Nothing Special   »   [go: up one dir, main page]

JPH11312527A - Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron - Google Patents

Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron

Info

Publication number
JPH11312527A
JPH11312527A JP10119452A JP11945298A JPH11312527A JP H11312527 A JPH11312527 A JP H11312527A JP 10119452 A JP10119452 A JP 10119452A JP 11945298 A JP11945298 A JP 11945298A JP H11312527 A JPH11312527 A JP H11312527A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
power generation
fuel cell
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10119452A
Other languages
Japanese (ja)
Inventor
Ikuo Jitsuhara
幾雄 実原
Nobuhiko Takamatsu
信彦 高松
Yuji Kubo
祐治 久保
Yoshihiro Kaneda
善弘 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10119452A priority Critical patent/JPH11312527A/en
Publication of JPH11312527A publication Critical patent/JPH11312527A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas with-global-warming-effect fixing type energy saving system for utilizing carbon dioxide transport ability of a molten carbonate type fuel cell, to recover and fix carbon dioxide concentrated in an anode exhaust gas, while supplying two kinds of by-produced gases in iron production as gases for anode and cathode electrodes of the molten carbonate type fuel cell so as to attain highly efficient power generation. SOLUTION: A coke oven gas COG or its steam-reformed gas out of by-produced gases in iron production is used for gas supplied to an anode, combustion exhaust gas of a blast furnace gas BFG after regulated to a prescribed carbon dioxide/oxygen concentration ratio is used for gas supplied to a cathode, and they are supplied separately to a molten carbonate fuel cell MCFC to attain highly efficient power generation, so that iron production by-product gas effectively utilized type energy saving power generation is realized. Carbon dioxide concentrated in the anode is isolated and recovered with low energy by utilizing carbon dioxide transport ability of the molten carbonate type fuel cell MCFC to be utilized for a raw material for existing chemicals so as to be fixed as chemical substances, thereby cross-industrial type process efficiency ranging over iron production-chemistry is improved, and discharge of gases having global warming effect can be reduced at the same time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地球温暖化の主作
用ガスと目される二酸化炭素を製鉄プロセスの副生ガス
から分離、回収、固定化するプロセスに関するものであ
るが、製鉄用火力発電の燃料源として主に利用されてい
る製鉄副生ガスから電力を高効率で発生させると共に、
発生する二酸化炭素を集約して高効率で分離回収し化学
原料として有効活用することにより、化学物質製造業に
おいて、同一物質の製造過程で二酸化炭素の生成を低く
抑える省エネルギープロセスでもある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for separating, recovering and fixing carbon dioxide, which is regarded as a main working gas for global warming, from a by-product gas of an iron making process. Power is generated efficiently from iron by-product gas, which is mainly used as a fuel source for
It is also an energy-saving process that suppresses the generation of carbon dioxide in the production process of the same substance in the chemical substance manufacturing industry by concentrating the generated carbon dioxide, separating and recovering it with high efficiency, and effectively utilizing it as a chemical raw material.

【0002】[0002]

【従来の技術】製鉄業は二度に渡るオイルショックを経
て、そのエネルギー構造の抜本的改善に取組み、大型省
エネ設備の導入、操業改善を主体とする省エネ活動と並
行して、石油依存度を減らし石炭主体の安価にして安定
なエネルギー構造の構築を図り、現在では、総合エネル
ギー効率として60%を越えるまでの盤石な基盤を確立
している。しかし、気候変動枠組み条約第3回締約国会
議(COP−3)に代表される産業間の境界、国境を越
えたグローバルな観点から二酸化炭素排出削減のための
更なるエネルギー利用効率化が強く求められてきてい
る。
2. Description of the Related Art After two oil shocks, the steel industry has been working on drastic improvement of its energy structure. The company has been working to build a stable and energy-saving structure that is mainly made of coal, and has now established a solid foundation with a total energy efficiency of over 60%. However, there is a strong demand for further energy use efficiency to reduce carbon dioxide emissions from a global perspective that crosses borders between industries, as represented by the Third Conference of the Parties to the Climate Change Framework Convention (COP-3), and crosses national borders. Have been

【0003】製鉄業は、燃料源、還元媒体として石炭を
利用しており、その化学組成から容易に類推できる様に
石油、天然ガスに比し、利用され排気されるガスに占め
る炭素の割合は高く、燃料として燃焼した際の排ガス中
に占める二酸化炭素の濃度は高い。また、プロセスの特
徴として、平均的な石炭燃焼排ガス組成のガスが副生す
るわけではなく、コークス製造時に揮発ガスとして回収
される水素リッチなコークス炉ガス(COG)と、巨大
な鉄鉱石還元反応器である高炉から還元反応の排ガスと
して放出される一酸化炭素、二酸化炭素リッチな高炉ガ
ス(BFG)等、組成の異なるガスが分散生成する。こ
れらガスの殆どは単独または混合され火力発電用燃料ガ
ス、加熱炉用燃料ガスとして製鉄プラント内で消費され
ており、必然的にエネルギー回収効率は火力発電の電力
変換効率を越えることは無い。
[0003] The steel industry uses coal as a fuel source and a reducing medium. As can be easily inferred from its chemical composition, the ratio of carbon in the gas used and exhausted is higher than that of petroleum and natural gas. The concentration of carbon dioxide in the exhaust gas when burned as fuel is high. Another characteristic of the process is that hydrogen-rich coke oven gas (COG), which is not produced as a by-product of the average coal combustion exhaust gas composition but is recovered as volatile gas during coke production, and a huge iron ore reduction reaction Gases having different compositions, such as carbon monoxide and carbon dioxide-rich blast furnace gas (BFG), which are released from the blast furnace as the exhaust gas of the reduction reaction, are dispersed and generated. Most of these gases are used alone or mixed as fuel gas for thermal power generation and fuel gas for heating furnaces in steelmaking plants, and the energy recovery efficiency does not necessarily exceed the power conversion efficiency of thermal power generation.

【0004】燃料の電力変換効率を向上させる手法とし
て複合サイクル発電、燃料電池等の開発が活発化してい
るが、特に、燃料電池は、その原理的に達成可能な発電
効率の高さから注目され、燐酸型,溶融炭酸塩型、固体
酸化物型の開発が行われており、一部は工業化段階、大
型実証試験段階にある。この燃料電池への製鉄副生ガス
を燃料として活用する場合、COGは発熱量も高く水素
リッチであるため適性を有すると考えられ、特開平7−
166179号公報、特開平8−206701号公報等
にも記載されている。しかし、BFGは発熱量が低く、
また、可燃ガス成分は一酸化炭素が主体であり溶融炭酸
塩型および固体酸化物型燃料電池しか適用出来ず、更に
は、一酸化炭素は濃度が低いうえ、その燃料電池用燃料
ガスとしての適性は検証段階に有ることを考慮すると発
電効率を安定に高位維持することは困難と推定される。
また、BFGに含まれる一酸化炭素をシフト反応により
水素に改質したとしても濃度が低く燃料ガスとするため
には水素の精製が必須となり、エネルギー効率的に不利
である。この様に、製鉄副生ガスは、その種類に応じ燃
料電池用燃料としての適性が異なり、複数の製鉄副生ガ
スを同一の燃料電池発電システムで利用するためには、
複数のガスの混合、反応、成分濃度調整等の多段のプロ
セスを必要とし、エネルギー効率の低下が不可避とな
る。
As a method for improving the power conversion efficiency of fuel, the development of combined cycle power generation, fuel cells, and the like have been actively developed. In particular, fuel cells have attracted attention because of the high power generation efficiency that can be achieved in principle. , A phosphoric acid type, a molten carbonate type and a solid oxide type are being developed, and some are in the industrialization stage and large-scale demonstration test stage. When utilizing by-product gas for iron production in a fuel cell as fuel, COG is considered to be suitable because it has a high calorific value and is rich in hydrogen.
It is also described in 166179, JP-A-8-206701 and the like. However, BFG has a low calorific value,
The combustible gas component is mainly composed of carbon monoxide, and is applicable only to molten carbonate type and solid oxide type fuel cells. Furthermore, carbon monoxide has a low concentration and is suitable as a fuel gas for fuel cells. It is estimated that it is difficult to stably maintain the power generation efficiency at a high level considering that it is in the verification stage.
Further, even if carbon monoxide contained in BFG is reformed into hydrogen by a shift reaction, purification of hydrogen is indispensable in order to obtain a low concentration fuel gas, which is disadvantageous in terms of energy efficiency. As described above, iron by-product gas has different suitability as a fuel for a fuel cell depending on its type, and in order to use a plurality of steel by-product gases in the same fuel cell power generation system,
Multi-stage processes such as mixing, reaction, and component concentration adjustment of a plurality of gases are required, and a decrease in energy efficiency is inevitable.

