Nothing Special   »   [go: up one dir, main page]

JPH11308763A - Current limiter with ptc element and circuit breaker with the current limiter - Google Patents

Current limiter with ptc element and circuit breaker with the current limiter

Info

Publication number
JPH11308763A
JPH11308763A JP11240498A JP11240498A JPH11308763A JP H11308763 A JPH11308763 A JP H11308763A JP 11240498 A JP11240498 A JP 11240498A JP 11240498 A JP11240498 A JP 11240498A JP H11308763 A JPH11308763 A JP H11308763A
Authority
JP
Japan
Prior art keywords
ptc element
current
current limiter
resistance
ptc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11240498A
Other languages
Japanese (ja)
Inventor
Takashi Ohashi
隆 大橋
Seigo Yokoi
清吾 横井
Yukio Mizuno
幸夫 水野
Naotsuyo Okada
直剛 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP11240498A priority Critical patent/JPH11308763A/en
Publication of JPH11308763A publication Critical patent/JPH11308763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a current limiter that is capable of suppressing the break down of a positive temperature coefficient(PTC) element by preventing the temperature gradient from being generated, even if the PTC element reaches its resistance transition temperature. SOLUTION: A current limiter 10 is provided with a PTC element plate 11, consisting of first and second PTC elements 11a and 11b that are electrically connected in parallel. The second PTC element 11b is constituted by a PTC element that has a lower resistance and lower resistance change temperature than those of the first PTC element 11a at normal temperatures and a larger resistance change rate, after the resistance change. When a short-circuiting current flows in the current limiter 10, it first flows through the second PTC element 11b, but Joule heat is generated at the second PTC element 11b from self heating, and at the same time the first PTC element 11a is preheated due to this heat. When the second PTC element 11b reaches a resistance change temperature and the resistance is increased, though a short-circuiting current is commutated to the first PTC element 11a, it immediately reaches a resistance change temperature for limited flow since it has been preheated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、送配電系統に流れ
る短絡電流あるいは過負荷電流等の過電流から送配電系
統あるいは送配電系統に配設された電力機器を保護する
ための限流器および遮断器に係わり、特にPTC素子を
用いた限流器およびこの限流器を用いた遮断器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current limiter for protecting a power transmission / distribution system or power equipment disposed in the power transmission / distribution system from an overcurrent such as a short circuit current or an overload current flowing in the power transmission / distribution system. More particularly, the present invention relates to a current limiter using a PTC element and a circuit breaker using the current limiter.

【0002】[0002]

【従来の技術】近年、送配電系統に流れる短絡電流ある
いは過負荷電流等の過電流から送配電系統あるいは送配
電系統に配設した電力機器を保護するために、温度が上
昇することにより抵抗値が増大する正の抵抗温度係数を
有する素子(PTC(PositiveTemperature Coefficien
t)サーミスタ、以下PTC素子という)を送配電系統
の電路に用いることが提案されるようになった。
2. Description of the Related Art In recent years, in order to protect a power transmission / distribution system or power equipment disposed in the power transmission / distribution system from an overcurrent such as a short-circuit current or an overload current flowing through the power transmission / distribution system, the resistance value increases due to an increase in temperature. Having a positive temperature coefficient of resistance (PTC (Positive Temperature Coefficien)
t) A thermistor, hereinafter referred to as a PTC element) has been proposed to be used for an electric circuit of a power transmission and distribution system.

【0003】このPTC素子を送配電系統に遮断器と併
設して用いた場合、例えば、何らかの理由により、この
系統に定格電流以上の過電流が流れると、PTC素子内
にジュール熱が発生してPTC素子の温度が上昇する。
すると、このPTC素子は正の抵抗温度係数を有するた
め、PTC素子の温度が所定の抵抗転移温度(あるいは
相転移温度:以下、抵抗転移温度という)以上になる
と、その抵抗値が急激に増大してこの系統に流れる過電
流を抑制(限流)するようになる。その後、遮断器が動
作して回路が遮断される。一方、事故が回復した後、P
TC素子の温度が常温に戻ると、その抵抗値は元の低抵
抗値になるため、PTC素子は自動復帰し、遮断器が再
投入されると、この系統には通常の所定の負荷電流が流
れるようになる。
[0003] When this PTC element is used in conjunction with a circuit breaker in a power transmission and distribution system, for example, if an overcurrent exceeding the rated current flows through this system for some reason, Joule heat is generated in the PTC element. The temperature of the PTC element increases.
Then, since this PTC element has a positive temperature coefficient of resistance, when the temperature of the PTC element becomes higher than a predetermined resistance transition temperature (or phase transition temperature: hereinafter, referred to as a resistance transition temperature), the resistance value sharply increases. The overcurrent flowing through the lever system is suppressed (current limit). Thereafter, the circuit breaker operates to cut off the circuit. On the other hand, after the accident has recovered,
When the temperature of the TC element returns to normal temperature, the resistance value returns to the original low resistance value, so that the PTC element automatically recovers, and when the circuit breaker is turned on again, a normal predetermined load current is applied to this system. It will flow.

【0004】ところで、この種のPTC素子は母材であ
るセラミックスに導電材料を混入させて焼結して作製さ
れる。導電材料を混入する際には、母材であるセラミッ
クスに均一に分散するように混入させるが、大きな断面
積を有するPTC素子を作製する場合は、導電材料が均
一に分散した素子を得ることが難しく、断面の各部位で
それぞれ異なる抵抗値のPTC素子が形成されるように
なる。このように、断面の各部位でそれぞれ異なる抵抗
値を有するPTC素子に電流を流した場合、異なる抵抗
値に起因して、断面の各部位の電流密度にばらつきを生
じる。
A PTC element of this type is manufactured by mixing a conductive material into a ceramic as a base material and sintering the mixed material. When mixing the conductive material, it is mixed so as to be uniformly dispersed in the ceramic as the base material. However, when manufacturing a PTC element having a large cross-sectional area, it is necessary to obtain an element in which the conductive material is uniformly dispersed. It is difficult, and PTC elements having different resistance values are formed at respective portions of the cross section. As described above, when a current flows through a PTC element having a different resistance value at each portion of the cross section, the current density at each portion of the cross section varies due to the different resistance value.

【0005】電流密度にばらつきを生じると、当然、ジ
ュール熱に基づく自己発熱も断面の各部位でそれぞれ異
なることとなる。このため、PTC素子内部に急激な温
度勾配が形成され、各部位で熱膨張差が生じて、やがて
は、熱応力によりPTC素子が破壊されるという問題を
生じた。
[0005] If the current density varies, the self-heating based on the Joule heat naturally differs in each part of the cross section. For this reason, a steep temperature gradient is formed inside the PTC element, and a difference in thermal expansion occurs in each part, and there is a problem that the PTC element is eventually broken by thermal stress.

【0006】そこで、素子の破壊を防止することができ
るPTC素子が特開平8−236303号公報にて提案
されるようになった。この特開平8−236303号公
報で提案されたPTC素子はPTC素子を細分化し、こ
の細分化された各PTC素子をハニカム状の隔壁によっ
て隔てるようにしている。このように、隔壁によって各
PTC素子を隔てるようにすると、1つのPTC素子が
破壊されたとしても、この破壊は隔壁によって遮断され
るようになるので、PTC素子全体としては破壊に至ら
ないようになる。
Therefore, a PTC element capable of preventing the element from being broken has been proposed in Japanese Patent Application Laid-Open No. 8-236303. The PTC element proposed in Japanese Patent Application Laid-Open No. H8-236303 subdivides the PTC element, and separates the subdivided PTC elements by honeycomb-shaped partition walls. As described above, if each PTC element is separated by a partition, even if one PTC element is destroyed, this destruction is interrupted by the partition, so that the PTC element as a whole is not destroyed. Become.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た特開平8−236303号公報にて提案されたPTC
素子にあっては、細分化された各PTC素子の抵抗率あ
るいは形状(例えば、断面積、長さ)等が考慮されてい
ないため、隔壁により細分化された各PTC素子の抵抗
値はそれぞれまちまちとなってばらつきがある。このた
め、短絡電流などの過電流がこのような隔壁により細分
化された各PTC素子により構成された限流器に流れる
場合、各PTC素子の温度上昇はまちまちとなって、限
流器としては温度分布を持つこととなる。
However, the PTC proposed in the above-mentioned Japanese Patent Application Laid-Open No. 8-236303 has been proposed.
In the element, since the resistivity or shape (for example, cross-sectional area, length) of each subdivided PTC element is not taken into account, the resistance value of each subdivided PTC element by the partition wall varies. There is a variation. For this reason, when an overcurrent such as a short-circuit current flows through a current limiting device constituted by each PTC element subdivided by such a partition, the temperature rise of each PTC element varies, and as a current limiting device, It will have a temperature distribution.

【0008】ここで、各PTC素子の抵抗値のばらつき
が大きい場合、この限流器に短絡電流などの過電流が流
れると、限流器内で急激な温度勾配が生じて、熱応力に
よりこの限流器が破壊されるという事態を生じる。ま
た、各PTC素子の抵抗値のばらつきが大きい場合、抵
抗値が低いPTC素子に電流が集中するようになるた
め、この電流が集中したPTC素子は電流が集中したこ
とにより、ジュール熱が発生して抵抗転移温度に至るよ
うになる。
In the case where the resistance value of each PTC element has a large variation, if an overcurrent such as a short-circuit current flows through the current limiting device, a sharp temperature gradient is generated in the current limiting device, and this is caused by thermal stress. The current limiter is destroyed. In addition, when the resistance value of each PTC element has a large variation, the current concentrates on the PTC element having a low resistance value. Therefore, the PTC element with the concentrated current generates Joule heat due to the concentrated current. To the resistance transition temperature.

【0009】これにより、電流が集中したPTC素子は
抵抗が急激に増大して限流効果を発揮するようになる
が、他の抵抗値が高いPTC素子は抵抗転移温度に至ら
ず、限流効果を発揮することができないこととなる。こ
の結果、限流器としては一部のPTC素子のみが限流効
果を発揮するだけであるので、限流器全体として所定の
限流効果を発揮することができないという問題を生じ
る。
As a result, the PTC element in which the current is concentrated has a sudden increase in resistance and exhibits a current limiting effect. However, other PTC elements having a high resistance value do not reach the resistance transition temperature and have a current limiting effect. Cannot be exhibited. As a result, since only a part of the PTC elements exerts the current limiting effect as the current limiting device, there is a problem that the predetermined current limiting effect cannot be exerted as the entire current limiting device.

【0010】[0010]

【課題を解決するための手段およびその作用・効果】本
発明は、PTC素子を外部加熱あるいは内部加熱により
予め所定の抵抗転移温度近傍まで均一に加熱しておけ
ば、過電流による所定の抵抗転移温度に到達するに必要
な自己発熱を少なくすることができる。従って、PTC
素子内部の抵抗値にばらつきがあっても、温度勾配が生
じることなくPTC素子が抵抗転移温度に到達すること
ができるという知見に基づいてなされたものであって、
PTC素子がその抵抗転移温度に到達しても温度勾配を
生じることを防止して、PTC素子の破壊を抑制できる
限流器が得られるようにすることをその目的としてなさ
れたものである。
Means for Solving the Problems and Action / Effect of the Invention The present invention provides a method of heating a PTC element uniformly to a vicinity of a predetermined resistance transition temperature by external heating or internal heating in advance to obtain a predetermined resistance transition caused by an overcurrent. Self-heating required to reach the temperature can be reduced. Therefore, PTC
It is based on the knowledge that the PTC element can reach the resistance transition temperature without a temperature gradient even if the resistance value inside the element varies,
It is an object of the present invention to prevent a temperature gradient from occurring even when the PTC element reaches its resistance transition temperature and to obtain a current limiter capable of suppressing the destruction of the PTC element.

【0011】このため、本発明の限流器は、PTC素子
を電気的に並列接続された第1PTC素子と第2PTC
素子とから構成し、第2PTC素子は、第1PTC素子
より常温における抵抗値および抵抗転移温度が低く、か
つ抵抗転移後の抵抗変化率が大きいPTC素子により構
成している。このように第2PTC素子を構成すると、
通常の定格以下の電流が流れる状態にあっては、常温に
おける抵抗値が低い第2PTC素子を通して電流が流れ
る。このとき、第2PTC素子の抵抗値に基づいてジュ
ール熱が発生するため、第2PTC素子は自己加熱する
とともに、第1PTC素子は第2PTC素子の発熱に基
づく熱により加熱される。
Therefore, the current limiter of the present invention comprises a first PTC element having a PTC element electrically connected in parallel with a second PTC element.
The second PTC element is constituted by a PTC element having a lower resistance value at normal temperature and a lower resistance transition temperature than the first PTC element and a higher rate of change in resistance after the resistance transition. When the second PTC element is configured as described above,
In a state where a current equal to or lower than the normal rating flows, the current flows through the second PTC element having a low resistance value at normal temperature. At this time, since Joule heat is generated based on the resistance value of the second PTC element, the second PTC element is self-heated, and the first PTC element is heated by the heat based on the heat generated by the second PTC element.

【0012】これにより、第1および第2PTC素子は
第2PTC素子の抵抗転移温度近傍の温度まで加熱され
ることとなる。このような状態のときに、この限流器が
接続された電路に短絡電流のような過電流が流れるよう
になると、この過電流に基づくジュール熱により第2P
TC素子は抵抗転移温度に移行してその抵抗値が増大す
る。これにより、短絡電流に基づく過電流は第1PTC
素子に転流し、第1PTC素子はこの過電流に基づくジ
ュール熱により抵抗転移温度に達する。このとき、第2
PTC素子の抵抗転移後の抵抗変化率が大きいため、こ
の過電流は第1PTC素子により抑制(限流)される。
As a result, the first and second PTC elements are heated to a temperature near the resistance transition temperature of the second PTC element. In such a state, when an overcurrent such as a short-circuit current flows in the electric circuit to which the current limiter is connected, the second P due to Joule heat based on the overcurrent.
The TC element shifts to a resistance transition temperature and its resistance value increases. Thus, the overcurrent based on the short-circuit current is reduced to the first PTC
The first PTC element reaches the resistance transition temperature by Joule heat based on the overcurrent. At this time, the second
Since the rate of resistance change after the resistance transition of the PTC element is large, this overcurrent is suppressed (current-limited) by the first PTC element.

【0013】そして、第1PTC素子の側壁の周囲に第
2PTC素子が直接的に接して配置すると、第2PTC
素子の抵抗値に基づいてジュール熱が発生すると、第1
PTC素子は第2PTC素子の自己発熱によりその側壁
周囲から直接加熱されるため、第1PTC素子は第2P
TC素子の抵抗転移温度近傍の温度まで効率よく加熱さ
れるようになる。このため、短絡電流に基づく過電流が
第1PTC素子に転流すると、第1PTC素子は直ちに
抵抗転移温度に達することができるようになる。
When the second PTC element is disposed directly around the side wall of the first PTC element, the second PTC element
When Joule heat is generated based on the resistance value of the element, the first
Since the PTC element is directly heated from around the side wall by the self-heating of the second PTC element, the first PTC element is
The element is efficiently heated to a temperature near the resistance transition temperature of the TC element. For this reason, when the overcurrent based on the short-circuit current is commutated to the first PTC element, the first PTC element can immediately reach the resistance transition temperature.

【0014】また、少なくとも第2PTC素子が露出す
る外面に蓄熱材を備え、この蓄熱材の外面に熱伝導性が
良好な放熱体を備えるようにすると、第2PTC素子が
自己発熱するとこの熱は直ちに第1PTC素子に熱伝導
するとともに蓄熱材に蓄熱され、蓄熱材に蓄熱された熱
は放熱体より放熱されるようになる。この結果、第2P
TC素子は常に第2PTC素子の抵抗転移温度近傍の温
度に維持されるようになる。
Further, if a heat storage material is provided on at least the outer surface where the second PTC element is exposed, and a heat radiator having good thermal conductivity is provided on the outer surface of the heat storage material, the heat is immediately generated when the second PTC element generates heat. The heat is transferred to the first PTC element and stored in the heat storage material, and the heat stored in the heat storage material is radiated from the radiator. As a result, the second P
The TC element is always maintained at a temperature near the resistance transition temperature of the second PTC element.

【0015】さらに、クリストバライト系セラミックス
からなるPTC素子は、チタン系セラミックスからなる
PTC素子より、常温における抵抗値および抵抗転移温
度が低く、かつ抵抗転移後の抵抗変化率が大きいPTC
素子であるので、第1PTC素子はチタン系セラミック
スとし、第2PTC素子はクリストバライト系セラミッ
クスとするのが好ましい。
Further, the PTC element made of cristobalite-based ceramics has a lower resistance value and a lower resistance transition temperature at room temperature and a larger rate of resistance change after the resistance transition than the PTC element made of titanium-based ceramics.
Since it is an element, the first PTC element is preferably made of a titanium-based ceramic, and the second PTC element is preferably made of a cristobalite-based ceramic.

