両
速度測定装置において、 光ビームを発生する発光手段と、前記光ビームを2次元
の所定の範囲に偏向する偏向手段と、前記2次元の所定
の範囲から反射される光ビームの反射光を受光する受光
手段と、この受光手段が受光した反射光に基づいて車両
速度算出をする制御手段と、この車両速度の情報を外部
に表示出力する表示制御手段と、を備えたことを特徴と
する車両速度測定装置。
1. A vehicle speed measuring device for measuring the speed of a vehicle traveling on a road, comprising: a light emitting means for generating a light beam; a deflecting means for deflecting the light beam into a predetermined two-dimensional range; A light receiving means for receiving the reflected light of the light beam reflected from the predetermined dimension; a control means for calculating a vehicle speed based on the reflected light received by the light receiving means; and displaying the information on the vehicle speed to the outside And a display control means for outputting.
【請求項2】 前記制御手段は、2次元の所定の範囲の
偏向駆動信号を前記偏向手段に供給する偏向駆動手段
と、一定の周期で発光するように前記発光手段を制御す
る発光制御手段と、前記受光手段からの情報を受けて位
相差の検出を行う位相差検出手段と、決められた周期の
同期信号および位相差検出手段からの信号に基づいて速
度を算出する速度処理手段と、を備えたことを特徴とす
る請求項1記載の車両速度測定装置。
2. The control unit includes: a deflection driving unit that supplies a two-dimensional predetermined range of deflection driving signal to the deflection unit; and a light emission control unit that controls the light emission unit to emit light at a constant cycle. A phase difference detection unit that receives information from the light receiving unit and detects a phase difference, and a speed processing unit that calculates a speed based on a synchronization signal having a predetermined period and a signal from the phase difference detection unit. The vehicle speed measurement device according to claim 1, further comprising:
【請求項3】 前記偏向手段は、半導体製造プロセスを
用いた2次元方向に周期的に偏向できるガルバノミラー
であることを特徴とする請求項1、2記載の車両速度測
定装置。
3. The vehicle speed measuring device according to claim 1, wherein said deflecting means is a galvanomirror capable of periodically deflecting in a two-dimensional direction using a semiconductor manufacturing process.
JP16245498A 1998-06-10 1998-06-10 Vehicle speed measurement device Expired - Fee Related JP3473737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16245498A JP3473737B2 (en) 1998-06-10 1998-06-10 Vehicle speed measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16245498A JP3473737B2 (en) 1998-06-10 1998-06-10 Vehicle speed measurement device

Publications (2)

Publication Number Publication Date
JPH11352140A true JPH11352140A (en) 1999-12-24
JP3473737B2 JP3473737B2 (en) 2003-12-08

Family

ID=15754931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16245498A Expired - Fee Related JP3473737B2 (en) 1998-06-10 1998-06-10 Vehicle speed measurement device

Country Status (1)

Country Link
JP (1) JP3473737B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104676A (en) * 2001-09-28 2003-04-09 Toshiba Elevator Co Ltd Handrail belt speed detector
CN104504905A (en) * 2015-01-12 2015-04-08 重庆交通大学 Vehicle track and speed identification method
JP2015103201A (en) * 2013-11-28 2015-06-04 サクサ株式会社 Life-and-death monitoring system
JP2020003329A (en) * 2018-06-28 2020-01-09 パイオニア株式会社 Optical device, distance measuring device, and distance measuring method
CN112924711A (en) * 2021-01-22 2021-06-08 香港中文大学(深圳) Vehicle speed detection method and device and computer readable storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104676A (en) * 2001-09-28 2003-04-09 Toshiba Elevator Co Ltd Handrail belt speed detector
JP2015103201A (en) * 2013-11-28 2015-06-04 サクサ株式会社 Life-and-death monitoring system
CN104504905A (en) * 2015-01-12 2015-04-08 重庆交通大学 Vehicle track and speed identification method
CN104504905B (en) * 2015-01-12 2016-06-08 重庆交通大学 A kind of method that track of vehicle and speed are identified
JP2020003329A (en) * 2018-06-28 2020-01-09 パイオニア株式会社 Optical device, distance measuring device, and distance measuring method
JP2022164850A (en) * 2018-06-28 2022-10-27 パイオニア株式会社 Optical device, distance measuring device and distance measuring method
CN112924711A (en) * 2021-01-22 2021-06-08 香港中文大学(深圳) Vehicle speed detection method and device and computer readable storage medium
CN112924711B (en) * 2021-01-22 2023-08-11 香港中文大学(深圳) Vehicle speed detection method and device and computer readable storage medium

Also Published As

Publication number Publication date
JP3473737B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
EP2682781B1 (en) Laser radar device
JP4174252B2 (en) Optical deflection apparatus, image forming apparatus using the same, and driving method thereof
CN109557554A (en) Laser radar and vehicle
JP4147947B2 (en) Optical scanning device, object detection device using the same, and drawing device
US20190331774A1 (en) Multiplexed LIDAR Transceiver
JP3191232B2 (en) Image forming device
KR20190117718A (en) Optical Modules and Rangefinders
CN109557556A (en) Scan components and laser radar
JP6846567B2 (en) Angular magnetic field sensor for scanner
CN111819486A (en) Optical scanning device and control method thereof
JP2024045643A (en) Scanner, control method for scanner, program, recording medium, and distance measuring device
US6486995B2 (en) Vibration-resisting structure of optical scanner
JP3473737B2 (en) Vehicle speed measurement device
US6246503B1 (en) Optical barrier apparatus
Tai et al. 3D LIDAR based on FPCB mirror
JP2019095353A (en) Ranging device
EP3995853B1 (en) Method for measuring tilt angle of vibrating mirror for scanning and lidar using method
JPH07198845A (en) Distance and image measuring apparatus
JP2012118125A (en) Optical scanning apparatus and driving method thereof
JP7152147B2 (en) rangefinder
JP2022121521A (en) Ranging device and optical scanning device
JP2003177049A (en) Coriolis flowmeter
CN209525457U (en) Scan components and laser radar
JP6993195B2 (en) Distance measuring device
JPH09329441A (en) Range finder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees