JPH11324930A - Variable capacity type compressor - Google Patents
Variable capacity type compressorInfo
- Publication number
- JPH11324930A JPH11324930A JP10133604A JP13360498A JPH11324930A JP H11324930 A JPH11324930 A JP H11324930A JP 10133604 A JP10133604 A JP 10133604A JP 13360498 A JP13360498 A JP 13360498A JP H11324930 A JPH11324930 A JP H11324930A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- pressure
- chamber
- control
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B27/1804—Controlled by crankcase pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B27/1804—Controlled by crankcase pressure
- F04B2027/1809—Controlled pressure
- F04B2027/1813—Crankcase pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B27/1804—Controlled by crankcase pressure
- F04B2027/1822—Valve-controlled fluid connection
- F04B2027/1827—Valve-controlled fluid connection between crankcase and discharge chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B27/1804—Controlled by crankcase pressure
- F04B2027/184—Valve controlling parameter
- F04B2027/185—Discharge pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B27/1804—Controlled by crankcase pressure
- F04B2027/1886—Open (not controlling) fluid passage
- F04B2027/1895—Open (not controlling) fluid passage between crankcase and suction chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2205/00—Fluid parameters
- F04B2205/08—Pressure difference over a throttle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2205/00—Fluid parameters
- F04B2205/15—By-passing over the pump
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、車両走行用エンジ
ンにより駆動される、冷凍サイクル用の可変容量型圧縮
機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable displacement compressor for a refrigerating cycle driven by a vehicle engine.
【0002】[0002]
【従来の技術】冷凍サイクル用の可変容量型圧縮機とし
て、例えば特公平6−15872号公報に記載の発明で
は、吸入圧と吐出圧との差圧を利用して可変容量機構を
作動させている。2. Description of the Related Art As a variable displacement compressor for a refrigeration cycle, for example, in the invention described in Japanese Patent Publication No. 6-15872, a variable displacement mechanism is operated by utilizing a differential pressure between a suction pressure and a discharge pressure. I have.
【0003】[0003]
【発明が解決しようとする課題】ところで、近年、燃費
向上への要求が強まってきている。そして、この要求に
対して上記公報に記載の可変容量型圧縮機(以下、圧縮
機と略す。)では、冷凍サイクルの熱負荷、つまり吸入
圧(蒸発器内圧力)が所定値以下となるように可変容量
機構を制御しているので、例えば吸入圧(熱負荷)が高
い状態でエンジン回転数が増大しても、吸入圧が所定値
以下となるまで吐出容量が減少変化しない。In recent years, there has been a growing demand for improved fuel efficiency. In response to this requirement, in the variable displacement compressor (hereinafter abbreviated as compressor) described in the above publication, the heat load of the refrigeration cycle, that is, the suction pressure (pressure inside the evaporator) becomes equal to or less than a predetermined value. For example, even if the engine speed is increased in a state where the suction pressure (heat load) is high, the discharge capacity does not change until the suction pressure becomes equal to or less than a predetermined value.
【0004】このため、エンジン回転数の増大に比例し
て圧縮機を稼動させるに必要な機械仕事が増大するの
で、燃費が悪化してしまうという問題が発生する。この
問題に対しては、電磁弁にて吐出側の圧力を調節するこ
とにより、エンジン回転数に応じて圧縮機の吐出容量を
制御するといった手段が知られている(特公平2−55
636号公報等)。[0004] For this reason, the mechanical work required to operate the compressor increases in proportion to the increase in the engine speed, which causes a problem that fuel efficiency deteriorates. In order to solve this problem, a means is known in which the discharge capacity of the compressor is controlled in accordance with the engine speed by adjusting the pressure on the discharge side with an electromagnetic valve (Japanese Patent Publication No. 2-55).
636).
【0005】しかし、この手段では、電磁弁に加えて、
電磁弁を制御するための制御装置等の電気部品を必要と
するので、圧縮機(冷凍サイクル)の製造原価上昇を招
くという新たな問題が発生する。本発明は、上記点に鑑
み、圧縮機(冷凍サイクル)の製造原価上昇を招くこと
なく、燃費向上に適した可変容量型圧縮機を提供するこ
とを目的とする。However, in this means, in addition to the solenoid valve,
Since an electric component such as a control device for controlling the solenoid valve is required, a new problem occurs in that the manufacturing cost of the compressor (refrigeration cycle) increases. In view of the above, it is an object of the present invention to provide a variable displacement compressor suitable for improving fuel efficiency without increasing the manufacturing cost of the compressor (refrigeration cycle).
【0006】[0006]
【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の技術的手段を用いる。請求項1〜
3に記載の発明では、圧縮機構(Cp)から吐出する冷
媒の冷媒通路(112)に設けらたオリフィス(11
3)を挟んで冷媒流れ上流側と下流側との差圧(ΔP)
に機械的に連動して作動して、可変容量機構(VVc)
の作動を機械的に制御する制御機構(Cv)を備えるこ
とを特徴とする。The present invention uses the following technical means to achieve the above object. Claim 1
In the invention described in Item 3, the orifice (11) provided in the refrigerant passage (112) for the refrigerant discharged from the compression mechanism (Cp).
3) Differential pressure (ΔP) between the upstream and downstream of the refrigerant flow across
Variable mechanical mechanism (VVc) that operates mechanically in conjunction with
And a control mechanism (Cv) for mechanically controlling the operation of.
【0007】第1に、差圧ΔPに機械的に連動して可変
容量機構(VVc)の作動制御を行っているので、特公
平2−55636号公報のように、電磁弁を用いて吐出
容量を制御するものに比べて、可変容量型圧縮機の製造
原価低減を図ることができる。第2に、差圧(ΔP)
は、吐出流量の略2乗に比例して変化するので、可変容
量型圧縮機の吐出容量は、後述するように、オリフィス
(113)及び制御機構(Cv)の設定値によって自ず
と決定される所定の吐出容量となるように機械的に制御
されることとなる。したがって、エンジンの回転数が増
大しても、吐出容量が減少変化して吐出容量が略一定に
維持されるので、可変容量型圧縮機を稼動させるに必要
な機械仕事が増大することを防止できる。First, since the operation of the variable displacement mechanism (VVc) is mechanically linked to the differential pressure ΔP, the discharge displacement is controlled by using an electromagnetic valve as disclosed in Japanese Patent Publication No. 2-55636. , The manufacturing cost of the variable displacement compressor can be reduced. Second, differential pressure (ΔP)
Changes in proportion to the square of the discharge flow rate, the discharge capacity of the variable displacement compressor is determined by the set value of the orifice (113) and the control mechanism (Cv), as described later. Is mechanically controlled so as to achieve the discharge capacity. Therefore, even if the engine speed increases, the discharge capacity decreases and changes to maintain the discharge capacity substantially constant, so that it is possible to prevent an increase in mechanical work required for operating the variable displacement compressor. .
【0008】以上に述べたように、本発明に係る可変容
量型圧縮機では、可変容量型圧縮機の製造原価上昇を招
くことなく、車両(エンジン)の燃費向上を図ることが
できる。なお、請求項2に記載の発明のごとく、可変容
量機構(VVc)は、圧縮機構(Cp)の吸入側及び吐
出側に連通する制御圧力室(120、133)を有して
いるとともに、その制御圧力室(120、133)内の
圧力を変化させることにより前記吐出容量を変化させ、
さらに、制御機構(Cv)は、差圧(ΔP)に機械的に
連動して、制御圧力室(120、133)と吸入側又は
吐出側とを連通させる通路を開閉する弁手段(125)
を有して構成することが望ましい。As described above, in the variable displacement compressor according to the present invention, it is possible to improve the fuel efficiency of the vehicle (engine) without increasing the manufacturing cost of the variable displacement compressor. As described in the second aspect, the variable displacement mechanism (VVc) has control pressure chambers (120, 133) communicating with the suction side and the discharge side of the compression mechanism (Cp). Changing the discharge capacity by changing the pressure in the control pressure chambers (120, 133);
Further, the control mechanism (Cv) mechanically interlocks with the differential pressure (ΔP) to open and close a passage for communicating the control pressure chamber (120, 133) with the suction side or the discharge side (125).
It is desirable to have a configuration.
【0009】また、弁手段(125)は、差圧(ΔP)
に機械的に連動して可動する圧力応動部材(128)に
より開閉作動させられるようにすることが望ましい。因
みに、上記各手段の括弧内の符号は、後述する実施形態
に記載の具体的手段との対応関係を示す一例である。The valve means (125) is provided with a differential pressure (ΔP)
It is desirable to be able to be opened and closed by a pressure responsive member (128) that is moved mechanically in conjunction with the first member. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in the embodiments described later.
【0010】[0010]
【発明の実施の形態】(第1実施形態)図1は本実施形
態に係るスクロール式可変容量型圧縮機(以下、圧縮機
と略す。)100を用いた車両用冷凍サイクルの模式図
であり、200は圧縮機100から吐出した冷媒を冷却
する凝縮器(放熱器)である。また、300は凝縮器2
00から流出した冷媒を減圧するとともに、後述する蒸
発器400の出口側の加熱度が所定値となるように開度
が制御される膨張弁(減圧器)であり、400は膨張弁
300にて減圧された液相冷媒を蒸発させる蒸発器であ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 is a schematic diagram of a vehicle refrigeration cycle using a scroll-type variable displacement compressor (hereinafter abbreviated as a compressor) 100 according to the present embodiment. And 200, a condenser (radiator) for cooling the refrigerant discharged from the compressor 100. 300 is the condenser 2
An expansion valve (decompressor) whose pressure is reduced so that the degree of heating at the outlet side of the evaporator 400, which will be described later, becomes a predetermined value. An evaporator for evaporating the decompressed liquid-phase refrigerant.
【0011】なお、圧縮機100は、Vベルトおよび電
磁クラッチ(図示せず)を介して車両走行用エンジン
(以下、エンジンと略す。)500により駆動される。
次に、圧縮機100の構造について述べる。図2は圧縮
機100の断面を示しており、101は電磁クラッチを
介して回転駆動されるシャフトである。102はシャフ
ト101を回転可能に支持する転がり軸受103を保持
するフロントハウジングであり、このフロントハウジン
グ102には、渦巻き状の歯部104aが形成された固
定スクロール(固定部)104が固定されている。The compressor 100 is driven by a vehicle traveling engine (hereinafter abbreviated as engine) 500 via a V-belt and an electromagnetic clutch (not shown).
Next, the structure of the compressor 100 will be described. FIG. 2 shows a cross section of the compressor 100, and 101 is a shaft that is driven to rotate via an electromagnetic clutch. Reference numeral 102 denotes a front housing that holds a rolling bearing 103 that rotatably supports the shaft 101. A fixed scroll (fixed portion) 104 having a spiral tooth portion 104a is fixed to the front housing 102. .
【0012】また、固定スクロール104とフロントハ
ウジング102とによって形成される空間には、歯部1
04aに噛み合う渦巻き状の歯部105aが形成された
可動スクロール(可動部)105が配設されている。な
お、可動スクロール105は、シャフト101の回転中
心から所定量偏心した位置に形成されたクランク部(偏
心部)101aに軸受101bを介して回転可能に組付
けれている。The space formed by the fixed scroll 104 and the front housing 102 has a tooth 1
A movable scroll (movable portion) 105 provided with a spiral tooth portion 105a that meshes with the 04a is provided. The movable scroll 105 is rotatably mounted via a bearing 101b to a crank portion (eccentric portion) 101a formed at a position eccentric from the rotation center of the shaft 101 by a predetermined amount.
【0013】そして、可動スクロール105が、シャフ
ト101の回転とともにシャフト101周りを旋回する
ことにより、両スクロール104、105によって構成
された作動室Vcの体積を拡大縮小させて冷媒を吸入圧
縮する。なお、以下、両スクロール104、105等の
冷媒を吸入圧縮する機構を圧縮機構Cpと呼ぶ。また、
106は蒸発器400の出口側に接続される吸入口(図
示せず)に連通する吸入室であり、107は凝縮器20
0の入口側に接続される吐出口108に連通する吐出室
である。そして、吐出室107は、固定スクロール10
4の端板部104bに形成された吐出ポート109を介
して作動室Vcと連通しており、吐出ポート109のう
ち吐出室107側には、冷媒が吐出室107から作動室
Vc に逆流することを防止するリード弁状の吐出弁1
10が配設されている。The orbiting scroll 105 orbits around the shaft 101 with the rotation of the shaft 101, so that the volume of the working chamber Vc formed by the scrolls 104 and 105 is enlarged or reduced to suck and compress the refrigerant. Hereinafter, a mechanism that sucks and compresses the refrigerant of the scrolls 104 and 105 and the like is referred to as a compression mechanism Cp. Also,
106 is a suction chamber communicating with a suction port (not shown) connected to the outlet side of the evaporator 400, and 107 is a condenser 20
The discharge chamber communicates with the discharge port 108 connected to the inlet side of the “0”. The discharge chamber 107 is provided with the fixed scroll 10.
4 communicates with the working chamber Vc through a discharge port 109 formed in the end plate portion 104b, and the refrigerant flows back from the discharge chamber 107 to the working chamber Vc to the discharge chamber 107 side of the discharge port 109. Valve-shaped discharge valve 1 for preventing air leakage
10 are provided.
【0014】因みに、吐出弁110は、吐出弁110の
最大開度を規制する弁止板(弁押さえ)111とともに
端板部104bに共締め固定されている。そして、吐出
ポート109(吐出室107)から吐出口108に至る
冷媒通路112の途中には、冷媒を減圧するとともに開
度が固定された第1オリフィス(第1固定絞り)113
が配設されており、この第1オリフィス113の冷媒流
れ上流側の圧力は、後述する第4制御室130に導か
れ、下流側の圧力は後述する第3制御室129に導かれ
ている。Incidentally, the discharge valve 110 is fixedly fastened to the end plate 104b together with a valve stop plate (valve retainer) 111 for regulating the maximum opening of the discharge valve 110. A first orifice (first fixed throttle) 113 which decompresses the refrigerant and has a fixed opening is provided in the middle of the refrigerant passage 112 from the discharge port 109 (discharge chamber 107) to the discharge port 108.
The pressure on the upstream side of the refrigerant flow of the first orifice 113 is guided to a fourth control chamber 130 described later, and the pressure on the downstream side is guided to a third control chamber 129 described later.
【0015】ところで、端板部104bには、圧縮行程
中の作動室Vcに連通するパイパスポート114が形成
されており、このバイパスポート114は、中間室11
5及びバイパス通路116を介して吸入室(吸入側)1
06に連通している。また、バイパスポート114のう
ち中間室115側には、バイパスポート114を開閉す
るリード弁状のバイパス弁(バイパス弁体)117が配
設されている。そして、このバイパス弁119は、中間
室115内の圧力が、バイパスポート114が連通する
作動室Vc(以下、この作動室Vcを中間圧作動室と呼
ぶ。)内の圧力より高いときにはバイパスポート114
を閉じ、一方、中間室115内の圧力が中間圧作動室内
の圧力より低いときにはバイパスポート114を開くよ
うに構成されている。A bypass port 114 communicating with the working chamber Vc during the compression stroke is formed in the end plate portion 104b.
5 and the suction chamber (suction side) 1 via the bypass passage 116
06. A reed valve-shaped bypass valve (bypass valve element) 117 for opening and closing the bypass port 114 is provided on the intermediate chamber 115 side of the bypass port 114. The bypass valve 119 is connected to the bypass port 114 when the pressure in the intermediate chamber 115 is higher than the pressure in the working chamber Vc to which the bypass port 114 communicates (hereinafter, this working chamber Vc is referred to as an intermediate pressure working chamber).
Is closed, and when the pressure in the intermediate chamber 115 is lower than the pressure in the intermediate pressure working chamber, the bypass port 114 is opened.
【0016】因みに、118はバイパス弁119の最大
開度を規制する弁止板(弁押さえ)であり、この弁止板
118はバイパス弁119とともに端板部104bに共
締め固定されている。また、バイパス通路116には、
バイパス通路116(中間室ポート115a)を開閉す
るスプール型のバイパス弁119がバイパス通路116
内に摺動可能に配設されており、このバイパス弁119
と固定スクロール104とによって第1制御室(制御圧
力室)120が形成されている。そして、第1制御室1
20は、バイパス弁119の開閉作動を制御するととも
に、吐出室107(吐出側)及び吸入室106(吸入
側)の両者に連通している。Incidentally, reference numeral 118 denotes a valve stop plate (valve retainer) for regulating the maximum opening of the bypass valve 119. The valve stop plate 118 is fixed together with the bypass valve 119 to the end plate portion 104b. In the bypass passage 116,
A spool-type bypass valve 119 that opens and closes the bypass passage 116 (intermediate chamber port 115 a) is provided.
The bypass valve 119 is slidably disposed in the inside.
A first control chamber (control pressure chamber) 120 is formed by the and the fixed scroll 104. And the first control room 1
Reference numeral 20 controls the opening / closing operation of the bypass valve 119 and communicates with both the discharge chamber 107 (discharge side) and the suction chamber 106 (suction side).
【0017】また、第1制御室120と吐出室107と
は、比較的大きな圧力損失を発生させる第2オリフィス
(第2固定絞り)121を介して常に連通しており、一
方、第1制御室120と吸入室106とは、制御通路1
22(122a〜122c)を介して連通している。そ
して、バイパス弁119を挟んで第1制御室120と反
対側には、吸入室106内の圧力が導かれるとともに、
第1制御室120の体積を縮小させる向きの弾性力をバ
イパス弁119に作用させる第1コイルバネ(第1弾性
体)123が配設された第2制御室124が形成されて
いる。The first control chamber 120 and the discharge chamber 107 always communicate with each other via a second orifice (second fixed throttle) 121 which generates a relatively large pressure loss. 120 and the suction chamber 106 are connected to the control passage 1
22 (122a-122c). The pressure in the suction chamber 106 is guided to the side opposite to the first control chamber 120 with the bypass valve 119 interposed therebetween.
A second control chamber 124 in which a first coil spring (first elastic body) 123 for applying an elastic force to the bypass valve 119 to reduce the volume of the first control chamber 120 is formed.
【0018】このため、第1制御室120の圧力が第2
制御室124の圧力より高いときには、バイパス通路1
16(中間室ポート115a)が閉じられ、一方、第1
制御室120の圧力が第2制御室124の圧力より低い
とき又は等しいときには、バイパス通路116(中間室
ポート115a)が開かれる。また、制御通路122に
は、制御通路122(122a)を開閉する制御弁(弁
体)125が配設されている。そして、この制御弁12
5を挟んで一方側には、制御通路122(122a)を
閉じる向きの弾性力を制御弁125に作用させる第2コ
イルバネ(第2弾性体)126が配設され、他方側に
は、制御通路122(122a)を開く向きの力を制御
弁125に作用させるリテーナ(プッシュロッド)12
7が配設されている。For this reason, the pressure in the first control chamber
When the pressure is higher than the pressure in the control chamber 124, the bypass passage 1
16 (intermediate chamber port 115a) is closed while the first
When the pressure in the control chamber 120 is lower than or equal to the pressure in the second control chamber 124, the bypass passage 116 (the intermediate chamber port 115a) is opened. The control passage 122 is provided with a control valve (valve element) 125 for opening and closing the control passage 122 (122a). And this control valve 12
5 is provided on one side with a second coil spring (second elastic body) 126 for applying an elastic force to the control valve 125 in a direction to close the control passage 122 (122a), and on the other side, a control passage Retainer (push rod) 12 for applying a force in the direction of opening 122 (122a) to control valve 125
7 are provided.
【0019】ところで、128は、第3制御室129と
第4制御室130とを区画するとともに、両制御室12
9、130の差圧に連動する可動するダイヤフラム(圧
力応動部材)であり、このダイヤフラム128にリテー
ナ127が連結(固定)されている。次に、圧縮機10
0の特徴的作動について述べる。Incidentally, 128 partitions the third control room 129 and the fourth control room 130 and both control rooms 12
A movable diaphragm (pressure-responsive member) interlocked with the differential pressure between the diaphragms 9 and 130, and a retainer 127 is connected (fixed) to the diaphragm 128. Next, the compressor 10
The characteristic operation of 0 will be described.
【0020】1.最大容量運転時(図1参照) シャフト101が回転し圧縮機100が稼動すると、圧
縮された冷媒は、吐出ポート106から吐出室107に
吐出され、冷媒通路112を経由して吐出口108から
凝縮器200に向けて吐出される。このとき、冷媒が第
1オリフィス113を通過する際の圧力損失により、第
3制御室129の圧力が第4制御室130の圧力より低
くなるような差圧ΔPが発生するので、ダイヤフラム1
28及びリテーナ127は、制御通路122を開く向き
の力(以下、この力を開弁力と呼ぶ。)を制御弁125
に対して作用させる。1. At the time of the maximum capacity operation (see FIG. 1) When the shaft 101 rotates and the compressor 100 operates, the compressed refrigerant is discharged from the discharge port 106 to the discharge chamber 107, and condensed from the discharge port 108 through the refrigerant passage 112. It is discharged toward the container 200. At this time, the pressure loss when the refrigerant passes through the first orifice 113 generates a pressure difference ΔP such that the pressure in the third control chamber 129 becomes lower than the pressure in the fourth control chamber 130.
28 and the retainer 127 apply a force for opening the control passage 122 (hereinafter, this force is referred to as a valve opening force) to the control valve 125.
To act on.
【0021】そして、第2コイルバネ126の弾性力
(以下、この力を閉弁力)と呼ぶ。)が開弁力より小さ
い場合には、制御通路122が閉じられるので、第1制
御室120内の圧力は吐出室107と等しくなり、バイ
パス通路116(中間室ポート115a)が閉じられ
る。したがって、中間室115内の圧力が中間圧作動室
内の圧力より高くなり、バイパスポート114が閉じら
れる(閉じた状態が維持される)ので、圧縮された冷媒
は、バイパスポート114から吸入室106(吸入側)
に流出することなく、吐出ポート109から吐出され
る。すなわち、圧縮機100の理論吐出量に近い吐出容
量(100%容量)にて圧縮機100が稼動する。The elastic force of the second coil spring 126 (hereinafter, this force is referred to as a valve closing force). Is smaller than the valve opening force, the control passage 122 is closed, so that the pressure in the first control chamber 120 becomes equal to that of the discharge chamber 107, and the bypass passage 116 (the intermediate chamber port 115a) is closed. Therefore, the pressure in the intermediate chamber 115 becomes higher than the pressure in the intermediate pressure working chamber, and the bypass port 114 is closed (the closed state is maintained), so that the compressed refrigerant flows from the bypass port 114 to the suction chamber 106 ( Suction side)
Is discharged from the discharge port 109 without flowing out. That is, the compressor 100 operates with a discharge capacity (100% capacity) close to the theoretical discharge amount of the compressor 100.