【0016】一方、本発明は上述した限流器の一方の端
子が電路の電源側に接続され、同限流器の他方の端子が
遮断器の一方の端子に接続され、同遮断器の他方の端子
が電路の負荷側に接続される遮断器であって、電路に定
格電流以上の過負荷電流が流れる場合は限流器の各PT
C素子は抵抗転移温度にならないようにするとともに、
電路に短絡電流のような過電流が流れる場合は限流器の
各PTC素子は抵抗転移温度になってその過電流を抑制
するようにし、電路に過電流あるいは過負荷電流が予め
設定された時間だけ継続して流れるとこれらの過電流あ
るいは過負荷電流を遮断するようにしている。
On the other hand, according to the present invention, one terminal of the above-described current limiter is connected to the power supply side of the electric circuit, the other terminal of the current limiter is connected to one terminal of the circuit breaker, and the other terminal of the circuit breaker is connected to the other terminal. Circuit breaker is connected to the load side of the circuit, and if an overload current exceeding the rated current flows in the circuit,
The C element should not reach the resistance transition temperature,
When an overcurrent such as a short-circuit current flows in the circuit, each PTC element of the current limiter reaches a resistance transition temperature to suppress the overcurrent, and the overcurrent or overload current is set in the circuit for a predetermined time. Only when the current flows continuously, the overcurrent or overload current is cut off.

【0017】このように遮断器を構成することにより、
電路が短絡状態になってこの遮断器に短絡電流が流れる
ようになると、限流器は短絡電流を抑制(限流)するた
め、この種の遮断器の遮断容量を大幅に向上させること
が可能となる。そして、この遮断器に上述したPTC素
子を備えた限流器を接続して用いると、PTC素子を備
えた限流器は限流効果が大きいので、遮断容量に優れた
遮断器が得られるようになる。
By configuring the circuit breaker in this way,
When a short circuit occurs in the circuit and a short-circuit current flows through this breaker, the current limiter suppresses (limits) the short-circuit current, so the breaking capacity of this type of breaker can be greatly improved. Becomes If the current limiter having the PTC element described above is connected to this circuit breaker and used, the current limiter having the PTC element has a large current limiting effect, so that a circuit breaker excellent in breaking capacity can be obtained. become.

【0018】[0018]

【発明の実施の形態】1.PTC素子を備えた限流器 以下に、図に基づいて本発明のPTC素子を備えた限流
器の一実施形態を説明する。なお、図1は本実施形態の
PTC素子を備えた限流器の概略構成を模式的に示す図
であり、図1(a)は限流器の斜示図であり、図1
(b)は図1(a)の限流器に用いるPTC素子の概略
構成を模式的に示す斜示図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a current limiter including a PTC element according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a schematic configuration of a current limiter including the PTC element of the present embodiment, and FIG. 1A is a perspective view of the current limiter.
FIG. 2B is a perspective view schematically showing a schematic configuration of a PTC element used in the current limiting device of FIG.

【0019】本発明の限流器10は、図1に示すよう
に、薄板状に形成したPTC素子板11の上下面に上部
端子板12と下部端子板13とを接続し、上部端子板1
2の上部にPTC素子板11が発熱した際の熱を吸収す
る蓄熱器14を端子板12に密着して接続するととも
に、この蓄熱器14の上部に絶縁板15を介して放熱体
16を配設する構造を採用している。
As shown in FIG. 1, a current limiting device 10 according to the present invention has an upper terminal plate 12 and a lower terminal plate 13 connected to upper and lower surfaces of a PTC element plate 11 formed in a thin plate shape.
A heat accumulator 14 for absorbing heat generated when the PTC element plate 11 generates heat is connected to the terminal plate 12 in close contact with the upper portion of the heat sink 2, and a radiator 16 is disposed on the heat accumulator 14 via an insulating plate 15. The structure to be installed is adopted.

【0020】ここで、PTC素子板11はその内部に第
1PTC素子11aを備え、第1PTC素子11aの外
周部に第2PTC素子11bを備える構造としている。
第1PTC素子11aとしては、常温抵抗率ρ01(例え
ば、ρ01=1Ω・cm)が小さいとともに、常温抵抗率
ρ01に対する抵抗上昇率(例えば、常温抵抗率ρ01の1
000倍)が大きく、かつその抵抗転移温度(Tc1)
が260〜300℃程度のチタン酸鉛(PbTiO3
セラミックス、チタン酸ビスマス(BiTiO3)セラ
ミックスあるいはこれらの固溶体からなるチタン系セラ
ミックスを用いることが好ましい。このチタン系セラミ
ックスからなる第1PTC素子11aは、図2の曲線A
に示すような温度(℃)−抵抗率(ρ)特性を有してお
り、素子温度が260〜300℃の抵抗転移温度(Tc
1)になるとその抵抗率(ρ)が最大(ρmax1)に
なる。
Here, the PTC element plate 11 has a structure in which a first PTC element 11a is provided therein, and a second PTC element 11b is provided on an outer peripheral portion of the first PTC element 11a.
The first 1PTC element 11a, room temperature resistivity [rho 01 (e.g., ρ 01 = 1Ω · cm) with a small, rate of increase in resistance against cold resistivity [rho 01 (e.g., 1 normal temperature resistivity [rho 01
000 times) and its resistance transition temperature (Tc1)
Of lead titanate (PbTiO 3 ) with a temperature of about 260 to 300 ° C.
It is preferable to use ceramics, bismuth titanate (BiTiO 3 ) ceramics, or titanium-based ceramics composed of a solid solution of these. The first PTC element 11a made of this titanium-based ceramic is represented by a curve A in FIG.
Has a temperature (° C.)-Resistivity (ρ) characteristic as shown in FIG.
1), the resistivity (ρ) becomes maximum (ρmax1).

【0021】また、第2PTC素子11bとしては、常
温抵抗率ρ02(例えば、ρ02=0.1Ω・cm)が小さ
いとともに、常温抵抗率ρ02に対する抵抗上昇率(例え
ば、常温抵抗率ρ02の10000倍)が大きく、かつそ
の抵抗転移温度(Tc2)が200〜240℃程度のク
リストバライト系セラミックスを用いることが好まし
い。このクリストバライト系セラミックスからなる第2
PTC素子11bは、図2の曲線Bに示すような温度
(℃)−抵抗率(ρ)特性を有しており、素子温度が2
00〜240℃の抵抗転移温度(Tc2)になるとその
抵抗率(ρ)が最大(ρmax2)になる。
The second PTC element 11b has a small room temperature resistivity ρ 02 (for example, ρ 02 = 0.1 Ω · cm), and has a resistance increasing ratio with respect to the room temperature resistivity ρ 02 (for example, the room temperature resistivity ρ 02). It is preferable to use cristobalite-based ceramics whose resistance transition temperature (Tc2) is about 200 to 240 ° C. A second cristobalite-based ceramic
The PTC element 11b has a temperature (° C.)-Resistivity (ρ) characteristic as shown by a curve B in FIG.
When the resistance transition temperature (Tc2) reaches 00 to 240 ° C., the resistivity (ρ) becomes the maximum (ρmax2).

【0022】そして、本実施形態においては、このチタ
ン系セラミックスからなる第1PTC素子11aを薄板
状に形成するとともに、この薄板状に形成した第1PT
C素子板の外周部に密に接触して、クリストバライト系
セラミックスからなる第2PTC素子11bを枠状に形
成して固着している。
In this embodiment, the first PTC element 11a made of the titanium-based ceramic is formed in a thin plate shape, and the first PTC element 11a formed in the thin plate shape is formed.
A second PTC element 11b made of cristobalite-based ceramics is formed in a frame shape and fixedly in contact with the outer peripheral portion of the C element plate.

【0023】両端子板12,13は、例えば銅、アルミ
ニウム、ステンレス等の導電性が良好でかつ熱伝導性が
良好な金属を帯状に形成している。そして、PTC素子
板11の厚み方向に電流が流れるように、これらの両端
子板12,13をPTC素子板11の厚み方向にサンド
イッチ状に挟み込んで、導電性接着剤による接着、ロウ
付けあるいは溶接等により固着してPTC素子板11と
一体化している。このように両端子板12,13をPT
C素子板11に接続すると、薄板状のPTC素子板11
の各PTC素子11a,11bの通電方向はその厚み方
向になるため、このPTC素子板11の各PTC素子1
1a,11b内に電流が流れても通電抵抗が減少してそ
の電力損失は小さくなる。なお、これらの両端子板1
2,13の各端部には取り付け穴12aおよび13aが
配設されている。
The terminal plates 12 and 13 are formed of a metal having good conductivity and good heat conductivity, such as copper, aluminum and stainless steel, in a strip shape. Then, these two terminal plates 12 and 13 are sandwiched in the thickness direction of the PTC element plate 11 so that a current flows in the thickness direction of the PTC element plate 11, and are bonded, brazed or welded with a conductive adhesive. And is integrated with the PTC element plate 11. In this way, the terminal plates 12, 13 are PT
When connected to the C element plate 11, the thin PTC element plate 11
Since the direction of conduction of each of the PTC elements 11a and 11b is in the direction of its thickness, each of the PTC elements 1
Even if a current flows in 1a and 11b, the conduction resistance is reduced and the power loss is reduced. In addition, these two terminal boards 1
Mounting holes 12a and 13a are provided at the respective ends of the members 2 and 13.

【0024】蓄熱器14は、銅、アルミニウム、ステン
レス等の熱伝導性が良好な金属からなる金属容器と、こ
の金属容器内に密封して充填される低融点金属(例え
ば、鉛−錫合金、はんだ等の低融点(例えば130〜1
50℃)の金属)から構成している。そして、この蓄熱
器14は両端子板12,13の少なくとも一方に接着剤
による接着、ロウ付けあるいは溶接等により固着(な
お、図1においては、端子板12側に配設した例を示し
ている)して両端子板12,13と一体化している。し
たがって、PTC素子板11と両端子板12,13と蓄
熱器14とが一体化される。なお、蓄熱器14は銅、
錫、鉛などのような熱容量の大きな金属体で構成しても
よい。この場合、蓄熱器14の構成が容易になって、安
価に製造できるようになる。
The regenerator 14 includes a metal container made of a metal having good thermal conductivity such as copper, aluminum, and stainless steel, and a low melting point metal (for example, a lead-tin alloy, Low melting point of solder etc. (for example, 130-1
50 ° C.). The heat storage unit 14 is fixed to at least one of the terminal plates 12 and 13 by bonding with an adhesive, brazing, welding, or the like (FIG. 1 shows an example in which the heat storage unit 14 is disposed on the terminal plate 12 side). ) To be integrated with both terminal boards 12 and 13. Therefore, the PTC element plate 11, the two terminal plates 12, 13 and the regenerator 14 are integrated. The regenerator 14 is made of copper,
It may be made of a metal body having a large heat capacity such as tin or lead. In this case, the configuration of the heat storage unit 14 is simplified, and the heat storage unit 14 can be manufactured at low cost.

【0025】これにより、PTC素子板11に過負荷電
流が流れ、そのジュール熱によりPTC素子板11の第
1PTC素子11aが発熱すると、この発熱した熱が蓄
熱器14に熱伝導する。すると、金属容器内に密封、充
填された低融点金属がこの熱を吸収してその融点に達す
ると融解する。これにより、PTC素子板11の第1P
TC素子11aに長時間の間にわたって過負荷電流が流
れてPTC素子板11の第1PTC素子11aが発熱し
ても、この熱は逐次、低融点金属の融解熱に変換される
ため、PTC素子板11の第1PTC素子11aが抵抗
転移温度(Tc1=260〜300℃)に達することが
防止でき、後述するMCCB(遮断器)の動作に影響を
与えない。
As a result, when an overload current flows through the PTC element plate 11 and the first PTC element 11a of the PTC element plate 11 generates heat due to the Joule heat, the generated heat is conducted to the regenerator 14. Then, the low melting point metal sealed and filled in the metal container absorbs this heat and melts when reaching the melting point. Thereby, the first P of the PTC element plate 11
Even if an overload current flows through the TC element 11a for a long time and the first PTC element 11a of the PTC element plate 11 generates heat, this heat is sequentially converted into heat of fusion of the low melting point metal. The first first PTC element 11a can be prevented from reaching the resistance transition temperature (Tc1 = 260 to 300 ° C.), and does not affect the operation of an MCCB (circuit breaker) described later.

【0026】放熱体16は、熱伝導性が良好なアルミニ
ウム合金製の板状体に複数のフィン16aを一体に形成
した放熱フィンより構成している。この放熱体16を蓄
熱器14より電気的に絶縁するために、耐熱性が良好な
絶縁板15を介して蓄熱器14の上部に一体的に固着し
ている。これにより、蓄熱器14に蓄熱されたPTC素
子板11の第1PTC素子11aより発生した熱は放熱
体16より外気中に放出されるようになる。
The radiator 16 is composed of a radiator fin in which a plurality of fins 16a are integrally formed on a plate made of aluminum alloy having good thermal conductivity. In order to electrically insulate the heat radiator 16 from the heat accumulator 14, it is integrally fixed to the upper portion of the heat accumulator 14 via an insulating plate 15 having good heat resistance. Thereby, the heat generated by the first PTC element 11a of the PTC element plate 11 stored in the heat storage unit 14 is released from the radiator 16 to the outside air.

【0027】上述したように本発明の限流器10を構成
し、PTC素子板11の一方の面に電源側の電路に接続
される取り付け孔12aを備えた端子板12を固着し、
PTC素子板11の他方の面に負荷側の電路に接続され
る取り付け孔13aを備えた端子板13を固着している
ので、薄板状のPTC素子板11の通電方向はその厚み
方向になるため、定常時の定格電流が流れる状態におい
ては、PTC素子板11の常温抵抗率ρ02が低い第2P
TC素子11bを通して流れるが、第2PTC素子11
bは常温抵抗率ρ02が低いために通電抵抗が減少して電
力損失が減少する。このとき、第2PTC素子11bは
ジュール熱により発熱すると、この発熱した熱が第1P
TC素子11aに熱伝導して第1PTC素子11aも加
熱される。
As described above, the current limiting device 10 of the present invention is configured, and the terminal plate 12 having the mounting hole 12a connected to the electric circuit on the power supply side is fixed to one surface of the PTC element plate 11,
Since the terminal plate 13 having the mounting hole 13a connected to the electric circuit on the load side is fixed to the other surface of the PTC element plate 11, the direction of conduction of the thin PTC element plate 11 is in the thickness direction. in the state where the flowing rated current during steady, low room temperature resistivity [rho 02 of the PTC element plate 11 first 2P
Although flowing through the TC element 11b, the second PTC element 11
In the case of b, since the normal temperature resistivity ρ 02 is low, the conduction resistance decreases and the power loss decreases. At this time, when the second PTC element 11b generates heat by Joule heat, the generated heat is converted to the first PTC element 11b.
The first PTC element 11a is also heated by conducting heat to the TC element 11a.

【0028】また、定格電流以上の過負荷電流が流れる
と、そのジュール熱によりPTC素子板11の第2PT
C素子11bが発熱すると、この発熱した熱が第1PT
C素子11aに熱伝導するとともに蓄熱器14にも熱伝
導する。これにより、第1PTC素子11aも加熱され
るが、第2PTC素子11bに長時間にわたって過負荷
電流が流れて第2PTC素子11bが発熱しても、この
熱は逐次、蓄熱器14に吸収されるとともに蓄熱器14
に吸収された熱は放熱体16より放出されるめ、第2P
TC素子11bが抵抗転移温度(Tc1)に達すること
が防止できるとともに、第1PTC素子11aは第2P
TC素子11bの抵抗転移温度(Tc2)近傍の温度に
維持されるようになる。
When an overload current exceeding the rated current flows, the Joule heat causes the second PT of the PTC element plate 11 to move.
When the C element 11b generates heat, the generated heat is transferred to the first PT.
It conducts heat to the C element 11a and also to the regenerator 14. As a result, the first PTC element 11a is also heated, but even if an overload current flows through the second PTC element 11b for a long time and the second PTC element 11b generates heat, this heat is successively absorbed by the heat accumulator 14 and Heat storage 14
Is absorbed by the heat radiator 16 and the second P
The TC element 11b can be prevented from reaching the resistance transition temperature (Tc1), and the first PTC element 11a
The temperature is maintained near the resistance transition temperature (Tc2) of the TC element 11b.

【0029】一方、電路に短絡電流が流れる場合は、P
TC素子板11の第2PTC素子11bはその短絡電流
に起因したジュール熱により発熱して、PTC素子板1
1の第2PTC素子11bは抵抗転移温度(Tc1)に
達してその抵抗値が急激に増大すると、この短絡電流は
PTC素子板11の第1PTC素子11aに転流する。
このとき、第2PTC素子11bがジュール熱により発
熱すると、この発熱した熱が第1PTC素子11aに熱
伝導して第1PTC素子11aも加熱されるため、第1
PTC素子11aはこの短絡電流により直ちに抵抗転移
温度(Tc2)に達してその抵抗値が急激に増大するた
め、短絡電流を抑制(限流)することとなる。
On the other hand, when a short circuit current flows in the electric circuit, P
The second PTC element 11b of the TC element plate 11 generates heat due to Joule heat caused by the short-circuit current, and the PTC element plate 1
When the resistance value of the second PTC element 11b reaches the resistance transition temperature (Tc1) and increases rapidly, the short-circuit current commutates to the first PTC element 11a of the PTC element plate 11.
At this time, if the second PTC element 11b generates heat due to Joule heat, the generated heat is conducted to the first PTC element 11a and the first PTC element 11a is also heated.
The PTC element 11a immediately reaches the resistance transition temperature (Tc2) due to the short-circuit current, and its resistance value rapidly increases, so that the short-circuit current is suppressed (current limit).

【0030】変形例、本変形例の限流器20は、図3
(a)の斜示図に示すように、PTC素子を円柱状に形
成して円柱状PTC素子体21としたものを使用し、円
柱状PTC素子体21の外表面には蓄熱材からなる円筒
状蓄熱器22を接着剤による接着、ロウ付けあるいは溶
接して固着している。この蓄熱材からなる円筒状蓄熱器
22は上述した実施形態と同様の低融点合金を用い、こ
の低融点合金を銅、アルミニウム、ステンレス等の熱伝
導性が良好で導電性が良好な金属からなる容器内に充填
して密閉形成している。なお、蓄熱材からなる円筒状蓄
熱器22は銅、錫、鉛等よりなる熱容量の大きな金属体
により構成してもよい。この場合、円筒状蓄熱器22の
製造が容易になって、安価に製造できるようになる。
The current limiting device 20 of the modified example and the present modified example is shown in FIG.
As shown in the perspective view of (a), a PTC element formed in a columnar shape and used as a cylindrical PTC element body 21 is used, and the outer surface of the cylindrical PTC element body 21 has a cylindrical shape made of a heat storage material. The heat storage unit 22 is fixed by bonding with an adhesive, brazing or welding. The cylindrical regenerator 22 made of this heat storage material uses the same low melting point alloy as in the above-described embodiment, and is made of a metal having good heat conductivity and good conductivity such as copper, aluminum, and stainless steel. The container is filled and sealed. The cylindrical heat storage 22 made of a heat storage material may be made of a metal body having a large heat capacity, such as copper, tin, and lead. In this case, the manufacture of the cylindrical regenerator 22 becomes easy, and it becomes possible to manufacture it cheaply.

【0031】円筒状蓄熱器22の外表面には熱伝導性が
良好な材料からなる円筒状放熱体25を接着剤による接
着、ロウ付けあるいは溶接して固着している。なお、円
筒状放熱体25の外表面には多数の放熱フィン25aを
形成している。そして、円柱状PTC素子体21の両端
部には第1端子体23と第2端子体24とがそれぞれ溶
接されている。第1端子体23は円柱状PTC素子体2
1の右側端部に接続される本体部23aとこの本体部2
3aより垂直に立ち上がる立上部23bとが設けられて
おり、立上部23bには取り付け穴23cが設けられて
いる。また、第2端子体24は円柱状PTC素子体21
の左側端部に接続される本体部24a(図示せず)とこ
の本体部24aより垂直に立ち上がる立上部24bとが
設けられており、立上部24bには取り付け穴24cが
設けられている。これらの端子体23,24は電導性が
良好なアルミニウム合金から形成している。
A cylindrical heat radiator 25 made of a material having good heat conductivity is fixed to the outer surface of the cylindrical heat accumulator 22 by bonding with an adhesive, brazing or welding. Note that a large number of radiating fins 25 a are formed on the outer surface of the cylindrical radiator 25. A first terminal body 23 and a second terminal body 24 are welded to both ends of the cylindrical PTC element body 21, respectively. The first terminal body 23 is a cylindrical PTC element body 2
1 and a main body 2 connected to the right end of the main body 1
A rising portion 23b that rises vertically from 3a is provided, and a mounting hole 23c is provided in the rising portion 23b. The second terminal body 24 is a cylindrical PTC element body 21.
A main body 24a (not shown) connected to the left end of the main body 24 and a rising portion 24b rising vertically from the main body 24a are provided, and a mounting hole 24c is provided in the rising portion 24b. These terminals 23 and 24 are formed of an aluminum alloy having good conductivity.

【0032】この円柱状PTC素子体21は、図3
(b)の断面図に示すように、その内部に第1PTC素
子21aを備え、第1PTC素子21aの外表面に第2
PTC素子21bを備える構造としている。第1PTC
素子21aとしては、上述した実施形態と同様な、常温
抵抗率ρ01(例えば、ρ01=1Ω・cm)が小さいとと
もに、常温抵抗率ρ01に対する抵抗上昇率(例えば、常
温抵抗率ρ01の1000倍)が大きく、かつその抵抗転
移温度(Tc1)が260〜300℃程度のチタン酸鉛
(PbTiO3)セラミックス、チタン酸ビスマス(B
iTiO3)セラミックスあるいはこれらの固溶体から
なるチタン系セラミックスを用いることが好ましい。こ
のチタン系セラミックスからなる第1PTC素子11a
は、図2の曲線Aに示すような温度(℃)−抵抗率
(ρ)特性を有しており、素子温度が260〜300℃
の抵抗転移温度(Tc1)になるとその抵抗率(ρ)が
最大(ρmax1)になる。
This cylindrical PTC element body 21 is shown in FIG.
As shown in the sectional view of (b), a first PTC element 21a is provided therein, and a second PTC element 21a is provided on the outer surface of the first PTC element 21a.
The structure includes the PTC element 21b. 1st PTC
The elements 21a, similar to the embodiments described above, room temperature resistivity [rho 01 (e.g., ρ 01 = 1Ω · cm) with a small, rate of increase in resistance against cold resistivity [rho 01 (e.g., room temperature resistivity [rho 01 of Lead titanate (PbTiO 3 ) ceramics and bismuth titanate (B) having a large resistance transition temperature (Tc1) of about 260 to 300 ° C.
It is preferable to use iTiO 3 ) ceramics or titanium-based ceramics made of these solid solutions. First PTC element 11a made of this titanium-based ceramic
Has a temperature (° C.)-Resistivity (ρ) characteristic as shown by a curve A in FIG.
When the resistance transition temperature (Tc1) is reached, the resistivity (ρ) becomes the maximum (ρmax1).

【0033】また、第2PTC素子21bとしては、上
述した実施形態と同様な、常温抵抗率ρ02(例えば、ρ
02=0.1Ω・cm)が小さいとともに、常温抵抗率ρ
02に対する抵抗上昇率(例えば、常温抵抗率ρ02の10
000倍)が大きく、かつその抵抗転移温度(Tc2)
が200〜240℃程度のクリストバライト系セラミッ
クスを用いることが好ましい。このクリストバライト系
セラミックスからなる第2PTC素子11bは、図2の
曲線Bに示すような温度(℃)−抵抗率(ρ)特性を有
しており、素子温度が200〜240℃の抵抗転移温度
(Tc2)になるとその抵抗率(ρ)が最大(ρmax
2)になる。
As the second PTC element 21b, a normal temperature resistivity ρ 02 (for example, ρ
02 = 0.1Ω · cm) and the room temperature resistivity ρ
02 (for example, 10 at room temperature resistivity ρ 02
000 times) and its resistance transition temperature (Tc2)
However, it is preferable to use cristobalite-based ceramics having a temperature of about 200 to 240 ° C. The second PTC element 11b made of cristobalite-based ceramic has a temperature (° C.)-Resistivity (ρ) characteristic as shown by a curve B in FIG. 2, and has a resistance transition temperature (200 ° C. to 240 ° C.). Tc2), the resistivity (ρ) becomes maximum (ρmax)
2)

【0034】そして、本変形例においては、このチタン
系セラミックスからなる第1PTC素子21aを円柱状
に形成するとともに、この円柱状に形成した第1PTC
素子21aの外周部に密に接触して、クリストバライト
系セラミックスからなる第2PTC素子21bを円筒状
に形成して固着している。
In the present modification, the first PTC element 21a made of the titanium-based ceramic is formed in a cylindrical shape, and the first PTC element 21a formed in the cylindrical shape is formed.
A second PTC element 21b made of cristobalite-based ceramic is formed in a cylindrical shape and fixedly in contact with the outer peripheral portion of the element 21a.

【0035】このように構成した本変形例の限流器20
にあっては、定常時の定格電流が流れる状態において
は、PTC素子体21の常温抵抗率ρ02が低い第2PT
C素子21bを通して流れるが、第2PTC素子21b
は常温抵抗率ρ02が低いために通電抵抗が減少して電力
損失が減少する。このとき、第2PTC素子21bはジ
ュール熱により発熱すると、この発熱した熱が第1PT
C素子21aに熱伝導して第1PTC素子21aも加熱
される。
The current limiting device 20 of the present modified example configured as described above
In the state where the rated current in the steady state flows, the second PT in which the room temperature resistivity ρ 02 of the PTC element body 21 is low is low.
Although flowing through the C element 21b, the second PTC element 21b
Since the room temperature resistivity ρ 02 is low, the conduction resistance is reduced and the power loss is reduced. At this time, when the second PTC element 21b generates heat by Joule heat, the generated heat is converted to the first PTC element 21b.
The first PTC element 21a is also heated by conducting heat to the C element 21a.

【0036】また、定格電流以上の過負荷電流が流れる
と、そのジュール熱によりPTC素子体21の第2PT
C素子21bが発熱すると、この発熱した熱が第1PT
C素子21aに熱伝導するとともに蓄熱器22にも熱伝
導する。これにより、第1PTC素子21aも加熱され
るが、第2PTC素子21bに長時間にわたって過負荷
電流が流れて第2PTC素子21bが発熱しても、この
熱は逐次、蓄熱器22に吸収されるとともに蓄熱器22
に吸収された熱は放熱体25より放出されるため、第2
PTC素子21bが抵抗転移温度(Tc2)に達するこ
とが防止できるとともに、第1PTC素子21aは第2
PTC素子21bの抵抗転移温度(Tc2)近傍の温度
に維持されるようになる。
When an overload current exceeding the rated current flows, Joule heat causes the second PT of the PTC element body 21 to move.
When the C element 21b generates heat, the generated heat is transferred to the first PT.
It conducts heat to the C element 21a and also to the regenerator 22. As a result, the first PTC element 21a is also heated, but even if an overload current flows through the second PTC element 21b for a long time and the second PTC element 21b generates heat, this heat is successively absorbed by the heat accumulator 22 and Heat storage 22
Is absorbed by the heat dissipating body 25,
The PTC element 21b can be prevented from reaching the resistance transition temperature (Tc2), and the first PTC element 21a
The temperature is maintained near the resistance transition temperature (Tc2) of the PTC element 21b.

【0037】一方、電路に短絡電流が流れる場合は、P
TC素子体21の第2PTC素子21bはその短絡電流
に起因したジュール熱により発熱して、PTC素子体2
1の第2PTC素子21bは抵抗転移温度(Tc1)に
達してその抵抗値が急激に増大すると、この短絡電流は
PTC素子体21の第1PTC素子21aに転流する。
このとき、第2PTC素子21bがジュール熱により発
熱すると、この発熱した熱が第1PTC素子21aに熱
伝導して第1PTC素子21aも加熱されるため、第1
PTC素子21aはこの短絡電流により直ちに抵抗転移
温度(Tc2)に達してその抵抗値が急激に増大するた
め、短絡電流を抑制(限流)することとなる。
On the other hand, when a short-circuit current flows in the electric circuit, P
The second PTC element 21b of the TC element 21 generates heat due to Joule heat caused by the short-circuit current, and the PTC element 2
When the first second PTC element 21b reaches the resistance transition temperature (Tc1) and its resistance value sharply increases, this short-circuit current is commutated to the first PTC element 21a of the PTC element body 21.
At this time, when the second PTC element 21b generates heat by Joule heat, the generated heat is conducted to the first PTC element 21a and the first PTC element 21a is also heated.
The PTC element 21a immediately reaches the resistance transition temperature (Tc2) due to the short-circuit current and rapidly increases its resistance value, so that the short-circuit current is suppressed (current limit).

【0038】2.限流器を備えた遮断器 以下に、上述した限流器10,20を備えた遮断器の実
施形態を図4および図5に基づいて説明する。図4に示
すように、この遮断器100は上述したPTC素子を備
えた限流器10(20)とこの限流器10(20)に直
列接続された開閉器100aとから構成される。そし
て、この遮断器100は交流電源110と負荷120か
らなる電路Lの交流電源110と負荷120との間に直
列に接続されている。
2. Circuit Breaker with Current Limiter An embodiment of the circuit breaker with the current limiters 10 and 20 described above will be described below with reference to FIGS. 4 and 5. As shown in FIG. 4, the circuit breaker 100 includes a current limiter 10 (20) including the above-described PTC element, and a switch 100a connected in series to the current limiter 10 (20). The circuit breaker 100 is connected in series between the AC power supply 110 and the load 120 on the electric circuit L including the AC power supply 110 and the load 120.

【0039】図5は、遮断器(MCCB)100の外形
を示す正面図であり、この遮断器100は、電路に限流
器10(20)に直列接続される主接点100aと、図
示しない、この主接点100aを開閉する開閉機構(図
示せず)と、主接点100aの開極時に発生するアーク
を消弧するための消弧室(図示せず)と、過負荷電流ま
たは短絡電流に対して開閉機構を釈放して主接点100
aを引き外す引外装置(図示せず)等と、開閉機構を動
作させて主接点100aを電路Lに投入する操作スイッ
チ101と、この遮断器100を電源側の電路Lに接続
する電源側端子102X,102Y,102Zと、遮断
器100を負荷側の電路Lに接続する負荷側端子(図示
せず)とを備えている。
FIG. 5 is a front view showing the outer shape of a circuit breaker (MCCB) 100. The circuit breaker 100 includes a main contact 100a connected in series to a current limiter 10 (20) on an electric circuit, and a main contact 100a (not shown). An opening / closing mechanism (not shown) for opening and closing the main contact 100a, an arc-extinguishing chamber (not shown) for extinguishing an arc generated when the main contact 100a is opened, and an overload current or a short-circuit current Release the opening and closing mechanism to release the main contact 100
a switch for tripping the main contact 100a into the electric circuit L by operating the opening / closing mechanism, and a power supply side for connecting the circuit breaker 100 to the electric circuit L on the power supply side. Terminals 102 </ b> X, 102 </ b> Y, 102 </ b> Z and a load-side terminal (not shown) for connecting the circuit breaker 100 to the load-side electric circuit L are provided.

【0040】そして、上記限流器10(20),10
(20),10(20)の各端子13(24),13
(24),13(24)の取り付け孔13a(24
c),13a(24c),13a(24c)を遮断器1
00の電源側端子102X,102Y,102Zにそれ
ぞれ取り付けてねじ止めし、各限流器10(20),1
0(20),10(20)の各端子12(23),12
(23),12(23)の取り付け孔12a(23
c),12a(23c),12a(23c)を電源側の
電線X,Y,Zにそれぞれ取り付けてねじ止めすること
により、電源側の電線X,Y,Zと遮断器100とが各
限流器10(20),10(20),10(20)を介
して接続される。一方、図示しない負荷側端子に負荷側
の電線を各相毎に接続する。これにより、各相毎に限流
器10(20)を備えた遮断器100が電路Lに接続さ
れることになる。
The current limiting devices 10 (20), 10
Terminals 13 (24), 13 of (20), 10 (20)
(24), 13 (24) mounting holes 13a (24)
c), 13a (24c), 13a (24c)
00 and attached to the power supply side terminals 102X, 102Y, 102Z, respectively, and screwed down.
0 (20), 10 (20) terminals 12 (23), 12
(23), mounting holes 12a (23) of 12 (23)
c), 12a (23c), and 12a (23c) are respectively attached to the electric wires X, Y, and Z on the power supply side and screwed, so that the electric wires X, Y, and Z on the power supply side and the circuit breaker 100 are each current-limited. They are connected via devices 10 (20), 10 (20), 10 (20). On the other hand, a load-side electric wire is connected to a load-side terminal (not shown) for each phase. As a result, the circuit breaker 100 including the current limiter 10 (20) for each phase is connected to the electric circuit L.

【0041】ついで、上記のように接続した各相毎に限
流器10を備えた遮断器100の動作を説明する。ま
ず、正常時の動作について説明すると、操作スイッチ1
01を操作して開閉機構を動作させて主接点100aを
電路Lに投入すると、電源110の電力が限流器10
(20)および主接点100aを通して図示しない負荷
120に供給され、この電路Lに定格電流が流れるよう
になる。このとき、限流器10(20)の第2PTC素
子11b(21b)の常温抵抗率は第1PTC素子11
a(21a)小さいため、負荷電流は第2PTC素子1
1b(21b)を通して流れるが、この第2PTC素子
11b(21b)の常温抵抗率は小さいため、電力損失
を伴うことなく負荷120に電力が供給される。
Next, the operation of the circuit breaker 100 provided with the current limiter 10 for each phase connected as described above will be described. First, the normal operation will be described.
When the main contact 100a is inserted into the electric circuit L by operating the opening / closing mechanism by operating the power supply 110, the power of the power supply 110 is reduced.
The power is supplied to the load 120 (not shown) through (20) and the main contact 100a, and the rated current flows through the electric circuit L. At this time, the room temperature resistivity of the second PTC element 11b (21b) of the current limiter 10 (20) is
a (21a), the load current is smaller than the second PTC element 1
Although flowing through the first PTC element 11b (21b), since the normal temperature resistivity of the second PTC element 11b (21b) is small, power is supplied to the load 120 without power loss.

【0042】ここで、何らかの理由により電路Lの負荷
側に過負荷電流(定格電流の1.25〜10倍の電流)
が流れる異常時になると、限流器10(20)の第2P
TC素子11b(21b)には定格電流の1.25〜1
0倍の過負荷電流が流れ、そのジュール熱により第2P
TC素子11b(21b)は発熱する。すると、この発
熱した熱が第1PTC素子11a(21a)に熱伝導す
るとともに、蓄熱器14(22)に熱伝導して蓄熱され
る。そして、蓄熱器14(22)内に密封、充填された
低融点金属がこの熱を吸収してその融点に達すると融解
する。また、蓄熱器14(22)に蓄熱された熱は放熱
体16(25)に熱伝導してそのフィン16a(25
a)より外部に放出されるようになる。
Here, an overload current (a current of 1.25 to 10 times the rated current) is applied to the load side of the electric circuit L for some reason.
When the flow is abnormal, the second P of the current limiter 10 (20)
The TC element 11b (21b) has a rated current of 1.25 to 1
0 times overload current flows and the Joule heat causes the second P
The TC element 11b (21b) generates heat. Then, the generated heat is thermally conducted to the first PTC element 11a (21a) and is thermally conducted to the heat accumulator 14 (22) to be stored. Then, the low melting point metal sealed and filled in the regenerator 14 (22) absorbs this heat and melts when reaching the melting point. Further, the heat stored in the heat storage device 14 (22) is conducted to the radiator 16 (25) and the fins 16a (25).
a) It is released to the outside.

【0043】これにより、第2PTC素子11b(21
b)に長時間にわたって過負荷電流が流れて第2PTC
素子11b(21b)が発熱しても、この熱は逐次、蓄
熱器14(22)内の低融点金属の融解熱に変換される
ため、第2PTC素子11b(21b)が抵抗転移温度
(Tc2=200〜240℃)に達することがないとと
もに、第1PTC素子11a(21a)は加熱されて第
2PTC素子11b(21b)の抵抗転移温度の近傍の
温度に維持される。このとき、遮断器100に長時間に
わたって定格電流(In)の1.25〜10倍の過負荷
電流が継続して流れると、過負荷電流に対応して予め設
定された時間(10秒〜120分)が経過すると、遮断
器100の引外装置は動作して開閉機構を釈放して主接
点100aを引き外すため、負荷120は電源110よ
り遮断されて電路Lに過負荷電流が流れなくなる。
Thus, the second PTC element 11b (21
b) the overload current flows for a long time and the second PTC
Even if the element 11b (21b) generates heat, this heat is successively converted into the heat of fusion of the low melting point metal in the regenerator 14 (22), so that the second PTC element 11b (21b) has a resistance transition temperature (Tc2 = (200 to 240 ° C.), and the first PTC element 11a (21a) is heated and maintained at a temperature near the resistance transition temperature of the second PTC element 11b (21b). At this time, if an overload current of 1.25 to 10 times the rated current (In) continues to flow through circuit breaker 100 for a long time, a predetermined time (10 seconds to 120 seconds) corresponding to the overload current is set. After elapse of (minutes), the tripping device of the circuit breaker 100 operates to release the switching mechanism and trip the main contact 100a, so that the load 120 is cut off from the power supply 110 and the overload current does not flow through the electric circuit L.

【0044】一方、電路Lの負荷側のX点で短絡事故が
発生して、電路Lに短絡電流が流れる異常時になると、
限流器10(20)の第2PTC素子11b(21b)
には過大な短絡電流が流れるため、そのジュール熱によ
り第2PTC素子11b(21b)は発熱するととも
に、この発熱が第1PTC素子11a(21a)に熱伝
導して第1PTC素子11a(21a)も加熱される。
すると、この発熱により第2PTC素子11b(21
b)が抵抗転移温度(Tc2=200〜240℃)に達
すると、第2PTC素子11b(21b)の抵抗率
(ρ)は最大値(ρmax2)となる。
On the other hand, when a short-circuit accident occurs at the point X on the load side of the electric circuit L and a short-circuit current flows through the electric circuit L,
Second PTC element 11b (21b) of current limiter 10 (20)
Since an excessive short-circuit current flows through the first PTC element 11b (21b), the second PTC element 11b (21b) generates heat by the Joule heat, and this heat is conducted to the first PTC element 11a (21a) to heat the first PTC element 11a (21a). Is done.
Then, the generated heat causes the second PTC element 11b (21
When b) reaches the resistance transition temperature (Tc2 = 200 to 240 ° C.), the resistivity (ρ) of the second PTC element 11b (21b) reaches the maximum value (ρmax2).

【0045】第2PTC素子11b(21b)の抵抗率
(ρ)の最大値(ρmax2)は第1PTC素子11a
(21a)の抵抗率(ρ)の最大値(ρmax1)より
高いとともに、第1PTC素子11a(21a)の抵抗
転移温度(Tc1=260〜300℃)は第2PTC素
子11b(21b)の抵抗転移温度(Tc2=200〜
240℃)より高いため、短絡電流は第1PTC素子1
1a(21a)に転流する。このとき、第1PTC素子
11a(21a)は第2PTC素子11b(21b)の
発熱により予め加熱されているため、直ちに抵抗転移温
度(Tc1=260〜300℃)に達して第1PTC素
子11a(21a)の抵抗率(ρ)の最大値(ρmax
1)になるため、短絡電流を抑制(限流)する動作を開
始する。
The maximum value (ρmax2) of the resistivity (ρ) of the second PTC element 11b (21b) is equal to the first PTC element 11a.
(21a) is higher than the maximum value (ρmax1) of the resistivity (ρ), and the resistance transition temperature (Tc1 = 260 to 300 ° C.) of the first PTC element 11a (21a) is the resistance transition temperature of the second PTC element 11b (21b). (Tc2 = 200-
240 ° C.), the short-circuit current is higher than the first PTC element 1
Commutated to 1a (21a). At this time, since the first PTC element 11a (21a) has been heated in advance by the heat generated by the second PTC element 11b (21b), the first PTC element 11a (21a) immediately reaches the resistance transition temperature (Tc1 = 260 to 300 ° C.). Maximum value (ρmax) of the resistivity (ρ)
Therefore, the operation for suppressing (current limiting) the short-circuit current is started.

【0046】この結果、短絡電流が抑制(限流)される
ようになるとともに、抑制動作の開始後0.02秒(5
0Hzの場合の1サイクル)以内には遮断器100の主
接点100aの開極動作が終了し、負荷120は電源1
10より遮断されて電路Lに短絡電流が流れなくなるた
め、X地点に流れる短絡電流は遮断される。これによ
り、第1PTC素子11aの温度上昇が抑制されて、第
1PTC素子11aは負の抵抗温度係数(NTC(Nega
tive Temperature Coefficient))領域に至るまでに温
度上昇することがなくなり、短絡電流により第1PTC
素子11aが破壊されることがなくなる。
As a result, the short-circuit current is suppressed (current limit) and 0.02 seconds (5 seconds) after the start of the suppression operation.
Within one cycle at 0 Hz), the opening operation of the main contact 100a of the circuit breaker 100 ends, and the load 120
The short circuit current flowing to the point X is interrupted because the short circuit current does not flow through the electric circuit L due to the interruption at 10. Thereby, the temperature rise of the first PTC element 11a is suppressed, and the first PTC element 11a has a negative temperature coefficient of resistance (NTC (Nega
tive Temperature Coefficient)) The temperature does not rise before reaching the area, and the first PTC
The element 11a is not destroyed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のPTC素子を備えた限流器の概略構
成を模式的に示す図であり、図1(a)は限流器の斜示
図であり、図1(b)は図1(a)の限流器に用いるP
TC素子の概略構成を模式的に示す斜示図である。
FIG. 1 is a diagram schematically showing a schematic configuration of a current limiter provided with a PTC element of the present invention, FIG. 1 (a) is a perspective view of the current limiter, and FIG. P used for the current limiter of 1 (a)
It is a perspective view which shows typically the schematic structure of a TC element.

【図2】 図1の限流器に用いる第1PTC素子と第2
PTC素子の温度と抵抗率の関係を示す図である。
FIG. 2 shows a first PTC element and a second PTC element used in the current limiter of FIG.
FIG. 4 is a diagram illustrating a relationship between the temperature and the resistivity of the PTC element.

【図3】 本発明の変形例のPTC素子を備えた限流器
の概略構成を模式的に示す図であり、図3(a)は限流
器の斜示図であり、図3(b)は図3(a)の縦断面を
示す断面図である。
FIG. 3 is a diagram schematically showing a schematic configuration of a current limiter including a PTC element according to a modification of the present invention, and FIG. 3 (a) is a perspective view of the current limiter, and FIG. 3) is a sectional view showing a vertical section of FIG.

【図4】 図1および図2の限流器を遮断器とともに配
電系統などの電路Lに接続した状態を示す電気回路図で
ある。
FIG. 4 is an electric circuit diagram showing a state where the current limiting device of FIGS. 1 and 2 is connected to an electric circuit L such as a distribution system together with a circuit breaker.

【図5】 遮断器の外観とこの遮断器に限流器を接続し
た状態を示す図である。
FIG. 5 is a diagram showing an appearance of the circuit breaker and a state where a current limiter is connected to the circuit breaker.

【符号の説明】[Explanation of symbols]

10…PTC素子を備えた限流器、11…PTC素子
板、11a…第1PTC素子、11b…第2PTC素
子、12…上部端子板、13…下部端子板、14…蓄熱
器、15…絶縁板、16…放熱体、20…PTC素子を
備えた限流器、21…円柱状PTC素子体、21a…第
1PTC素子、21b…第2PTC素子、22…円筒状
蓄熱器、23,24…端子体、25…円筒状放熱体、1
00…遮断器(MCCB)、100a…主接点、110
…電源、120…負荷、L…電路
DESCRIPTION OF SYMBOLS 10 ... Current limiter provided with PTC element, 11 ... PTC element board, 11a ... First PTC element, 11b ... Second PTC element, 12 ... Upper terminal board, 13 ... Lower terminal board, 14 ... Regenerator, 15 ... Insulating board , 16 radiator, 20 current limiter provided with PTC element, 21 cylindrical PTC element, 21a first PTC element, 21b second PTC element, 22 cylindrical heat storage, 23, 24 terminal , 25 ... Cylindrical radiator, 1
00: Circuit breaker (MCCB), 100a: Main contact, 110
... power supply, 120 ... load, L ... electric circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 直剛 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Naogo Okada 2-56 Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Inside Nihon Insulator Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 過電流が流れることにより温度上昇して
所定の抵抗転移温度になると急激にその抵抗値が増大し
て前記過電流を抑制する正の抵抗温度係数を有するPT
C素子を備えた限流器であって、 前記PTC素子を電気的に並列接続された第1PTC素
子と第2PTC素子とから構成し、 前記第2PTC素子は、前記第1PTC素子より常温に
おける抵抗値および前記抵抗転移温度が低く、かつ前記
抵抗転移後の抵抗変化率が大きいPTC素子により構成
したことを特徴とするPTC素子を備えた限流器。
1. A PT having a positive temperature coefficient of resistance that suppresses the overcurrent by rapidly increasing its resistance value when a predetermined resistance transition temperature is reached by a rise in temperature due to the flow of an overcurrent.
A current limiter including a C element, wherein the PTC element is composed of a first PTC element and a second PTC element electrically connected in parallel, and the second PTC element has a resistance at room temperature higher than that of the first PTC element. And a current limiter comprising a PTC element having a low resistance transition temperature and a large resistance change rate after the resistance transition.
【請求項2】 前記第1PTC素子の側壁の周囲に前記
第2PTC素子が直接的に接して配置されるようにした
ことを特徴とする請求項1に記載のPTC素子を備えた
限流器。
2. The current limiter according to claim 1, wherein the second PTC element is arranged directly around a side wall of the first PTC element.
【請求項3】 少なくとも前記第2PTC素子が露出す
る外面に蓄熱材を備え、この蓄熱材の外面に熱伝導性が
良好な放熱体を備えるようにしたことを特徴とする請求
項1または請求項2に記載のPTC素子を備えた限流
器。
3. A heat storage material is provided on at least the outer surface where the second PTC element is exposed, and a heat radiator having good thermal conductivity is provided on the outer surface of the heat storage material. 3. A current limiter comprising the PTC element according to 2.
【請求項4】 前記第1PTC素子はチタン系セラミッ
クスとし、前記第2PTC素子はクリストバライト系セ
ラミックスとしたことを特徴とする請求項1から請求項
3のいずれかに記載のPTC素子を備えた限流器。
4. The current limiting device having a PTC element according to claim 1, wherein the first PTC element is made of a titanium-based ceramic, and the second PTC element is made of a cristobalite-based ceramic. vessel.
【請求項5】 請求項1から請求項4のいずれかに記載
の限流器の一方の端子が電路の電源側に接続され、同限
流器の他方の端子が遮断器の一方の端子に接続され、同
遮断器の他方の端子が前記電路の負荷側に接続される遮
断器であって、 前記電路に定格電流以上の過負荷電流が流れる場合は前
記限流器の各PTC素子は前記抵抗転移温度にならない
ようにするとともに 前記電路に短絡電流のような過電流が流れる場合は前記
限流器の各PTC素子は前記抵抗転移温度になってその
過電流を抑制するようにし、 前記電路に前記過電流あるいは前記過負荷電流が予め設
定された時間だけ継続して流れるとこれらの過電流ある
いは過負荷電流を遮断するようにしたことを特徴とする
遮断器。
5. A current limiter according to claim 1, wherein one terminal of the current limiter is connected to a power supply side of an electric circuit, and the other terminal of the current limiter is connected to one terminal of a circuit breaker. Connected, the other terminal of the circuit breaker is connected to the load side of the circuit, when the overload current of the rated current or more flows in the circuit, each PTC element of the current limiter is When an overcurrent such as a short-circuit current flows in the electric circuit, each PTC element of the current limiter reaches the resistance transition temperature to suppress the overcurrent so that the electric circuit does not reach the resistance transition temperature. Wherein the overcurrent or the overload current is interrupted when the overcurrent or the overload current continuously flows for a preset time.
JP11240498A 1998-04-22 1998-04-22 Current limiter with ptc element and circuit breaker with the current limiter Pending JPH11308763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11240498A JPH11308763A (en) 1998-04-22 1998-04-22 Current limiter with ptc element and circuit breaker with the current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11240498A JPH11308763A (en) 1998-04-22 1998-04-22 Current limiter with ptc element and circuit breaker with the current limiter

Publications (1)

Publication Number Publication Date
JPH11308763A true JPH11308763A (en) 1999-11-05

Family

ID=14585816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11240498A Pending JPH11308763A (en) 1998-04-22 1998-04-22 Current limiter with ptc element and circuit breaker with the current limiter

Country Status (1)

Country Link
JP (1) JPH11308763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507384A (en) * 2003-10-07 2007-03-29 ベール フランス ルファッシェ エス・アー・エス Heating device especially for automobiles having a PTC element
DE102013102101A1 (en) * 2013-03-04 2014-09-18 Emitec France S.A.S A method for starting a device for providing a liquid additive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507384A (en) * 2003-10-07 2007-03-29 ベール フランス ルファッシェ エス・アー・エス Heating device especially for automobiles having a PTC element
DE102013102101A1 (en) * 2013-03-04 2014-09-18 Emitec France S.A.S A method for starting a device for providing a liquid additive
US9879582B2 (en) 2013-03-04 2018-01-30 Continental Automotive Gmbh Method for starting the operation of a device for providing a liquid additive

Similar Documents

Publication Publication Date Title
TWI567773B (en) Protection device and electronic device having the same
TWI584308B (en) Over-current protection device
US7532101B2 (en) Temperature protection device
SK159998A3 (en) Thermally fused resistor
JPH11308763A (en) Current limiter with ptc element and circuit breaker with the current limiter
JPH10208909A (en) Current limiter employing ptc element and circuit breaker equipped with current limiter
JPH10326554A (en) Current limiting device and/or circuit breaker equipped with ptc element
JP2000323175A (en) Protection circuit and protection element of secondary battery
JPH11273905A (en) Current-limiting device constituted of connecting plural ptc element plates in parallel
JP3853419B2 (en) Overvoltage / overcurrent protection device
JP2002358939A (en) Cell
KR100586574B1 (en) Bimetal plate laminated thereon positive temperature coefficient material layer and Device of blocking over current in electrical circuit using the same
JP2009212007A (en) Protection element
JP4368039B2 (en) Thermal fuse having a self-heating element and a battery pack incorporating the thermal fuse
JPH10270216A (en) Current limiter and wiring breaker
JPH10285790A (en) Protector against overcurrent
JPH10275711A (en) Ptc current limiter provided with backup function
TWI859314B (en) Protection element and battery pack
JPH10136560A (en) Current limiter using ptc device
JPH10271667A (en) Current limiter and breaker for wiring
JPH10275710A (en) Ptc current limiter provided with ptc element
KR100437895B1 (en) Repeatedly usable cylindrical ptc fuse
JPH10271666A (en) Current limiter and breaker for wiring
TW202347388A (en) Protection element and battery pack
JPH10136559A (en) Current limiter using ptc device