【0005】一方、大規模二酸化炭素発生源からの二酸
化炭素を分離・回収する技術については、化学吸収法、
吸着法、膜分離法、深冷分離法、晶析法などがあるが、
分離対象ガス中の二酸化炭素濃度は30%以下であり、
製鉄プロセスの場合、二酸化炭素含有率の高いBFG燃
焼排ガスにして二酸化炭素を分離・回収し外販可能な工
業ガスとすることは容易ではない。
On the other hand, techniques for separating and recovering carbon dioxide from a large-scale carbon dioxide source include chemical absorption methods,
There are adsorption method, membrane separation method, cryogenic separation method, crystallization method, etc.
The concentration of carbon dioxide in the gas to be separated is 30% or less,
In the case of an iron making process, it is not easy to separate and recover carbon dioxide into BFG combustion exhaust gas having a high carbon dioxide content to obtain an industrial gas that can be sold outside.

【0006】[0006]

【発明が解決しようとする課題】上記問題点を克服し、
分散生成する複数の製鉄副生ガスの特徴を活かして個別
に同一の発電系の中で利用し個別の製鉄副生ガスの無用
な混合を避けたコンパクトで高効率な発電を行うと共
に、製鉄プロセスの主要二酸化炭素排出源と目されるB
FG燃焼排ガス中の二酸化炭素を低エネルギーで高純度
回収し、化学品の原料として活用する総合システムを構
築することにより、製鉄のみならず産業横断型の総合エ
ネルギー効率向上を達成しようとするものである。
The above problems have been overcome,
Taking advantage of the characteristics of multiple steelmaking by-product gases generated by dispersion, they are individually used in the same power generation system to avoid unnecessary mixing of individual steelmaking by-product gases and to generate compact and highly efficient power generation. B is considered to be a major source of carbon dioxide
By constructing a comprehensive system that recovers carbon dioxide in FG combustion exhaust gas with low energy and high purity and uses it as a raw material for chemical products, it aims to achieve not only steelmaking but also cross-industrial overall energy efficiency improvement. is there.

【0007】[0007]

【課題を解決するための手段】本発明では、燃料電池の
高効率発電特性を活かすと共に、酸素と二酸化炭素が炭
酸塩を形成して選択的に燃料側(アノード)に移動する
ことを特徴とする溶融炭酸塩型燃料電池に着目し、水素
リッチで燃料としての適性を有するCOG及び/または
COGに含まれる一酸化炭素、炭化水素をシフト反応、
水蒸気改質反応により水素と二酸化炭素に改質したCO
Gをアノードに供給する一方、二酸化炭素リッチなBF
G燃焼排ガスを二酸化炭素/酸素濃度比を調整後カソー
ドガスとして供給することにより、製鉄副生ガスを一個
の燃料電池内で個別に利用する高効率MCFC発電シス
テムを提供するものである。更には、燃料電池の特徴と
して、アノード、カソード両極のガスの混合が無く、ま
た、MCFCの場合、二酸化炭素のアノード側への輸送
が進行するため、COG中の二酸化炭素と併せアノード
側に二酸化炭素が濃縮するため、吸着法により高回収率
で高濃度の二酸化炭素回収が容易となる。この様に、M
CFCの高効率発電機能と二酸化炭素選択輸送機能とを
活用し、製鉄副生ガスの2種類を一個の電池内で利用し
高効率に電力を得ると共に、低分離エネルギーで排ガス
からの二酸化炭素を回収し化学品製造原料として利用す
ることにより、化学品製造工程での省エネルギーも併せ
達成するものである。
The present invention is characterized by utilizing the high-efficiency power generation characteristics of a fuel cell and selectively moving oxygen and carbon dioxide to the fuel side (anode) by forming carbonate. Focusing on molten carbonate fuel cells, COG and / or carbon monoxide and hydrocarbons contained in COG that are hydrogen-rich and suitable as fuels are shifted,
CO reformed to hydrogen and carbon dioxide by steam reforming reaction
G is supplied to the anode while carbon dioxide rich BF
The present invention provides a high-efficiency MCFC power generation system in which G combustion exhaust gas is supplied as a cathode gas after adjusting the carbon dioxide / oxygen concentration ratio to thereby separately use iron by-product gas in a single fuel cell. Further, as a feature of the fuel cell, there is no gas mixture between the anode and the cathode, and in the case of MCFC, the transport of carbon dioxide to the anode side progresses. Since carbon is concentrated, it is easy to recover carbon dioxide at a high recovery rate and high concentration by the adsorption method. Thus, M
Utilizing the high-efficiency power generation function of CFC and the selective transport function of carbon dioxide, two types of by-product steelmaking gas are used in one battery to obtain power with high efficiency, and the carbon dioxide from exhaust gas with low separation energy. By recovering and using it as a raw material for chemical product production, energy saving in the chemical product production process is also achieved.

【0008】本発明の要旨とするところは、以下のとお
りである。
The gist of the present invention is as follows.

【0009】(1) 溶融炭酸塩型燃料電池(MCF
C)を用いた発電システムにおいて、製鉄プロセスで発
生する複数の副生ガスをアノードガス及びカソードガス
として供給するMCFC発電を行うとともに、アノード
排ガスから二酸化炭素を分離、回収することを特徴とす
る溶融炭酸塩型燃料電池発電−排ガス回収複合システ
ム。
(1) Molten carbonate fuel cell (MCF)
In the power generation system using C), a plurality of by-product gases generated in the iron-making process are supplied as an anode gas and a cathode gas as MCFC power generation, and carbon dioxide is separated and recovered from the anode exhaust gas. Carbonate fuel cell power generation-exhaust gas recovery combined system.

【0010】(2) 製鉄プロセスで発生する副生ガス
の内、コークス炉ガス(COG)をアノードガスとして
供給する(1)記載の溶融炭酸塩型燃料電池発電−排ガ
ス回収複合システム。
(2) The combined molten carbonate fuel cell power generation-exhaust gas recovery system according to (1), wherein coke oven gas (COG) is supplied as an anode gas among the by-product gases generated in the iron making process.

【0011】(3) COGに含まれる一酸化炭素をシ
フト反応により水素と二酸化炭素に改質したシフトCO
Gとする(2)記載の溶融炭酸塩型燃料電池発電−排ガ
ス回収複合システム。
(3) Shift CO obtained by reforming carbon monoxide contained in COG into hydrogen and carbon dioxide by a shift reaction
G. The combined power generation and exhaust gas recovery system for molten carbonate fuel cells according to (2) above.

【0012】(4) COGに含まれる炭化水素を水蒸
気改質反応により水素と二酸化炭素に改質した改質CO
Gとする(2)記載の溶融炭酸塩型燃料電池発電−排ガ
ス回収複合システム。
(4) Reformed CO obtained by reforming hydrocarbons contained in COG into hydrogen and carbon dioxide by a steam reforming reaction
G. The combined power generation and exhaust gas recovery system for molten carbonate fuel cells according to (2) above.

【0013】(5) 製鉄プロセスで発生する副生ガス
の内、高炉ガス(BFG)をカソードガスとして供給す
る際に、BFGに含まれる一酸化炭素を燃焼により二酸
化炭素に酸化した後、該ガスに酸素を富化してカソード
ガスとする(1)記載の溶融炭酸塩型燃料電池発電−排
ガス回収複合システム。
(5) When blast furnace gas (BFG) is supplied as a cathode gas among the by-product gases generated in the iron making process, carbon monoxide contained in the BFG is oxidized to carbon dioxide by combustion, and then the gas is supplied. The combined use of a molten carbonate fuel cell power generation system and an exhaust gas recovery system according to (1), wherein oxygen is enriched to form a cathode gas.

【0014】(6) BFGを単独あるいは他の燃料と
混合して燃焼させたガスに、空気及び/または酸素を混
合し、該ガス中の二酸化炭素/酸素の濃度比率を1/4
〜4/1に調整する(5)記載の溶融炭酸塩型燃料電池
発電−排ガス回収複合システム。
(6) Air and / or oxygen are mixed with a gas obtained by burning BFG alone or mixed with another fuel, and the concentration ratio of carbon dioxide / oxygen in the gas is reduced to 1/4.
(5) The combined molten carbonate fuel cell power generation-exhaust gas recovery system according to (5), wherein the system is adjusted to 4/1.

【0015】(7) 二酸化炭素圧力スイング吸着法を
用いて、アノード排ガスから二酸化炭素を分離、回収す
る(1)記載の溶融炭酸塩型燃料電池発電−排ガス回収
複合システム。
(7) The combined power generation and exhaust gas recovery system for a molten carbonate fuel cell according to (1), wherein carbon dioxide is separated and recovered from the anode exhaust gas using a carbon dioxide pressure swing adsorption method.

【0016】(8) (1)〜(7)に記載の溶融炭酸
塩型燃料電池発電−排ガス回収複合システムで得られた
二酸化炭素を原料として、化学品を合成することを特徴
とする二酸化炭素固定化方法。
(8) Carbon dioxide obtained by synthesizing a chemical using carbon dioxide obtained by the combined use of the molten carbonate fuel cell power generation and exhaust gas recovery system according to (1) to (7). Immobilization method.

【0017】[0017]

【発明の実施の形態】以下、本発明について図面に従っ
て詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0018】図1は本発明のシステムの概念図であり、
溶融炭酸塩型燃料電池(MCFC)カソード側に供給さ
れたガスの内、二酸化炭素と酸素が炭酸塩を形成して電
解質を透過し、アノード側に供給した燃料中の水素と反
応して水と二酸化炭素が生成する状況を示している。併
せ、BFG中の二酸化炭素はカソード側からアノード側
に輸送されアノード排ガス中に濃縮されるため回収が容
易となり、更には、回収された二酸化炭素が水素源から
得られる水素との化学反応により化学物質として固定化
されるまでの流れを示している。
FIG. 1 is a conceptual diagram of the system of the present invention.
Of the gas supplied to the cathode side of the molten carbonate fuel cell (MCFC), carbon dioxide and oxygen form carbonates and permeate the electrolyte, react with hydrogen in the fuel supplied to the anode side, and form water. This shows the situation where carbon dioxide is produced. At the same time, the carbon dioxide in the BFG is transported from the cathode side to the anode side and is concentrated in the anode exhaust gas, which facilitates recovery. Further, the recovered carbon dioxide is chemically reacted with hydrogen obtained from a hydrogen source. The flow until immobilization as a substance is shown.

【0019】図2は、本発明の簡単なフロー図である。
MCFCのカソード供給ガスとしてBFGを火力発電燃
料として燃焼した際に生成する燃焼排ガスを用い、アノ
ード供給ガスとしてCOG中に含まれるメタンを主体と
する炭化水素を水蒸気改質反応により水素と二酸化炭素
に改質し水素濃度が上昇した改質COGを利用するもの
である。但し、アノード供給ガスは、図2に限定される
ことなく、COGが水素を50%強含む水素リッチなガ
スであることから水蒸気改質無しに直接利用可能であ
り、また、COG中には一酸化炭素が5%程度含まれて
おり、この一酸化炭素を以下に示すシフト反応により水
素と二酸化炭素に改質し水素濃度を上げたシフトCOG
を利用することも可能である。
FIG. 2 is a simplified flowchart of the present invention.
The combustion exhaust gas generated when BFG is burned as thermal power generation fuel is used as the MCFC cathode supply gas, and the methane-based hydrocarbons contained in the COG are converted into hydrogen and carbon dioxide by the steam reforming reaction as the anode supply gas. It uses reformed COG that has been reformed and has an increased hydrogen concentration. However, the anode supply gas is not limited to FIG. 2 and can be directly used without steam reforming because COG is a hydrogen-rich gas containing 50% or more of hydrogen. A shift COG containing about 5% of carbon oxide and reforming the carbon monoxide into hydrogen and carbon dioxide by a shift reaction shown below to increase the hydrogen concentration.
It is also possible to use.

【0020】CO+H2 O=H2 +CO2 水蒸気改質器は、COG中に30%程度存在するメタン
を主体とした炭化水素を改質して水素を製造する装置で
あり、燃料電池電極反応で生成する水の回収系によりシ
ステム内で自給される水蒸気とCOGとを混合、加熱
し、メタンを主体とする炭化水素を水素と二酸化炭素に
変換する。この反応はメタンの場合、以下の反応で示さ
れる。
The CO + H 2 O = H 2 + CO 2 steam reformer is a device for producing hydrogen by reforming a hydrocarbon mainly composed of methane existing in about 30% of COG, and producing hydrogen by a fuel cell electrode reaction. Water vapor and COG, which are self-supplied in the system by a generated water recovery system, are mixed and heated to convert methane-based hydrocarbons into hydrogen and carbon dioxide. This reaction is shown by the following reaction in the case of methane.

【0021】CH4 +2H2 O=4H2 +CO2 この反応は、吸熱反応であり反応器に熱を供給する必要
があるが、この熱源として、アノード排ガス中の残存燃
料ガスの燃焼熱を用いる。改質反応は、通常800℃で
操業されるが、MCFCの操業温度である600〜70
0℃で反応器から排出する(ストリーム)。また、シ
フト反応器は、COG中に含まれる一酸化炭素または改
質反応器出側ガス中の一酸化炭素を水素に変換する装置
であり、この反応器を出た後、燃料電池アノードに導入
される(ストリーム)。
CH 4 + 2H 2 O = 4H 2 + CO 2 This reaction is an endothermic reaction and it is necessary to supply heat to the reactor. As the heat source, the combustion heat of the fuel gas remaining in the anode exhaust gas is used. The reforming reaction is usually operated at 800 ° C., but the operating temperature of the MCFC is 600 to 70 ° C.
Discharge from the reactor at 0 ° C. (stream). The shift reactor is a device for converting carbon monoxide contained in COG or carbon monoxide in the reforming reactor outlet gas into hydrogen. After leaving the reactor, it is introduced into the fuel cell anode. (Stream).

【0022】BFGは一酸化炭素、二酸化炭素、窒素を
主要構成成分とするガスであるが、発熱量が低くCOの
シフト反応により水素へと転換したとしても水素濃度が
低く、燃料電池用の燃料とするには水素の濃縮が必要で
非効率であり、現在は主に、火力発電の燃料ガスとして
単独、または、天然ガス、LPG、石炭等の発熱量の高
い燃料と混合され燃焼されている。この燃焼排ガス中の
二酸化炭素をMCFCの作動媒体として活用するべく、
燃焼排ガスと空気、あるいは、酸素富化空気、あるい
は、純酸素と混合し、二酸化炭素/酸素体積濃度比で1
/4〜4/1、好ましくは、2/3〜3/1に調整す
る。この時、二酸化炭素と酸素とは、理想的にはカソー
ド電極表面で体積濃度比率で2/1の割合で炭酸イオン
を形成し電解質中を移動するが、電極表面状態の影響、
共存ガス成分の影響を受ける。二酸化炭素/酸素体積濃
度比で1/4未満となると酸素過剰でカソード効率が低
下するため発電効率が低下し、また、4/1超となると
二酸化炭素の回収効率が低下し好ましくない。
BFG is a gas containing carbon monoxide, carbon dioxide, and nitrogen as main components, but has a low calorific value and a low hydrogen concentration even when converted to hydrogen by a shift reaction of CO. It is inefficient because it requires hydrogen concentration, and it is currently mainly used as a fuel gas for thermal power generation alone, or mixed with a high calorific value fuel such as natural gas, LPG, or coal for combustion. . In order to utilize carbon dioxide in this flue gas as a working medium for MCFC,
Mixing flue gas with air or oxygen-enriched air or pure oxygen, with a carbon dioxide / oxygen volume concentration ratio of 1
/ 4 to 4/1, preferably 2/3 to 3/1. At this time, carbon dioxide and oxygen ideally form carbonate ions at a volume concentration ratio of 2/1 on the surface of the cathode electrode and move in the electrolyte.
Affected by coexisting gas components. If the carbon dioxide / oxygen volume concentration ratio is less than 1/4, the cathode efficiency is reduced due to excessive oxygen, so that the power generation efficiency is reduced. If the carbon dioxide / oxygen volume concentration ratio is more than 4/1, the recovery efficiency of carbon dioxide is undesirably reduced.

【0023】この濃度調整したBFG燃焼排ガスは、3
気圧(ゲージ)まで昇圧され、600〜700℃でMC
FCアノードに導入される(ストリーム)。ストリー
The BFG combustion exhaust gas whose concentration has been adjusted is 3%.
The pressure is raised to the atmospheric pressure (gauge) and MC at 600-700 ° C.
Introduced to the FC anode (stream). stream

【0024】[0024]

【外1】 [Outside 1]

【0025】成分を約70%消費して、MCFCアノー
ド側に水蒸気および二酸化炭素として放出される。この
MCFC内の反応のうち約50%が自由エネルギー変化
として電力に変換され、残約50%が熱としてMCFC
系内に放出されるが、MCFC内に組み込んである熱回
収機構により水蒸気のエンタルピーとして回収され、一
部は、燃料改質器に供給される水蒸気として使用され
る。
Approximately 70% of the components are consumed and are released to the MCFC anode side as water vapor and carbon dioxide. About 50% of the reaction in the MCFC is converted to electric power as a change in free energy, and the remaining 50% is converted to heat as heat in the MCFC.
Although released into the system, it is recovered as enthalpy of steam by a heat recovery mechanism incorporated in the MCFC, and a part is used as steam supplied to the fuel reformer.

【0026】MCFCは、温度約650℃、圧力約3気
圧(ゲージ)で操業され、アノード排ガス(ストリーム
)は熱回収され水分除去後(ストリーム)、炭酸ガ
ス回収PSAに導入される。炭酸ガス回収PSAの排ガ
ス(ストリーム)は、改質
The MCFC is operated at a temperature of about 650 ° C. and a pressure of about 3 atm (gauge), and the anode exhaust gas (stream) is recovered in heat, and after removing moisture (stream), is introduced into the carbon dioxide recovery PSA. Exhaust gas (stream) of carbon dioxide recovery PSA is reformed

【0027】[0027]

【外2】 [Outside 2]

【0028】または、カソード供給ガスとして一部循環
使用する。また、カソード排ガスは窒素が濃縮している
ことから、目的に応じ窒素回収プラントとの接続により
高純度窒素を回収することも可能である。
Alternatively, it is partially circulated and used as a cathode supply gas. Further, since the cathode exhaust gas is enriched with nitrogen, it is possible to recover high-purity nitrogen by connecting to a nitrogen recovery plant according to the purpose.

【0029】回収した二酸化炭素は、二酸化炭素を原料
として合成される既存の化学品の製造プロセスに原料ガ
スとして利用することができる。例えば、メタノール、
ジメチルエーテル、尿素等の化学品は、原料となる二酸
化炭素を重質油、天然ガス等の化石燃料の水蒸気改質、
部分酸化、等により製造しているが、本発明のシステム
では、高純度な二酸化炭素が低分離エネルギーで得られ
るため、回収した二酸化炭素をこれら化学品の原料とし
て利用でき、化石燃料の節約のみならず、これら化学品
製造に要するエネルギーの削減が可能となる。
The recovered carbon dioxide can be used as a raw material gas in a production process of an existing chemical product synthesized using carbon dioxide as a raw material. For example, methanol,
Chemicals such as dimethyl ether and urea convert carbon dioxide as a raw material into heavy oil, steam reforming of fossil fuels such as natural gas,
Although it is manufactured by partial oxidation, etc., in the system of the present invention, high-purity carbon dioxide can be obtained with low separation energy, so recovered carbon dioxide can be used as a raw material for these chemicals, and only fossil fuel savings Instead, the energy required for manufacturing these chemicals can be reduced.

【0030】[0030]

【実施例】以下、本発明を実施例により説明する。The present invention will be described below with reference to examples.

【0031】表1は、本実施例の物質収支である。この
表中には、横欄に図2に示されるストリーム番号を示
し、縦欄には各ストリームを構成するガス成分と各スト
リームの流量を示している。各ストリームを構成するガ
ス成分の濃度はモル%で示し、各ストリームの流量は、
COGの標準状態(0℃、1気圧)での供給流量(スト
リーム)を1として、その比率として示してある。
Table 1 shows the material balance of this example. In this table, the horizontal columns show the stream numbers shown in FIG. 2, and the vertical columns show the gas components constituting each stream and the flow rates of each stream. The concentration of the gas component constituting each stream is shown in mol%, and the flow rate of each stream is
The ratio is shown assuming that the supply flow rate (stream) in the standard state of COG (0 ° C., 1 atm) is 1.

【0032】[0032]

【表1】 [Table 1]

【0033】本実施例では、下記表2に示す条件でのシ
ステム運転を基礎としている。
This embodiment is based on the system operation under the conditions shown in Table 2 below.

【0034】[0034]

【表2】 [Table 2]

【0035】COGは、図2に示す様にシステムから回
収される水蒸気の一部と混合され、550℃で改質器に
導入される(ストリーム)。改質器の熱源は、アノー
ド排ガスを脱湿、二酸化炭素回収した後の残ガスと空気
との燃焼熱から供給される。
The COG is mixed with a portion of the steam recovered from the system as shown in FIG. 2 and introduced into the reformer at 550 ° C. (stream). The heat source of the reformer is supplied from the combustion heat of the residual gas and air after dehumidifying the anode exhaust gas and recovering carbon dioxide.

【0036】一酸化炭素シフト反応器では、COG中の
一酸化炭素、または、改質器での未反応一酸化炭素を水
素と二酸化炭素に転換し、ストリームでMCFCアノ
ードに導入される。一方、MCFCカソードには、空燃
比約1.2で燃焼されたBFG燃焼排ガス(ストリーム
)が熱交換器を通し冷却、前処理された後、二酸化炭
素/酸素濃度比で2/1となる様に空気と混合し3気圧
(ゲージ)まで昇圧され導入される(ストリーム)。
ストリームに含まれるの二酸化炭素と酸素は炭酸塩を
形成し、MCFC電解質を通りアノードに輸送される
が、ストリーム中の水素と反応し、水蒸気と二酸化炭
素を放出し排気される。この際、ストリーム中の酸素
分を70%消費する。このMCFC内の反応の自由エネ
ルギー変化が電力として取り出し可能であるが、現状で
は、反応熱の50%が電力に変換され、残りの50%は
MCFC内で熱に変換される。この熱は、MCFC内に
組み込んである熱回収機構により水蒸気のエンタルピー
として回収され、その一部はCOGの水蒸気改質用の水
蒸気として使用される。また、残余水蒸気は、水蒸気、
温水、何れの形態でも本システム外へ供給可能である。
In the carbon monoxide shift reactor, carbon monoxide in COG or unreacted carbon monoxide in the reformer is converted to hydrogen and carbon dioxide, and introduced in a stream to the MCFC anode. On the other hand, on the MCFC cathode, BFG combustion exhaust gas (stream) burned at an air-fuel ratio of about 1.2 is cooled through a heat exchanger, pre-treated, and then has a carbon dioxide / oxygen concentration ratio of 2/1. And pressurized to 3 atm (gauge) and introduced (stream).
The carbon dioxide and oxygen contained in the stream form carbonates and are transported through the MCFC electrolyte to the anode, where they react with the hydrogen in the stream to release water vapor and carbon dioxide and are exhausted. At this time, 70% of the oxygen content in the stream is consumed. The change in free energy of the reaction in the MCFC can be extracted as electric power, but at present, 50% of the reaction heat is converted into electric power, and the remaining 50% is converted into heat in the MCFC. This heat is recovered as enthalpy of steam by a heat recovery mechanism incorporated in the MCFC, and part of the heat is used as steam for steam reforming of COG. In addition, residual steam is steam,
Hot water can be supplied outside the system in any form.

【0037】MCFCは、温度約650℃、圧力3.0
気圧(ゲージ)で運転される。MC
The MCFC has a temperature of about 650 ° C. and a pressure of 3.0.
Operated at atmospheric pressure (gauge). MC

【0038】[0038]

【外3】 [Outside 3]

【0039】ド供給ガスとして循環使用される。また、
表1に示される様に、カソード排ガス中の窒素は89%
まで濃縮されており、窒素PSAに接続することにより
プロセス圧力を利用して低エネルギーで高純度な窒素の
製造が可能である。窒素PSAは、吸着剤に分離篩炭素
を用い、加圧時に共存ガスである酸素、二酸化炭素が吸
着するため高純度な窒素が取り出せる。目的に応じ窒素
PSAの操業条件を選択し窒素の純度を調整可能である
が、例えば、アンモニア製造工程の窒素源としてであれ
ば、カソード排気ガス中の酸素濃度が低い(3%程度)
ことを併せ活用し、脱湿後そのままアンモニアプラント
への導入が可能である。現行のアンモニアプラントでは
空気が窒素源として利用されているが、アンモニア合成
の主要原料である水素の空気中の酸素による酸化が避け
られずエネルギーロスが発生しているが、本発明のカソ
ード排ガスを利用すれば酸素濃度が低いため水素の酸化
が大幅に抑制され、アンモニアプラントの省エネルギー
を図ることができる。
The gas is circulated and used as a supply gas. Also,
As shown in Table 1, the nitrogen in the cathode exhaust gas was 89%
By connecting to a nitrogen PSA, low-energy, high-purity nitrogen can be produced using process pressure. Nitrogen PSA uses separation sieve carbon as an adsorbent, and adsorbs coexisting gases such as oxygen and carbon dioxide when pressurized, so that high-purity nitrogen can be taken out. The operating conditions of the nitrogen PSA can be selected according to the purpose and the purity of nitrogen can be adjusted. For example, if the nitrogen source is used as a nitrogen source in an ammonia production process, the oxygen concentration in the cathode exhaust gas is low (about 3%).
By taking advantage of these facts, it is possible to introduce directly into the ammonia plant after dehumidification. In the current ammonia plant, air is used as a nitrogen source, but oxidation of hydrogen, which is a main raw material of ammonia synthesis, by oxygen in the air is inevitable and energy loss occurs. If it is used, the oxidation of hydrogen is greatly suppressed because the oxygen concentration is low, and the energy saving of the ammonia plant can be achieved.

【0040】MCFCのアノードを出た排ガス(ストリ
ーム)は、COG、水蒸気の予熱器を通り熱交換、冷
却され、更に、気水分離器、脱湿器を通り水分を回収さ
れた後、二酸化炭素回収システムに導入される。本発明
では、この二酸化炭素の回収に二酸化炭素圧力スイング
吸着法(CO2 −PSA)を用いる。二酸化炭素回収法
は、PSAに代表される吸着法の他に、化学吸収法、膜
分離法、深冷分離法、等が知られているが、化学吸収法
ではアミン系吸収剤を用いるため、装置腐食の問題、ア
ミンの有害性の問題、等があり、また、深冷分離法は、
LNG、液体窒素等の冷熱源を保有するプラントにあっ
ては、これらの気化熱を利用して液体二酸化炭素が容易
に製造できるが、これらの冷熱源が無いプラントに於い
ては冷凍機を駆動する必要があり、エネルギー的に不利
である。一方、吸着法は、常圧系にて二酸化炭素の吸着
能力の高い活性炭の開発により、常圧−低圧(約100
mmHg)の圧力スイングの繰り返しにより連続的に高
効率で高純度の二酸化炭素の回収が可能であり、エネル
ギー的に有利である。本発明では、除湿し常温まで温度
の下がったアノード排ガス中に二酸化炭素が84%と高
度濃縮しているため、圧力スイング吸着法により高純度
な二酸化炭素が低エネルギーで回収可能となることが大
きな特徴となる。
The exhaust gas (stream) leaving the anode of the MCFC passes through a COG and steam preheater, is heat-exchanged and cooled, passes through a steam separator, a dehumidifier, and recovers water. Introduced into the recovery system. In the present invention, carbon dioxide pressure swing adsorption (CO 2 -PSA) is used for the recovery of carbon dioxide. As the carbon dioxide recovery method, in addition to the adsorption method represented by PSA, a chemical absorption method, a membrane separation method, a cryogenic separation method, and the like are known. In the chemical absorption method, an amine-based absorbent is used. There are problems of equipment corrosion, problems of amine toxicity, etc.
In plants having cold sources such as LNG and liquid nitrogen, liquid carbon dioxide can be easily produced using these heats of vaporization, but in plants without these cold sources, the refrigerator is driven. Must be done, which is energetically disadvantageous. On the other hand, the adsorption method is based on the development of activated carbon having a high carbon dioxide adsorption capacity in a normal pressure system.
By repeating the pressure swing (mmHg), it is possible to continuously recover highly efficient and high-purity carbon dioxide, which is advantageous in terms of energy. In the present invention, since the carbon dioxide is highly concentrated at 84% in the anode exhaust gas which has been dehumidified and cooled down to room temperature, it is important that high-purity carbon dioxide can be recovered with low energy by the pressure swing adsorption method. Features.

【0041】この除湿し常温まで温度の下がったアノー
ド排ガスを常圧で吸着搭に通し、活性炭への二酸化炭素
の選択吸着を進行させ、水素、窒素、酸素はそのまま搭
内を上昇し、水素リッチ(濃度は約50%)なガスとし
てCOG改質器のバーナーに供給され(ストリーム)
燃焼熱がCOG改質器の熱源となる。一方、二酸化炭素
吸着搭での二酸化炭素の吸着が飽和した後は、搭内に二
酸化炭素の一部が導入され搭内の残存ガス(水素、窒
素、酸素、等)を洗浄し搭外にオフガスとして排気され
る。この後、真空ポンプにより約100mmHgまで減
圧され二酸化炭素が脱着し、高純度で取り出される。通
常、このプロセスは、吸着搭と脱着搭の二搭で構成さ
れ、それぞれ常圧−減圧の繰り返しにより二酸化炭素を
連続的に取り出すことができる。ストリームの組成の
ガスを原料とした場合、二酸化炭素は回収率90%、純
度99%で回収される。この回収された二酸化炭素は、
二酸化炭素を原料として用いる化学プラントに供給さ
れ、メタノール、ジメチルエーテル、尿素の形態で固定
化される。この際、製鉄プラントに近接して化学プラン
トが立地せず輸送効率向上の必要がある場合、もしく
は、更なる高純度な二酸化炭素が必要な場合は、CO2
−PSAの後、回収された二酸化炭素を深冷分離プラン
トに導入し液体二酸化炭素とすることも可能である。
The anode exhaust gas, which has been dehumidified and lowered to room temperature, is passed through an adsorption column at normal pressure to promote selective adsorption of carbon dioxide on activated carbon, and hydrogen, nitrogen, and oxygen rise in the column as they are and become hydrogen-rich. (Concentration is about 50%) is supplied to the burner of the COG reformer as a gas (stream)
The heat of combustion is the heat source for the COG reformer. On the other hand, after the carbon dioxide adsorption by the carbon dioxide adsorption tower is saturated, part of the carbon dioxide is introduced into the tower, and the remaining gas (hydrogen, nitrogen, oxygen, etc.) inside the tower is washed and off-gas is discharged outside the tower. As exhaust. Thereafter, the pressure is reduced to about 100 mmHg by a vacuum pump, and the carbon dioxide is desorbed and taken out with high purity. Normally, this process is composed of two towers, an adsorption tower and a desorption tower, and carbon dioxide can be continuously extracted by repeating normal pressure and reduced pressure respectively. When a gas having a stream composition is used as a raw material, carbon dioxide is recovered at a recovery of 90% and a purity of 99%. This captured carbon dioxide
It is supplied to a chemical plant that uses carbon dioxide as a raw material, and is immobilized in the form of methanol, dimethyl ether, and urea. At this time, if the chemical plant is not located close to the steelmaking plant and the transportation efficiency needs to be improved, or if even higher purity carbon dioxide is required, CO 2
-After PSA, the recovered carbon dioxide can be introduced into a cryogenic separation plant to be liquid carbon dioxide.

【0042】[0042]

【発明の効果】発電効率という観点から見ると、COG
の直接燃焼による発電効率が約37%であるのに対し、
燃料電池では、約42%の効率で水素の燃焼エンタルピ
ーが取り出せるため、水素基準で約5%の燃焼効率の向
上が達成できる。また、メタンを水蒸気改質した場合、
メタン1モルから水素4モルが生成するため、メタンの
燃焼熱191.8kcal/molに対し、4モルの水
素の燃焼熱は218.5kcalであり、発電効率差を
考慮すると、 218.5×0.42/(191.8×0.37)=
1.29となり、30%弱の効率向上となる。COG中
のメタンの割合は約30%であることから、効率向上の
寄与は約9%となる。この効率向上は、システムの排熱
および排燃料を有効に活用し、メタンの水蒸気改質の熱
源をシステム内で供給できることから達成可能である。
一方、二酸化炭素の回収という観点から見ると、本シス
テムでは、BFG燃焼排ガスに含まれる二酸化炭素の
内、約63%が回収、固定化される事になり、本発明に
より、製鉄副生ガスであるCOG、または、その水蒸気
改質ガスを燃料とした省エネルギー発電を実現し二酸化
炭素排出削減を達成すると同時に、他の製鉄副生ガスで
あるBFGの燃焼排ガスと組み合わせたMCFC燃料電
池発電システムを構築することにより、高純度二酸化炭
素の回収が低エネルギーで実施でき、更には、この回収
二酸化炭素を化学原料として化学品の製造に利用し、化
学物質の形態で固定化することにより、化学品製造工程
での二酸化炭素排出量の低減を図り、産業間に跨って大
気中への二酸化炭素排出削減が達成できる。
From the viewpoint of power generation efficiency, COG
Power generation efficiency by direct combustion of about 37%,
In a fuel cell, the enthalpy of combustion of hydrogen can be extracted with an efficiency of about 42%, so that an improvement in combustion efficiency of about 5% on a hydrogen basis can be achieved. Also, when steam reforming methane,
Since 4 moles of hydrogen are generated from 1 mole of methane, the heat of combustion of 4 moles of hydrogen is 218.5 kcal, while the heat of combustion of methane is 191.8 kcal / mol. .42 / (191.8 × 0.37) =
1.29, which is an efficiency improvement of less than 30%. Since the ratio of methane in COG is about 30%, the contribution of improving efficiency is about 9%. This efficiency improvement is achievable because the waste heat and fuel of the system can be effectively utilized and a heat source for steam reforming of methane can be provided in the system.
On the other hand, from the viewpoint of carbon dioxide recovery, in the present system, about 63% of the carbon dioxide contained in the BFG combustion exhaust gas is recovered and fixed. Constructed an MCFC fuel cell power generation system that achieved energy-saving power generation using a certain COG or its steam reformed gas as fuel to achieve a reduction in carbon dioxide emissions and, at the same time, combined with the combustion exhaust gas of another steelmaking by-product gas, BFG. In this way, high-purity carbon dioxide can be recovered with low energy, and the recovered carbon dioxide is used as a chemical raw material in the production of chemicals and immobilized in the form of chemicals to produce chemicals. By reducing the amount of carbon dioxide emitted during the process, it is possible to achieve a reduction in carbon dioxide emitted into the atmosphere across industries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 製鉄副生ガスであるCOGとBFGを用いた
MCFC発電と二酸化炭素回収、固定化プロセスより構
成される複合システムの概念図である。
FIG. 1 is a conceptual diagram of a combined system composed of MCFC power generation using COG and BFG, which are by-product gases of steelmaking, and a process for capturing and fixing carbon dioxide.

【図2】 COGの水蒸気改質ガスをMCFCアノード
供給ガスとし、BFG火力発電排ガスと空気との混合ガ
スをMCFCカソード供給ガスとした場合の簡単なシス
テムフローを示す図である。尚、フローを示す矢印上に
ある円に囲まれた数字はストリーム番号に対応し、表1
で参照されている。
FIG. 2 is a diagram showing a simple system flow in a case where a steam reforming gas of COG is used as an MCFC anode supply gas and a mixed gas of BFG thermal power generation exhaust gas and air is used as an MCFC cathode supply gas. It should be noted that the circled numbers on the arrows indicating the flows correspond to the stream numbers, and are shown in Table 1.
Is referenced in

───────────────────────────────────────────────────── フロントページの続き (72)発明者 兼田 善弘 神奈川県川崎市中原区井田3−35−1 新 日本製鐵株式会社技術開発本部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshihiro Kaneda 3-35-1 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Nippon Steel Corporation Technology Development Division

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 溶融炭酸塩型燃料電池(MCFC)を用
いた発電システムにおいて、製鉄プロセスで発生する複
数の副生ガスをアノードガス及びカソードガスとして供
給するMCFC発電を行うとともに、アノード排ガスか
ら二酸化炭素を分離、回収することを特徴とする溶融炭
酸塩型燃料電池発電−排ガス回収複合システム。
In a power generation system using a molten carbonate fuel cell (MCFC), MCFC power generation for supplying a plurality of by-product gases generated in an iron making process as an anode gas and a cathode gas is performed. A combined power generation and exhaust gas recovery system for molten carbonate fuel cells, which separates and recovers carbon.
【請求項2】 製鉄プロセスで発生する副生ガスの内、
コークス炉ガス(COG)をアノードガスとして供給す
る請求項1記載の溶融炭酸塩型燃料電池発電−排ガス回
収複合システム。
2. Among the by-product gases generated in the iron making process,
The combined system of claim 1, wherein coke oven gas (COG) is supplied as an anode gas.
【請求項3】 COGに含まれる一酸化炭素をシフト反
応により水素と二酸化炭素に改質したシフトCOGとす
る請求項2記載の溶融炭酸塩型燃料電池発電−排ガス回
収複合システム。
3. The combined power generation and exhaust gas recovery system for a molten carbonate fuel cell according to claim 2, wherein a shift COG obtained by reforming carbon monoxide contained in the COG into hydrogen and carbon dioxide by a shift reaction.
【請求項4】 COGに含まれる炭化水素を水蒸気改質
反応により水素と二酸化炭素に改質した改質COGとす
る請求項2記載の溶融炭酸塩型燃料電池発電−排ガス回
収複合システム。
4. The combined power generation and exhaust gas recovery system for a molten carbonate fuel cell according to claim 2, wherein the hydrocarbon contained in the COG is reformed into hydrogen and carbon dioxide by a steam reforming reaction to form a reformed COG.
【請求項5】 製鉄プロセスで発生する副生ガスの内、
高炉ガス(BFG)をカソードガスとして供給する際
に、BFGに含まれる一酸化炭素を燃焼により二酸化炭
素に酸化した後、該ガスに酸素を富化してカソードガス
とする請求項1記載の溶融炭酸塩型燃料電池発電−排ガ
ス回収複合システム。
5. The by-product gas generated in the iron making process,
2. The molten carbon dioxide according to claim 1, wherein, when supplying the blast furnace gas (BFG) as a cathode gas, after carbon monoxide contained in the BFG is oxidized to carbon dioxide by combustion, the gas is enriched with oxygen to form a cathode gas. A combined fuel cell power generation and exhaust gas recovery system.
【請求項6】 BFGを単独あるいは他の燃料と混合し
て燃焼させたガスに、空気及び/または酸素を混合し、
該ガス中の二酸化炭素/酸素の体積濃度比率を1/4〜
4/1に調整する請求項5記載の溶融炭酸塩型燃料電池
発電−排ガス回収複合システム。
6. A gas obtained by burning BFG alone or mixed with another fuel, and then mixing air and / or oxygen with the gas.
The volume concentration ratio of carbon dioxide / oxygen in the gas is 1/4 to
The combined system for power generation and exhaust gas recovery of a molten carbonate fuel cell according to claim 5, wherein the system is adjusted to 4/1.
【請求項7】 二酸化炭素圧力スイング吸着法を用い
て、アノード排ガスから二酸化炭素を分離、回収する請
求項1記載の溶融炭酸塩型燃料電池発電−排ガス回収複
合システム。
7. The combined molten carbonate fuel cell power generation-exhaust gas recovery system according to claim 1, wherein carbon dioxide is separated and recovered from the anode exhaust gas using a carbon dioxide pressure swing adsorption method.
【請求項8】 請求項1〜7記載の溶融炭酸塩型燃料電
池発電−排ガス回収複合システムで得られた二酸化炭素
を原料として、化学品を合成することを特徴とする二酸
化炭素固定化方法。
8. A method for immobilizing a carbon dioxide, comprising synthesizing a chemical using carbon dioxide obtained by the combined power generation and exhaust gas recovery system for molten carbonate fuel cells according to claim 1 as a raw material.
JP10119452A 1998-04-28 1998-04-28 Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron Withdrawn JPH11312527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10119452A JPH11312527A (en) 1998-04-28 1998-04-28 Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10119452A JPH11312527A (en) 1998-04-28 1998-04-28 Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron

Publications (1)

Publication Number Publication Date
JPH11312527A true JPH11312527A (en) 1999-11-09

Family

ID=14761742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10119452A Withdrawn JPH11312527A (en) 1998-04-28 1998-04-28 Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron

Country Status (1)

Country Link
JP (1) JPH11312527A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196268A (en) * 2005-01-12 2006-07-27 Chugoku Electric Power Co Inc:The Power generation facility and power generation method
JP2007008794A (en) * 2005-06-30 2007-01-18 Masaya Kuno Method of using fuel cell as nitrogen generating apparatus
JP2007018907A (en) * 2005-07-08 2007-01-25 Chugoku Electric Power Co Inc:The Power generation system
JP2008010276A (en) * 2006-06-28 2008-01-17 Jfe Steel Kk Power generation method and power generator using exhaust gas, and method and device for oxidation processing of exhaust gas
WO2008096623A1 (en) * 2007-02-07 2008-08-14 Central Research Institute Of Electric Power Industry Power generating installation
JP2009043486A (en) * 2007-08-07 2009-02-26 Chugoku Electric Power Co Inc:The Generating system
JP2009043487A (en) * 2007-08-07 2009-02-26 Chugoku Electric Power Co Inc:The Generating system
JP2010129286A (en) * 2008-11-26 2010-06-10 Chugoku Electric Power Co Inc:The Power generation system
KR101142472B1 (en) 2009-09-17 2012-05-08 한국전력공사 Molten Carbonate Fuel Cell System with Hydrocarbon Reactor
JP2012530351A (en) * 2009-06-16 2012-11-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー System and method for operating a fuel cell system
WO2012164913A1 (en) * 2011-05-31 2012-12-06 パナソニック株式会社 Carbon dioxide enrichment device
WO2012164912A1 (en) * 2011-05-31 2012-12-06 パナソニック株式会社 Carbon dioxide enrichment device
KR101210684B1 (en) 2008-11-18 2012-12-11 도쿄 가스 가부시키가이샤 Hydrogen-recycling mcfc power-generating system
JP2013045535A (en) * 2011-08-23 2013-03-04 Tokyo Gas Co Ltd Carbonic acid gas recovery type fuel cell system
JP2013129581A (en) * 2011-12-22 2013-07-04 Jfe Steel Corp Gas separation and recovery method
KR101296819B1 (en) * 2011-10-28 2013-08-14 한국전력공사 Coal gas molten fuel cell system
JP2014511012A (en) * 2011-03-31 2014-05-01 ゼネラル・エレクトリック・カンパニイ Recirculation facility for increasing yield from fuel cells using CO2 capture
US20140260798A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Integration of Molten Carbonate Fuel Cells in Iron and Steel Processing
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
JP2018536979A (en) * 2015-10-08 2018-12-13 1304342 アルバータ リミテッド Production of pressurized and heated fluids using fuel cells
WO2019074678A1 (en) * 2017-10-11 2019-04-18 Saudi Arabian Oil Company Method and system for capturing high-purity co2 in a hydrocarbon facility
CN110741504A (en) * 2017-08-24 2020-01-31 熔盐电化学技术开发株式会社 Carbon dioxide electrolysis-carbon fuel cell body type device
US20210050610A1 (en) * 2016-04-21 2021-02-18 Fuelcell Energy, Inc. Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11508981B2 (en) 2016-04-29 2022-11-22 Fuelcell Energy, Inc. Methanation of anode exhaust gas to enhance carbon dioxide capture
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11975969B2 (en) 2020-03-11 2024-05-07 Fuelcell Energy, Inc. Steam methane reforming unit for carbon capture
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196268A (en) * 2005-01-12 2006-07-27 Chugoku Electric Power Co Inc:The Power generation facility and power generation method
JP2007008794A (en) * 2005-06-30 2007-01-18 Masaya Kuno Method of using fuel cell as nitrogen generating apparatus
JP2007018907A (en) * 2005-07-08 2007-01-25 Chugoku Electric Power Co Inc:The Power generation system
JP2008010276A (en) * 2006-06-28 2008-01-17 Jfe Steel Kk Power generation method and power generator using exhaust gas, and method and device for oxidation processing of exhaust gas
WO2008096623A1 (en) * 2007-02-07 2008-08-14 Central Research Institute Of Electric Power Industry Power generating installation
JPWO2008096623A1 (en) * 2007-02-07 2010-05-20 財団法人電力中央研究所 Power generation equipment
US8110310B2 (en) 2007-02-07 2012-02-07 Central Research Institute Of Electric Power Industry Power generating plant
JP2009043486A (en) * 2007-08-07 2009-02-26 Chugoku Electric Power Co Inc:The Generating system
JP2009043487A (en) * 2007-08-07 2009-02-26 Chugoku Electric Power Co Inc:The Generating system
KR101210684B1 (en) 2008-11-18 2012-12-11 도쿄 가스 가부시키가이샤 Hydrogen-recycling mcfc power-generating system
JP2010129286A (en) * 2008-11-26 2010-06-10 Chugoku Electric Power Co Inc:The Power generation system
JP2012530351A (en) * 2009-06-16 2012-11-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー System and method for operating a fuel cell system
KR101142472B1 (en) 2009-09-17 2012-05-08 한국전력공사 Molten Carbonate Fuel Cell System with Hydrocarbon Reactor
JP2014511012A (en) * 2011-03-31 2014-05-01 ゼネラル・エレクトリック・カンパニイ Recirculation facility for increasing yield from fuel cells using CO2 capture
WO2012164912A1 (en) * 2011-05-31 2012-12-06 パナソニック株式会社 Carbon dioxide enrichment device
WO2012164913A1 (en) * 2011-05-31 2012-12-06 パナソニック株式会社 Carbon dioxide enrichment device
JPWO2012164913A1 (en) * 2011-05-31 2015-02-23 パナソニック株式会社 Carbon dioxide enrichment device
JPWO2012164912A1 (en) * 2011-05-31 2015-02-23 パナソニック株式会社 Carbon dioxide enrichment device
JP2013045535A (en) * 2011-08-23 2013-03-04 Tokyo Gas Co Ltd Carbonic acid gas recovery type fuel cell system
KR101296819B1 (en) * 2011-10-28 2013-08-14 한국전력공사 Coal gas molten fuel cell system
JP2013129581A (en) * 2011-12-22 2013-07-04 Jfe Steel Corp Gas separation and recovery method
US9553321B2 (en) 2013-03-15 2017-01-24 Exxonmobile Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US10093997B2 (en) 2013-03-15 2018-10-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9077006B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9178234B2 (en) 2013-03-15 2015-11-03 Exxonmobil Research And Engineering Company Integrated power generation using molten carbonate fuel cells
CN105122526A (en) * 2013-03-15 2015-12-02 埃克森美孚研究工程公司 Integration of molten carbonate fuel cells in iron and steel processing
US9257711B2 (en) 2013-03-15 2016-02-09 Exxonmobil Research And Engineering Company Integrated carbon capture and chemical production using fuel cells
US9263755B2 (en) * 2013-03-15 2016-02-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9343763B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells for synthesis of nitrogen compounds
US9343764B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in methanol synthesis
US9362580B2 (en) 2013-03-15 2016-06-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in a refinery setting
US9419295B2 (en) 2013-03-15 2016-08-16 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells at a reduced electrical efficiency
US9455463B2 (en) 2013-03-15 2016-09-27 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9520607B2 (en) 2013-03-15 2016-12-13 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells with fermentation processes
US20140260798A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Integration of Molten Carbonate Fuel Cells in Iron and Steel Processing
US10676799B2 (en) 2013-03-15 2020-06-09 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9647284B2 (en) 2013-03-15 2017-05-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9650246B2 (en) 2013-03-15 2017-05-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US9735440B2 (en) 2013-03-15 2017-08-15 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9786939B2 (en) 2013-03-15 2017-10-10 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9941534B2 (en) 2013-03-15 2018-04-10 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9923219B2 (en) 2013-03-15 2018-03-20 Exxonmobile Research And Engineering Company Integrated operation of molten carbonate fuel cells
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US10283802B2 (en) 2013-09-30 2019-05-07 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
JP2018536979A (en) * 2015-10-08 2018-12-13 1304342 アルバータ リミテッド Production of pressurized and heated fluids using fuel cells
JP2021101427A (en) * 2016-04-21 2021-07-08 フュエルセル エナジー, インコーポレイテッドFuelcell Energy, Inc. Post-treatment of anode exhaust gas from molten carbonate fuel cell in order to recover carbon dioxide
US20210050610A1 (en) * 2016-04-21 2021-02-18 Fuelcell Energy, Inc. Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture
EP3836268A1 (en) * 2016-04-21 2021-06-16 Fuelcell Energy, Inc. Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture
US11211625B2 (en) * 2016-04-21 2021-12-28 Fuelcell Energy, Inc. Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide
US11949135B2 (en) 2016-04-21 2024-04-02 Fuelcell Energy, Inc. Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture
US11508981B2 (en) 2016-04-29 2022-11-22 Fuelcell Energy, Inc. Methanation of anode exhaust gas to enhance carbon dioxide capture
CN110741504A (en) * 2017-08-24 2020-01-31 熔盐电化学技术开发株式会社 Carbon dioxide electrolysis-carbon fuel cell body type device
CN110741504B (en) * 2017-08-24 2024-04-02 熔盐电化学技术开发株式会社 Carbon dioxide electrolysis-carbon fuel cell integrated device
WO2019074678A1 (en) * 2017-10-11 2019-04-18 Saudi Arabian Oil Company Method and system for capturing high-purity co2 in a hydrocarbon facility
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11616248B2 (en) 2018-11-30 2023-03-28 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US12095129B2 (en) 2018-11-30 2024-09-17 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11843150B2 (en) 2018-11-30 2023-12-12 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11888199B2 (en) 2019-11-26 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11975969B2 (en) 2020-03-11 2024-05-07 Fuelcell Energy, Inc. Steam methane reforming unit for carbon capture
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Similar Documents

Publication Publication Date Title
JPH11312527A (en) Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron
JP5801141B2 (en) Carbon dioxide recovery fuel cell system
US6878362B2 (en) Fuel processor apparatus and method based on autothermal cyclic reforming
US7763086B2 (en) Hydrogen purification process and system
US20050123810A1 (en) System and method for co-production of hydrogen and electrical energy
EP1584122B1 (en) Process for generating electricity and concentrated carbon dioxide
US20060216228A1 (en) Hydrogen generation
JP5280343B2 (en) Hydrogen separation type hydrogen production system with carbon dioxide separation and recovery equipment
JP2017511956A (en) Reformer / electrolyzer / refiner (REP) assembly for hydrogen production, system incorporating the assembly, and hydrogen production method
JP2003081605A (en) Hydrogen producing method accompanying recovery of liquefied co2
EP1015383A1 (en) Process for generating power and/or heat comprising a mixed conducting membrane reactor
JP2010138051A (en) Method of coproducing methanol and ammonia
CN1829656A (en) Method for extracting hydrogen from a gas containing methane, especially natural gas and system for carrying out said method
WO2019073867A1 (en) Methane producing system
CN114466815A (en) Process for the conversion of carbon dioxide
AU2003261675B2 (en) Shift membrane burner/fuel cell combination
JPH0798643B2 (en) Method for producing ammonia synthesis gas
JPH09330731A (en) Method for recovering and fixing carbon dioxide gas, nitrogen gas and argon gas in fuel cell power generation
JPH11111320A (en) Recovery and fixing method for carbon dioxide, nitrogen gas, and argon gas in fuel cell power generation using internal combustion type reformer
JP7197374B2 (en) Hydrogen production system
JP2016184550A (en) Gas manufacturing apparatus
JPH1027621A (en) Fuel cell power generating facility with suppressed generation of carbon dioxide
JPS59224074A (en) Treating method of fuel for full cell
JP2002241817A (en) Device for utilizing air for blasting into blast furnace at high degree in hot stove for blast furnace and its utilizing method
JP7496912B2 (en) Methane Generation System

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705