【0022】2.可変容量運転時(図2参照) エンジンの回転数が上昇し、冷媒通路112を流通する
冷媒流量(冷媒流速)が増大すると、これに連動して差
圧ΔPが大きくなるので、開弁力が閉弁力より大きくな
り、制御通路122が開く。このため、第1制御室12
0内の圧力が低下するため、バイパス通路116(中間
室ポート115a)が開いて中間室115内の圧力が低
下するので、バイパスポート114が開き、吐出容量が
減少変化する。2. At the time of variable displacement operation (see FIG. 2) When the rotation speed of the engine increases and the flow rate of the refrigerant flowing through the refrigerant passage 112 (refrigerant flow rate) increases, the differential pressure ΔP increases in conjunction with this, and the valve opening force decreases It becomes larger than the valve closing force, and the control passage 122 opens. For this reason, the first control room 12
Since the pressure in the intermediate chamber 115 decreases because the pressure in the intermediate chamber 115 decreases, the pressure in the intermediate chamber 115 decreases, so that the bypass port 114 opens and the discharge capacity decreases.
【0023】なお、吐出室107と第1制御室120と
が常に連通しているが、第2オリフィス121の開口面
積(絞り径)は、制御通路122に比べて十分に小さく
選定されているため、制御通路122を開閉することに
より、第1制御室120内の圧力を変化させる(制御す
る)ことができる。一方、パイパスポート114が開く
と、中間圧作動室から吸入室106(吸入側)に流出す
るので、冷媒通路112を流通する冷媒流量が減少する
ため、差圧ΔPが小さくなる。このため、制御弁125
は制御通路122を閉じる向き(紙面右向き)に移動す
るので、バイパスポート114が閉じていき、最大容量
運転状態に移行していく。Although the discharge chamber 107 and the first control chamber 120 are always in communication, the opening area (throttle diameter) of the second orifice 121 is selected to be sufficiently smaller than that of the control passage 122. By opening and closing the control passage 122, the pressure in the first control chamber 120 can be changed (controlled). On the other hand, when the bypass port 114 is opened, the refrigerant flows out from the intermediate pressure working chamber to the suction chamber 106 (suction side), so that the flow rate of the refrigerant flowing through the refrigerant passage 112 decreases, and the differential pressure ΔP decreases. Therefore, the control valve 125
Moves in the direction to close the control passage 122 (to the right in the drawing), the bypass port 114 is closed, and the state shifts to the maximum capacity operation state.
【0024】したがって、本実施形態に係る圧縮機10
0では、冷媒通路112を流通する冷媒量(圧縮機10
0の吐出容量)が増大して開弁力が閉弁力を上回ると、
吐出容量が減少するように変化し、一方、吐出容量が減
少して開弁力が小さくなると、吐出容量が増大するよう
に変化することとなる。つまり、本実施形態に係る圧縮
機100では、差圧ΔPによって決定する開弁力と、第
2コイルバネ126による閉弁力とによって自ずと決定
される所定の吐出容量となるように圧縮機100が機械
的に制御されることとなる。Therefore, the compressor 10 according to the present embodiment
0, the amount of refrigerant flowing through the refrigerant passage 112 (the compressor 10
0 discharge capacity) and the valve opening force exceeds the valve closing force,
The discharge capacity changes so as to decrease. On the other hand, when the discharge capacity decreases and the valve opening force decreases, the discharge capacity changes so as to increase. That is, in the compressor 100 according to the present embodiment, the compressor 100 is mechanically controlled so that the predetermined displacement is determined by the valve opening force determined by the differential pressure ΔP and the valve closing force by the second coil spring 126. Will be controlled in a controlled manner.
【0025】ところで、上述の作動説明から明らかなよ
うに、本実施形態では、バイパスポート114及びバイ
パス弁119等により、圧縮機構Cpから吐出する冷媒
の吐出容量を変化させる可変容量機構VVc(図1参
照)を構成し、また、制御通路122、制御弁125及
びダイヤフラム128等により、可変容量機構VVcの
作動を機械的に制御する制御機構Cv(図1参照)を構
成している。As is apparent from the above description of operation, in this embodiment, the variable displacement mechanism VVc (FIG. 1) that changes the displacement of the refrigerant discharged from the compression mechanism Cp by the bypass port 114 and the bypass valve 119 and the like. The control passage 122, the control valve 125, the diaphragm 128, and the like constitute a control mechanism Cv (see FIG. 1) for mechanically controlling the operation of the variable displacement mechanism VVc.
【0026】次に、本実施形態の特徴を述べる。本実施
形態によれば、差圧ΔPに機械的に連動して制御通路1
22を開閉することにより吐出容量の制御を行っている
ので、特公平2−55636号公報のように、電磁弁を
用いて吐出容量を制御するものに比べて、圧縮機100
の製造原価低減を図ることができる。Next, the features of this embodiment will be described. According to the present embodiment, the control passage 1 is mechanically linked to the differential pressure ΔP.
Since the discharge capacity is controlled by opening and closing the compressor 22, the compressor 100 is controlled in comparison with the control of the discharge capacity using an electromagnetic valve as disclosed in Japanese Patent Publication No. 2-55636.
Manufacturing cost can be reduced.
【0027】また、エンジンの回転数が増大しても、吐
出容量が減少変化して吐出容量が略一定に維持されるの
で、圧縮機100を稼動させるに必要な機械仕事が増大
することを防止できる。以上に述べたように、本実施形
態に係る圧縮機100では、圧縮機100の製造原価上
昇を招くことなく、車両(エンジン)の燃費向上を図る
ことができる。Further, even if the engine speed increases, the discharge capacity decreases and changes to maintain the discharge capacity substantially constant, thereby preventing an increase in the mechanical work required to operate the compressor 100. it can. As described above, in the compressor 100 according to the present embodiment, the fuel efficiency of the vehicle (engine) can be improved without increasing the manufacturing cost of the compressor 100.
【0028】(第2実施形態)上述の実施形態では、ス
クロール式の圧縮機に本発明を適用したが、本実施形態
は、図3示すように、斜板圧縮機に適用したものであ
る。すなわち、本実施形態に係る圧縮機100の可変容
量機構VVcは、周知のごとく、斜板131の傾き角を
変化させることにより、ピストン132の往復行程(ス
トローク)を変化させるものである。また、制御機構C
vは第1実施形態と同様である。(Second Embodiment) In the above-described embodiment, the present invention is applied to a scroll type compressor, but this embodiment is applied to a swash plate compressor as shown in FIG. That is, the variable displacement mechanism VVc of the compressor 100 according to the present embodiment changes the reciprocating stroke (stroke) of the piston 132 by changing the inclination angle of the swash plate 131, as is well known. Also, the control mechanism C
v is the same as in the first embodiment.
【0029】そして、斜板131が収納された斜板室1
33は、連通路134を介して吸入室106側と常に連
通しているとともに、制御弁125により開閉される制
御通路122を介して吐出ポート109側に連通してい
る。なお、後述する作動説明から明らかなように、斜板
室133は、第1実施形態でいう第1制御室120に相
当するものである。Then, the swash plate chamber 1 in which the swash plate 131 is stored.
33 is always in communication with the suction chamber 106 through a communication passage 134 and is in communication with the discharge port 109 through a control passage 122 opened and closed by a control valve 125. Note that, as will be apparent from the operation description to be described later, the swash plate chamber 133 corresponds to the first control chamber 120 in the first embodiment.
【0030】次に、本実施形態の概略作動を述べる。 1.最大容量運転時 最大容量運転時では、第1実施形態と同様に、制御通路
122が閉じているので、斜板室133の圧力が吸入室
106(吸入側)の圧力と略等しくなり、斜板131が
最も傾いた状態で圧縮機100が稼動する。このため、
ピストン132の往復行程が最大となるため、最大容量
運転(100%運転)状態となる。Next, the general operation of the present embodiment will be described. 1. At the time of the maximum capacity operation At the time of the maximum capacity operation, as in the first embodiment, since the control passage 122 is closed, the pressure in the swash plate chamber 133 becomes substantially equal to the pressure in the suction chamber 106 (suction side), and the swash plate 131 The compressor 100 operates in a state where is inclined most. For this reason,
Since the reciprocating stroke of the piston 132 is maximized, a maximum capacity operation (100% operation) state is set.
【0031】2.可変容量運転時 最大容量運転時では、第1実施形態と同様に、制御通路
122が開くので、斜板室133内の圧力が上昇してい
く。このため、作動室Vc内の圧力と斜板室133内の
圧力との釣り合いにより、次第に斜板131とシャフト
101とのなす角(以下、この角度を斜板角θと呼
ぶ。)が90°に近づいていくので、吐出容量が減少し
ていく。2. At the time of the variable capacity operation At the time of the maximum capacity operation, as in the first embodiment, since the control passage 122 is opened, the pressure in the swash plate chamber 133 increases. Therefore, the angle between the swash plate 131 and the shaft 101 (hereinafter, this angle is referred to as the swash plate angle θ) gradually becomes 90 ° by the balance between the pressure in the working chamber Vc and the pressure in the swash plate chamber 133. As approaching, the discharge capacity decreases.
【0032】そして、吐出容量が減少していくと、制御
通路122が再び閉じるので、斜板角θが小さくなっ
て、ピストン132の往復行程が拡大していき、吐出容
量が増大する。つまり、本実施形態に係る圧縮機100
も第1実施形態に係る圧縮機100と同様に、差圧ΔP
によって決定する開弁力と、第2コイルバネ126によ
る閉弁力とによって決定される所定の吐出容量となるよ
うに圧縮機100が機械的に制御される。When the discharge capacity decreases, the control passage 122 closes again, so that the swash plate angle θ decreases, the reciprocating stroke of the piston 132 increases, and the discharge capacity increases. That is, the compressor 100 according to the present embodiment
Similarly to the compressor 100 according to the first embodiment, the differential pressure ΔP
The compressor 100 is mechanically controlled so as to have a predetermined discharge capacity determined by the valve opening force determined by the above and the valve closing force by the second coil spring 126.
【0033】ところで、第1実施形態では、吐出室10
7と第1制御室120とを常に連通させ、第1制御室1
20と吸入室106側とを連通させる制御通路122を
開閉制御することにより、可変容量機構VVcの作動を
機械的に制御する制御機構Cvを構成したが、第1実施
形態はこれに限定されるものではなく、第1制御室12
0と吸入室106側とを常に連通させ、吐出室107と
第1制御室120との連通状態を制御することにより、
制御機構Cvを構成してもよい。In the first embodiment, the discharge chamber 10
7 and the first control room 120 are always in communication, and the first control room 1
The control mechanism Cv for mechanically controlling the operation of the variable displacement mechanism VVc is configured by controlling the opening and closing of the control passage 122 that communicates the suction chamber 20 with the suction chamber 106, but the first embodiment is not limited to this. Not the first control room 12
0 and the suction chamber 106 side at all times, and by controlling the communication state between the discharge chamber 107 and the first control chamber 120,
The control mechanism Cv may be configured.
【0034】また、本発明に係る圧縮機100の圧縮機
構Cpは、スクロール式又は斜板式に限定されるもので
はなく、その他形式の圧縮機構を採用してもよい。ま
た、上述の実施形態では、差圧ΔPに機械的に連動して
可動する圧力応動部材として、薄膜状のダイヤフラム1
28を用いたが、本発明はこれに限定されるものではな
く、蛇腹状のベローズ等その他の部材でもよい。Further, the compression mechanism Cp of the compressor 100 according to the present invention is not limited to the scroll type or the swash plate type, but may employ another type of compression mechanism. Further, in the above-described embodiment, the thin film-shaped diaphragm 1 is used as the pressure responsive member that is movable mechanically in association with the differential pressure ΔP.
Although 28 is used, the present invention is not limited to this, and other members such as bellows bellows may be used.
【図1】冷凍サイクルの模式図である。FIG. 1 is a schematic diagram of a refrigeration cycle.
【図2】第1実施形態に係る圧縮機の断面図である(最
大容量運転時)。FIG. 2 is a cross-sectional view of the compressor according to the first embodiment (at the time of maximum capacity operation).
【図3】可変容量運転時における圧縮機の断面図であ
る。FIG. 3 is a cross-sectional view of the compressor during a variable displacement operation.
【図4】第2実施形態に係る圧縮機の断面図である(最
大容量運転時)。FIG. 4 is a sectional view of a compressor according to a second embodiment (at the time of maximum capacity operation).
Vc…作動室、Cp…圧縮機構、VVc…可変容量機
構、109…吐出ポート、113…第1オリフィス、1
14…バイパスポート、122…制御通路、125…制
御弁(弁手段)、128…ダイヤフラム(圧力応動部
材)。Vc: working chamber, Cp: compression mechanism, VVc: variable capacity mechanism, 109: discharge port, 113: first orifice, 1
14: bypass port, 122: control passage, 125: control valve (valve means), 128: diaphragm (pressure responsive member).
Claims (3)
冷凍サイクル用の可変容量型圧縮機であって、 冷媒を吸入圧縮する作動室(Vc )を有する圧縮機構
(Cp)と、 前記圧縮機構(Cp)から吐出する冷媒の吐出容量を変
化させる可変容量機構(VVc)と、 前記圧縮機構(Cp)から吐出する冷媒の冷媒通路(1
12)に設けられ、冷媒を減圧するオリフィス(11
3)と、 前記オリフィス(113)を挟んで冷媒流れ上流側と下
流側との差圧(ΔP)に機械的に連動して作動し、前記
可変容量機構(VVc)の作動を機械的に制御する制御
機構(Cv)とを備えることを特徴とする可変容量圧縮
機。1. A vehicle driven by a vehicle driving engine.
A variable displacement compressor for a refrigeration cycle, comprising: a compression mechanism (Cp) having a working chamber (Vc) for sucking and compressing refrigerant; and a variable displacement for changing the discharge capacity of refrigerant discharged from the compression mechanism (Cp). Mechanism (VVc) and a refrigerant passage (1) for refrigerant discharged from the compression mechanism (Cp).
And an orifice (11) provided in
3) mechanically controlling the operation of the variable displacement mechanism (VVc) by interlocking with the differential pressure (ΔP) between the upstream and downstream of the refrigerant flow across the orifice (113). A variable capacity compressor comprising:
縮機構(Cp)の吸入側及び吐出側に連通する制御圧力
室(120、133)を有しているとともに、その制御
圧力室(120、133)内の圧力を変化させることに
より前記吐出容量を変化させ、 さらに、前記制御機構(Cv)は、前記差圧(ΔP)に
機械的に連動して、前記制御圧力室(120、133)
と、前記吸入側又は吐出側とを連通させる通路を開閉す
る弁手段(125)を有していることを特徴とする請求
項1に記載の可変容量型圧縮機。2. The variable capacity mechanism (VVc) has control pressure chambers (120, 133) communicating with the suction side and the discharge side of the compression mechanism (Cp), and the control pressure chamber (120). , 133) to change the discharge capacity by changing the pressure in the control pressure chambers (120, 133) mechanically interlocking with the differential pressure (ΔP). )
2. The variable displacement compressor according to claim 1, further comprising a valve means (125) for opening and closing a passage communicating the suction side and the suction side or the discharge side. 3.
P)に機械的に連動して可動する圧力応動部材(12
8)により開閉作動させられることを特徴とする請求項
2に記載の可変容量型圧縮機。3. The valve means (125) is provided with the differential pressure (Δ
P) and a pressure responsive member (12)
The variable displacement compressor according to claim 2, wherein the compressor is opened and closed according to (8).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13360498A JP3707242B2 (en) | 1998-05-15 | 1998-05-15 | Variable capacity compressor |
DE1999119104 DE19919104B4 (en) | 1998-05-15 | 1999-04-27 | Variable discharge compressor for a refrigerant cycle |
ITRM990301 IT1308201B1 (en) | 1998-05-15 | 1999-05-13 | VARIABLE DISCHARGE QUANTITY COMPRESSOR FOR REFRIGERANT CYCLE. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13360498A JP3707242B2 (en) | 1998-05-15 | 1998-05-15 | Variable capacity compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11324930A true JPH11324930A (en) | 1999-11-26 |
JP3707242B2 JP3707242B2 (en) | 2005-10-19 |
Family
ID=15108694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13360498A Expired - Fee Related JP3707242B2 (en) | 1998-05-15 | 1998-05-15 | Variable capacity compressor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3707242B2 (en) |
DE (1) | DE19919104B4 (en) |
IT (1) | IT1308201B1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1154160A2 (en) | 2000-05-10 | 2001-11-14 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Control valve for variable displacement compressor |
JP2002021721A (en) * | 2000-07-07 | 2002-01-23 | Toyota Industries Corp | Capacity control mechanism for variable displacement compressor |
EP1186778A2 (en) | 2000-09-08 | 2002-03-13 | Kabushiki Kaisha Toyota Jidoshokki | Control valve for variable displacement type compressor |
US6382926B2 (en) | 1999-11-30 | 2002-05-07 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Control valve in variable displacement compressor |
EP1221391A2 (en) | 2001-01-09 | 2002-07-10 | Kabushiki Kaisha Toyota Jidoshokki | Air-conditioning system for vehicle and its control method |
US6519960B2 (en) | 2000-05-18 | 2003-02-18 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Air conditioner |
US6520749B2 (en) | 2000-09-05 | 2003-02-18 | Kabushiki Kaisha Toyota Jidoshokki | Control valve for variable displacement compressor |
US6604912B2 (en) | 2000-08-07 | 2003-08-12 | Kabushiki Kaisha Toyota Jidoshokki | Control valve used for a variable displacement compressor installed in a refrigerant circuit having at least one of a first pressure chamber and a second pressure chamber forming part of the refrigerant circuit |
US6638026B2 (en) | 2001-01-12 | 2003-10-28 | Kabushiki Kaisha Toyota Jidoshokki | Control valve for variable displacement compressor |
US6647737B2 (en) | 2000-05-19 | 2003-11-18 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Air conditioner |
US6663356B2 (en) | 2000-09-08 | 2003-12-16 | Kabushiki Kaisha Toyota Jidoshokki | Control valve for variable displacement type compressor |
JP2009027923A (en) * | 2008-11-06 | 2009-02-05 | Sharp Corp | Motor controller |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4096491B2 (en) * | 2000-03-15 | 2008-06-04 | 株式会社デンソー | Refrigeration cycle equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03294687A (en) * | 1990-04-09 | 1991-12-25 | Sanden Corp | Capacity control method of capacity variable type compressor |
JP3100452B2 (en) * | 1992-02-18 | 2000-10-16 | サンデン株式会社 | Variable capacity scroll compressor |
JP3155868B2 (en) * | 1993-06-24 | 2001-04-16 | サンデン株式会社 | Variable capacity scroll compressor |
-
1998
- 1998-05-15 JP JP13360498A patent/JP3707242B2/en not_active Expired - Fee Related
-
1999
- 1999-04-27 DE DE1999119104 patent/DE19919104B4/en not_active Expired - Fee Related
- 1999-05-13 IT ITRM990301 patent/IT1308201B1/en active
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6382926B2 (en) | 1999-11-30 | 2002-05-07 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Control valve in variable displacement compressor |
EP1154160A2 (en) | 2000-05-10 | 2001-11-14 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Control valve for variable displacement compressor |
US6524077B2 (en) | 2000-05-10 | 2003-02-25 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Control valve for variable displacement compressor |
EP1154160A3 (en) * | 2000-05-10 | 2003-06-11 | Kabushiki Kaisha Toyota Jidoshokki | Control valve for variable displacement compressor |
US6519960B2 (en) | 2000-05-18 | 2003-02-18 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Air conditioner |
US6647737B2 (en) | 2000-05-19 | 2003-11-18 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Air conditioner |
JP2002021721A (en) * | 2000-07-07 | 2002-01-23 | Toyota Industries Corp | Capacity control mechanism for variable displacement compressor |
US6604912B2 (en) | 2000-08-07 | 2003-08-12 | Kabushiki Kaisha Toyota Jidoshokki | Control valve used for a variable displacement compressor installed in a refrigerant circuit having at least one of a first pressure chamber and a second pressure chamber forming part of the refrigerant circuit |
US6520749B2 (en) | 2000-09-05 | 2003-02-18 | Kabushiki Kaisha Toyota Jidoshokki | Control valve for variable displacement compressor |
EP1186778A2 (en) | 2000-09-08 | 2002-03-13 | Kabushiki Kaisha Toyota Jidoshokki | Control valve for variable displacement type compressor |
US6517324B2 (en) | 2000-09-08 | 2003-02-11 | Kabushiki Kaisha Toyota Jidoshokki | Control valve for variable displacement type compressor |
US6663356B2 (en) | 2000-09-08 | 2003-12-16 | Kabushiki Kaisha Toyota Jidoshokki | Control valve for variable displacement type compressor |
EP1221391A2 (en) | 2001-01-09 | 2002-07-10 | Kabushiki Kaisha Toyota Jidoshokki | Air-conditioning system for vehicle and its control method |
US6640562B2 (en) | 2001-01-09 | 2003-11-04 | Kabushiki Kaisha Toyota Jidoshokki | Air-conditioning system for vehicle and its control method |
US6638026B2 (en) | 2001-01-12 | 2003-10-28 | Kabushiki Kaisha Toyota Jidoshokki | Control valve for variable displacement compressor |
JP2009027923A (en) * | 2008-11-06 | 2009-02-05 | Sharp Corp | Motor controller |
Also Published As
Publication number | Publication date |
---|---|
ITRM990301A1 (en) | 2000-11-13 |
JP3707242B2 (en) | 2005-10-19 |
IT1308201B1 (en) | 2001-12-10 |
DE19919104A1 (en) | 1999-11-18 |
DE19919104B4 (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0744775Y2 (en) | Compressor capacity control device | |
JP3767129B2 (en) | Variable capacity compressor | |
JP3376729B2 (en) | Scroll compressor | |
EP1098091B1 (en) | Flow rate control for a compressor in a refrigeration cycle | |
EP0982497B1 (en) | Compressor capacity modulation | |
JPS62674A (en) | Capacity controller for variable angle swing swash type variable capacity compressor | |
JP4729773B2 (en) | Scroll compressor | |
JP2000110734A (en) | Hybrid compressor and its control system | |
JP3707242B2 (en) | Variable capacity compressor | |
JP3723491B2 (en) | Two-stage compression compressor | |
WO1994011636A1 (en) | Rocking swash plate type variable capacity compressor | |
WO2002057628A1 (en) | Compression displacement controller of refrigerating cycle | |
JPH01182580A (en) | Variable displacement oscillating compressor | |
WO2002101237A1 (en) | Variable displacement compressor | |
JP2714398B2 (en) | Refrigeration circuit with refrigerant flow control mechanism | |
JP3080280B2 (en) | Control valve for variable displacement compressor | |
JPS6231782U (en) | ||
JP3082485B2 (en) | Oscillating swash plate type variable displacement compressor | |
JPS6229779A (en) | Compressor for vehicle air conditioner | |
JP4258069B2 (en) | Variable capacity scroll compressor and refrigeration cycle for vehicle | |
JPH10153171A (en) | Both heads piston type variable capacity compressor | |
JPS6291672A (en) | Variable delivery compressor | |
JPH073235B2 (en) | Capacity control compressor | |
JP2002219932A (en) | Refrigeration cycle apparatus for vehicle | |
JPH02115578A (en) | Variable capacity type swingable compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050725 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080812 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110812 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120812 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130812 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |