JPH11297704A - Evaluation method for oxygen deposit density - Google Patents
Evaluation method for oxygen deposit densityInfo
- Publication number
- JPH11297704A JPH11297704A JP12178298A JP12178298A JPH11297704A JP H11297704 A JPH11297704 A JP H11297704A JP 12178298 A JP12178298 A JP 12178298A JP 12178298 A JP12178298 A JP 12178298A JP H11297704 A JPH11297704 A JP H11297704A
- Authority
- JP
- Japan
- Prior art keywords
- density
- oxygen
- heat treatment
- temperature
- temperature range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、LSI(大規模
集積回路)等の回路素子の基板として使用されているシ
リコンエピタキシャルウェーハおよびシリコンウェーハ
の基板中の酸素析出物の評価方法に係り、900〜11
00℃の温度範囲でそれぞれ最適な時間だけ熱処理を行
った後、欠陥選択エッチング法、赤外トモグラフ法、透
過型電子顕微鏡(TEM)法で析出物密度を測定するこ
とにより、低温プロセス後の析出物密度を高精度で評価
できる酸素析出物の評価方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon epitaxial wafer used as a substrate of a circuit element such as an LSI (Large Scale Integrated Circuit) and a method of evaluating oxygen precipitates in a silicon wafer substrate. 11
After the heat treatment in the temperature range of 00 ° C. for the optimum time, the density of the precipitate is measured by the defect selective etching method, the infrared tomography method, and the transmission electron microscope (TEM) method. The present invention relates to a method for evaluating oxygen precipitates, which can evaluate a material density with high accuracy.
【0002】[0002]
【従来の技術】シリコン半導体デバイスの高集積化は急
速に進行しており、シリコンウェーハに要求される特性
はますます厳しくなってきている。高集積デバイスにお
いては、デバイス活性領域に結晶欠陥、あるいはドーパ
ント以外の金属不純物が含有されている場合、P/N接
合のリーク電流を増大させたり、MOSデバイスのゲー
ト酸化膜特性を劣化させることが知られている。2. Description of the Related Art High integration of silicon semiconductor devices is progressing rapidly, and characteristics required for silicon wafers are becoming more and more severe. In a highly integrated device, when a crystal defect or a metal impurity other than a dopant is contained in a device active region, a leak current of a P / N junction may be increased or a gate oxide film characteristic of a MOS device may be deteriorated. Are known.
【0003】従来、このような高集積デバイスには、C
Z法で育成されたCZ‐Siウェーハが用いられてき
た。CZ‐Siウェーハには過飽和の格子間酸素が(1
0〜18)×1017atoms/cm3の濃度で含有さ
れており、デバイスプロセスにおいて酸素析出物や転
位、積層欠陥などの結晶欠陥が誘起されることは周知で
ある。Conventionally, such highly integrated devices include C
CZ-Si wafers grown by the Z method have been used. Supersaturated interstitial oxygen (1
0-18) × 10 17 atoms / cm 3 , and it is well known that crystal defects such as oxygen precipitates, dislocations, and stacking faults are induced in the device process.
【0004】デバイス活性領域から充分に離れたウェー
ハ内部に発生した酸素析出物や結晶欠陥は汚染重金属の
ゲッタリング効果を有することが広く知られている。こ
のため、ウェーハ内部における酸素折出物や結晶欠陥の
存在は、デバイスを高歩留りで製造するために不可欠と
なっている。It is widely known that oxygen precipitates and crystal defects generated inside a wafer sufficiently distant from the device active region have a gettering effect on contaminating heavy metals. For this reason, the presence of oxygen deposits and crystal defects inside the wafer is indispensable for manufacturing devices with high yield.
【0005】一方、ウェーハ表面近傍のいわゆるデバイ
ス活性領域においては、LOCOSやWELL拡散層の
形成における1100〜1200℃の高温熱処理中に外
方拡散により酸素濃度が大幅に低下し、結晶欠陥の発生
が抑制されていた。On the other hand, in the so-called device active region near the wafer surface, during the high-temperature heat treatment at 1100 to 1200 ° C. in the formation of the LOCOS or WELL diffusion layer, the oxygen concentration is greatly reduced due to outward diffusion, and crystal defects are generated. Had been suppressed.
【0006】しかし、半導体デバイスの微細化に伴い、
WELL拡散層の形成に高エネルギーイオン注入が用い
られるようになり、また、接合深さをより浅くするため
に、デバイスプロセスの温度は1000℃以下の低温で
行われるようになってきた。そのため、酸素の外方拡散
が不十分となり、デバイス活性領域での結晶欠陥の発生
を抑制することが困難になり始めている。However, with the miniaturization of semiconductor devices,
High energy ion implantation has been used to form the WELL diffusion layer, and the device process has been performed at a low temperature of 1000 ° C. or less in order to make the junction depth shallower. Therefore, outward diffusion of oxygen becomes insufficient, and it becomes difficult to suppress generation of crystal defects in the device active region.
【0007】このような状況から、結晶欠陥をほぼ完全
に含まない高品質のエピタキシャル層をCZ‐Si基板
上に成膜したシリコンエピタキシャルウェーハが、今日
の高集積デバイスに多く用いられるようになってきた。[0007] Under these circumstances, silicon epitaxial wafers in which a high-quality epitaxial layer substantially free of crystal defects is formed on a CZ-Si substrate have come to be widely used in today's highly integrated devices. Was.
【0008】[0008]
【発明が解決しようとする課題】かかるエピタキシャル
ウェーハの基板にボロンがドープされ、基板の比抵抗が
0.05Ωcm以下のp/p+ウェーハ(以後、p/p+
ウェーハと呼ぶ)が一般に用いられている。Boron is doped in the substrate of the invention Problems to be Solved Such epitaxial wafer, the resistivity of the substrate is less p / p + wafers 0.05Omucm (hereinafter, p / p +
(Referred to as a wafer).
【0009】また、汚染重金属のゲッタリング能力は、
一般に酸素析出物密度が高いほど大きいことが、よく知
られている。[0009] The gettering ability of contaminated heavy metals is as follows.
It is well known that generally, the higher the oxygen precipitate density, the greater.
【0010】しかしながら、デバイスプロセスの低温化
に伴い、酸素析出物のサイズが高々数十nmと非常に小
さくなり、欠陥選択エッチング(検出限界は100nm
程度)や赤外トモグラフ法(検出限界は30nm程度)
による析出物密度の定量評価が同じく困難となってい
る。それ故、ウェーハのゲッタリング能力を判断できな
いという問題点があった。However, as the temperature of the device process becomes lower, the size of the oxygen precipitate becomes very small, at most several tens of nm, and the defect selective etching (detection limit is 100 nm)
Degree) and infrared tomography (detection limit is about 30 nm)
It is also difficult to quantitatively evaluate the density of precipitates by the method. Therefore, there is a problem that the gettering ability of the wafer cannot be determined.
【0011】なお、ボロン濃度が低いp-ウェーハにつ
いては、1000℃で16時間の熱処理を行った後、赤
外吸収法で酸素析出量を測定することにより、ゲッタリ
ング能力を判断する方法が報告(竹野博ら、第58回応
用物理学会学術講演会議演予稿集2p‐N‐15(19
97))されている。A method of judging the gettering ability of a p - wafer having a low boron concentration by performing a heat treatment at 1000 ° C. for 16 hours and measuring an oxygen precipitation amount by an infrared absorption method has been reported. (Hiroshi Takeno et al., Proceedings of the 58th Annual Conference of the Japan Society of Applied Physics, 2p-N-15 (19
97)).
【0012】しかしながら、p/p+ウェーハにおいて
は、基板中のフリーキャリアにより赤外線が吸収されて
しまうため、赤外吸収法により酸素析出量を測定するこ
とができない。However, in a p / p + wafer, the amount of precipitated oxygen cannot be measured by the infrared absorption method because infrared rays are absorbed by free carriers in the substrate.
【0013】この発明は、上記問題点を克服するため、
表面にシリコンのエピタキシャル膜を有し、基板内部の
比抵抗が0.05Ωcm以下、酸素濃度が(10〜1
8)×1017atoms/cm3(old ASTM
法)の半導体デバイス用シリコンウェーハ中の酸素析出
物密度の評価方法を提供し、ウェーハのゲッタリング能
力の判断を可能とすることを目的としている。[0013] The present invention has been made in order to overcome the above problems.
A silicon epitaxial film is provided on the surface, the specific resistance inside the substrate is 0.05 Ωcm or less, and the oxygen concentration is (10 to 1).
8) × 10 17 atoms / cm 3 (old ASTM
It is an object of the present invention to provide a method for evaluating the density of oxygen precipitates in a silicon wafer for a semiconductor device according to the above method, and to enable determination of the gettering ability of the wafer.
【0014】[0014]
【課題を解決するための手段】発明者らは、酸素析出物
密度の評価方法を目的に、まず、基板の比抵抗が0.0
5ΩCm以下、酸素濃度が(10〜18)×1017at
oms/cm3(old ASTM法)のp/p+ウェ
ーハに低温プロセス熱処理を施し、次いで種々の条件で
追加熱処理を行いウェーハ内部の酸素析出物を成長させ
て、種々の評価方法を適用して析出物密度の定量評価の
可能性を調査した。SUMMARY OF THE INVENTION In order to evaluate the density of oxygen precipitates, the inventors first set the specific resistance of a substrate at 0.0%.
5ΩCm or less, oxygen concentration is (10-18) × 10 17 at
oms / cm 3 (old ASTM method) p / p + wafers are subjected to low-temperature process heat treatment, and then subjected to additional heat treatments under various conditions to grow oxygen precipitates inside the wafers and to apply various evaluation methods for deposition. The possibility of quantitative evaluation of material density was investigated.
【0015】発明者らは、前記調査の結果、(1)90
0〜1100℃の温度範囲で4時間以上の熱処理を行っ
た後、欠陥選択エッチング法で析出物密度を測定するこ
と、(2)900〜1100℃の温度範囲で1時間以上
の熱処理を行った後、赤外トモグラフ法で析出物密度を
測定すること、(3)900〜1100℃の温度範囲で
0.5時間以上の熱処理を行った後、透過型電子顕微鏡
(TEM)法で析出物密度を測定することにより、低温
プロセス後の酸素析出物密度を高精度で評価できること
を知見し、この発明を完成した。As a result of the above investigation, the inventors found that (1) 90
After performing heat treatment for 4 hours or more in a temperature range of 0 to 1100 ° C., measuring the precipitate density by a defect selective etching method; (2) performing heat treatment for 1 hour or more in a temperature range of 900 to 1100 ° C. Then, the precipitate density is measured by an infrared tomography method. (3) After performing a heat treatment for 0.5 hour or more in a temperature range of 900 to 1100 ° C., the precipitate density is measured by a transmission electron microscope (TEM) method. The present inventors have found that the density of oxygen precipitates after the low-temperature process can be evaluated with high accuracy by measuring the temperature, and completed the present invention.
【0016】すなわち、この発明は、表面にシリコンの
エピタキシャル膜を有し、基板内部の比抵抗が0.05
Ωcm以下、酸素濃度が(10〜18)×1017ato
ms/cm3(old ASTM法)の半導体デバイス
用シリコンウェーハ中の酸素析出物密度の評価方法にお
いて、900〜1100℃の温度範囲で熱処理すること
を特徴とする酸素析出物密度の評価方法である。That is, the present invention has a silicon epitaxial film on the surface and the specific resistance inside the substrate is 0.05.
Ωcm or less, oxygen concentration is (10-18) × 10 17 atom
A method for evaluating the density of oxygen precipitates in a silicon wafer for semiconductor devices of ms / cm 3 (old ASTM method), wherein the heat treatment is performed in a temperature range of 900 to 1100 ° C. .
【0017】[0017]
【発明の実施の形態】この発明において、評価対象とす
るシリコンウェーハの特性を、比抵抗が0.05ΩCm
以下、酸素濃度が(10〜18)×1017atoms/
cm3(old ASTM法)に限定するのは、かかる
ウェーハは、酸素析出物のサイズが非常に小さくなり、
欠陥選択エッチングや赤外トモグラフ法ではこれが検出
できず、この発明の熱処理によりこの問題を解消するも
のである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the characteristics of a silicon wafer to be evaluated are set as follows.
Hereinafter, when the oxygen concentration is (10-18) × 10 17 atoms /
Limited to cm 3 (old ASTM method), such wafers have very small oxygen precipitates,
This cannot be detected by defect selective etching or infrared tomography, and the heat treatment of the present invention solves this problem.
【0018】この発明において、評価に先駆けて900
〜1100℃の温度範囲で熱処理するのは、酸素析出物
のサイズを所要サイズにするためであるが、雰囲気とし
ては、実施例の窒素雰囲気の他、酸素、アルゴンなどで
もよく、900℃未満では、成長が遅く酸素析出物を顕
在化させるのに長時間を要して好ましくなく、1100
℃を超えると、酸素析出物のうち溶体化するものも存在
するために、密度の定量評価が困難となる。In the present invention, prior to the evaluation, 900
The heat treatment in the temperature range of 11100 ° C. is for setting the size of the oxygen precipitate to a required size. However, the atmosphere may be oxygen, argon, or the like in addition to the nitrogen atmosphere of the example. However, it is not preferable because it takes a long time for the growth to be slow and the oxygen precipitates to be
If the temperature exceeds ℃, some of the oxygen precipitates form a solution, which makes it difficult to quantitatively evaluate the density.
【0019】この発明において、900〜1100℃の
温度範囲で熱処理するが、欠陥選択エッチング法で析出
物密度を測定するには、酸素析出物のサイズが100n
mを超える必要があり、少なくとも4時間の熱処理が必
要であり、また、赤外トモグラフ法で析出物密度を測定
するには、酸素析出物のサイズが30nmを超える必要
があり、少なくとも1時間の熱処理が必要であり、さら
に透過型電子顕微鏡(TEM)法で析出物密度を測定す
るには、酸素析出物のサイズが10nmを超える必要が
あり、少なくとも0.5時間の熱処理が必要である。In the present invention, the heat treatment is performed in a temperature range of 900 to 1100 ° C. In order to measure the precipitate density by the defect selective etching method, the size of the oxygen precipitate is 100 n.
m, a heat treatment of at least 4 hours is necessary, and the size of the oxygen precipitate needs to exceed 30 nm to measure the precipitate density by the infrared tomography method. Heat treatment is required, and in order to measure the precipitate density by a transmission electron microscope (TEM) method, the size of the oxygen precipitate needs to exceed 10 nm, and a heat treatment of at least 0.5 hour is required.
【0020】この発明において、析出物密度の測定方法
として、好ましい条件は、欠陥選択エッチング法の場
合、1000℃で8時間、赤外トモグラフ法の場合、1
000℃で4時間、透過型電子顕微鏡(TEM)法の場
合、1000℃で1時間、である。In the present invention, as the method for measuring the precipitate density, preferable conditions are 1000 ° C. for 8 hours for the defect selective etching method and 1 hour for the infrared tomography method.
At 000 ° C. for 4 hours, and in the case of a transmission electron microscope (TEM) method, at 1000 ° C. for 1 hour.
【0021】[0021]
【実施例】比較例1 比抵抗が10mΩcm、酸素濃度が15.5×1017a
toms/cm3(old ASTM法)のCZ‐Si
ウェーハを用意し、試料を以下の手順で作成した。この
ウェーハをランプ加熱方式の横型CVDエピタキシャル
装置において水素雰囲気中で1150℃で80秒問ベー
キングを行った後、エピタキシャル膜の成膜処理を行っ
た。成膜処理はトリクロロシランを原料ガスとし、10
80℃で4μmのエピタキシャル膜を成膜した。EXAMPLES Comparative Example 1 A specific resistance of 10 mΩcm and an oxygen concentration of 15.5 × 10 17 a
CZ-Si of toms / cm 3 (old ASTM method)
A wafer was prepared and a sample was prepared according to the following procedure. The wafer was baked in a hydrogen atmosphere at 1150 ° C. for 80 seconds in a lamp heating type horizontal CVD epitaxial apparatus, and then an epitaxial film was formed. The film formation process uses trichlorosilane as a source gas and 10
A 4 μm epitaxial film was formed at 80 ° C.
【0022】次に、このp/p+ウェーハに標準的な低
温プロセス熱処理(最高温度1000℃)を施し、試料
とした。低温プロセス直後にライトエッチング液による
欠陥選択エッチング法、赤外トモグラフ法およびTEM
法により酸素析出物密度を評価した。しかしながら、い
ずれの方法においても酸素析出物の存在は確認されなか
った。Next, the p / p + wafer was subjected to standard low-temperature process heat treatment (maximum temperature 1000 ° C.) to obtain a sample. Immediately after low-temperature process, defect selective etching with light etchant, infrared tomography and TEM
The oxygen precipitate density was evaluated by the method. However, none of the methods confirmed the presence of oxygen precipitates.
【0023】実施例1 次に、本発明に係る酸素析出物密度の評価方法の実施例
を述べる。まず、低温プロセス直後に観測できない酸素
析出物を成長させることを目的として、試料に800
℃,900℃,1000℃,1100℃,1200℃の
各温度で5時間の熱処理を窒素雰囲気中で行い、熱処理
後の析出物密度を欠陥選択エッチング法で測定した。図
1にその結果を示す。Example 1 Next, an example of a method for evaluating the density of oxygen precipitates according to the present invention will be described. First, for the purpose of growing oxygen precipitates that cannot be observed immediately after the low-temperature process, 800
Heat treatment was performed at a temperature of 900C, 900C, 1000C, 1100C, and 1200C for 5 hours in a nitrogen atmosphere, and the precipitate density after the heat treatment was measured by a defect selective etching method. FIG. 1 shows the results.
【0024】これより、折出物密度は900〜1100
℃まではほぼ一定で、約1×107/cm2であるのに対
し、800℃、1200℃ではそれより数桁小さい値と
なっていることがわかる。これは、800℃では酸素析
出物の成長が遅いためであり、1200℃では酸素析出
物が溶体化したためであると考えられる。従って、酸素
析出物を顕在化させる熱処理の温度としては900〜1
100℃が最適であるといえる。なお、この温度領域の
熱処理で酸素析出物が新たに発生しない。Thus, the density of the deposit is 900 to 1100.
It can be seen that the temperature is almost constant up to ℃ and is about 1 × 10 7 / cm 2 , while the value at 800 ° C. and 1200 ° C. is several orders of magnitude smaller. It is considered that this is because the growth of the oxygen precipitate was slow at 800 ° C. and the oxygen precipitate was solutionized at 1200 ° C. Therefore, the temperature of the heat treatment for exposing oxygen precipitates is 900 to 1
It can be said that 100 ° C. is optimal. No oxygen precipitate is newly generated by the heat treatment in this temperature range.
【0025】次に、この温度領域に含まれる熱処理温度
において、熱処理時間と種々の評価方法による定量評価
の関係の実施例を示す。図2に1000℃の追加熱処理
時間を変更した際の、欠陥選択エッチング法、赤外トモ
グラフ法とTEM法による酸素析出物密度の測定結果を
示す。Next, examples of the relationship between the heat treatment time and the quantitative evaluation by various evaluation methods at the heat treatment temperature included in this temperature range will be described. FIG. 2 shows the results of measuring the oxygen precipitate density by the defect selective etching method, the infrared tomography method, and the TEM method when the additional heat treatment time at 1000 ° C. was changed.
【0026】図2より、欠陥選択エッチング法では約4
時間以上で、赤外トモグラフ法では約1時間以上で、T
EM法では約0.5時間以上で析出物密度は飽和し、各
々それ以下の時間では析出物はほとんど観測されないこ
とがわかる。なお、欠陥選択エッチング法の測定結果は
エッチング量を考慮して体積密度に換算してある。As shown in FIG. 2, the defect selective etching method is about 4
More than 1 hour in infrared tomography,
It can be seen that in the EM method, the precipitate density is saturated after about 0.5 hours or more, and the precipitate is hardly observed in each time less than about 0.5 hour. The measurement result of the defect selective etching method is converted into a volume density in consideration of an etching amount.
【0027】以上の結果から、欠陥選択エッチング法で
は4時間以上の、赤外トモグラフ法では1時間以上の、
TEM法では約0.5時間以上の熱処理で析出物密度が
高精度で測定可能であるといえる。From the above results, the defect selective etching method requires 4 hours or more, and the infrared tomography method requires 1 hour or more.
In the TEM method, it can be said that the precipitate density can be measured with high accuracy by heat treatment for about 0.5 hours or more.
【0028】なお、ボロン濃度が低いCZ‐Siウェー
ハおよびp/p‐エピウェーハについても同様な検討を
実施したが、本発明に係る熱処理条件と評価方法で酸素
析出物密度が高精度で測定可能であることもわかった。The same study was carried out for CZ-Si wafers and p / p-epi wafers having a low boron concentration. However, the oxygen precipitate density can be measured with high accuracy by the heat treatment conditions and the evaluation method according to the present invention. I knew there was.
【0029】[0029]
【発明の効果】この発明による酸素析出物密度の評価方
法は、低温プロセスで析出物サイズが非常に小さい場合
であっても、900〜1100℃の温度範囲でそれぞれ
最適な時間だけ熱処理を行った後、欠陥選択エッチング
法、赤外トモグラフ法、透過型電子顕微鏡(TEM)法
で析出物密度を測定することにより、低温プロセス後の
析出物密度を高精度で評価でき、ウェーハのゲッタリン
グ能力の判断をすることができ、デバイスを高歩留りで
製造することが可能となる。According to the method for evaluating the density of oxygen precipitates according to the present invention, even when the size of precipitates is very small in a low-temperature process, heat treatment is performed for an optimum time in a temperature range of 900 to 1100 ° C. After that, by measuring the precipitate density by the defect selective etching method, infrared tomography method, and transmission electron microscope (TEM) method, the precipitate density after the low temperature process can be evaluated with high accuracy, and the gettering ability of the wafer can be evaluated. It is possible to make a decision and manufacture a device with a high yield.
【図1】低温プロセス後の熱処理温度と析出物密度の関
係を示すグラフである。FIG. 1 is a graph showing a relationship between a heat treatment temperature after a low-temperature process and a precipitate density.
【図2】低温プロセス後の熱処理時間と析出物密度の関
係を示すグラフである。FIG. 2 is a graph showing a relationship between a heat treatment time after a low-temperature process and a precipitate density.
Claims (4)
し、基板内部の比抵抗が0.05Ωcm以下、酸素濃度
が(10〜18)×1017atoms/cm3(old
ASTM法)の半導体デバイス用シリコンウェーハ中
の酸素析出物密度を測定する評価方法において、900
〜1100℃の温度範囲で熱処理する酸素析出物密度の
評価方法。1. A substrate having a silicon epitaxial film on its surface, a specific resistance inside the substrate of 0.05 Ωcm or less, and an oxygen concentration of (10 to 18) × 10 17 atoms / cm 3 (old
ASTM method) for evaluating the density of oxygen precipitates in a silicon wafer for semiconductor devices.
A method for evaluating the density of oxygen precipitates which is heat-treated in a temperature range of 1 to 1100 ° C.
の温度範囲で4時間以上の熱処理を行った後、欠陥選択
エッチング法で析出物密度を測定する酸素析出物密度の
評価方法。2. The method according to claim 1, wherein the temperature is 900 to 1100 ° C.
A heat treatment for 4 hours or more in the above temperature range, and then measuring the precipitate density by a defect selective etching method.
の温度範囲で1時間以上の熱処理を行った後、赤外トモ
グラフ法で折出物密度を測定する酸素析出物密度の評価
方法。3. The method according to claim 1, wherein the temperature is 900 to 1100 ° C.
After performing heat treatment for 1 hour or more in the above temperature range, the density of oxygen precipitates is measured by infrared tomography.
の温度範囲で0.5時間以上の熱処理を行った後、透過
型電子顕微鏡法で析出物密度を測定する酸素析出物密度
の評価方法。4. The method according to claim 1, wherein the temperature is 900 to 1100 ° C.
After performing a heat treatment for 0.5 hour or more in the temperature range described above, the density of precipitates is measured by transmission electron microscopy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12178298A JPH11297704A (en) | 1998-04-14 | 1998-04-14 | Evaluation method for oxygen deposit density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12178298A JPH11297704A (en) | 1998-04-14 | 1998-04-14 | Evaluation method for oxygen deposit density |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11297704A true JPH11297704A (en) | 1999-10-29 |
Family
ID=14819766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12178298A Pending JPH11297704A (en) | 1998-04-14 | 1998-04-14 | Evaluation method for oxygen deposit density |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11297704A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002246429A (en) * | 2001-02-15 | 2002-08-30 | Shin Etsu Handotai Co Ltd | Method of evaluating silicon wafer and nitrogen-doped annealed wafer |
WO2003009365A1 (en) * | 2001-07-10 | 2003-01-30 | Shin-Etsu Handotai Co.,Ltd. | Silicon wafer manufacturing method, silicon epitaxial wafer manufacturing method, and silicon epitaxial wafer |
KR20030094994A (en) * | 2002-06-11 | 2003-12-18 | 동부전자 주식회사 | System for oxygen density of polymide bake oven equipment |
JP2007142063A (en) * | 2005-11-17 | 2007-06-07 | Shin Etsu Handotai Co Ltd | Silicon single-crystal wafer, method of manufacturing device using the same, and method of manufacturing the silicon single-crystal wafer and evaluation method of the wafer |
DE102012217727A1 (en) | 2012-09-28 | 2014-04-17 | Siltronic Ag | Detecting defects in single crystal silicon, comprises e.g. providing sample of single crystal silicon, contaminating sample with nickel, palladium or platinum, thermal processing the contaminated sample, and cooling the sample |
-
1998
- 1998-04-14 JP JP12178298A patent/JPH11297704A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002246429A (en) * | 2001-02-15 | 2002-08-30 | Shin Etsu Handotai Co Ltd | Method of evaluating silicon wafer and nitrogen-doped annealed wafer |
WO2003009365A1 (en) * | 2001-07-10 | 2003-01-30 | Shin-Etsu Handotai Co.,Ltd. | Silicon wafer manufacturing method, silicon epitaxial wafer manufacturing method, and silicon epitaxial wafer |
JPWO2003009365A1 (en) * | 2001-07-10 | 2004-11-11 | 信越半導体株式会社 | Method for manufacturing silicon wafer, method for manufacturing silicon epitaxial wafer, and silicon epitaxial wafer |
US7033962B2 (en) | 2001-07-10 | 2006-04-25 | Shin-Etsu Handotai Co., Ltd. | Methods for manufacturing silicon wafer and silicone epitaxial wafer, and silicon epitaxial wafer |
KR20030094994A (en) * | 2002-06-11 | 2003-12-18 | 동부전자 주식회사 | System for oxygen density of polymide bake oven equipment |
JP2007142063A (en) * | 2005-11-17 | 2007-06-07 | Shin Etsu Handotai Co Ltd | Silicon single-crystal wafer, method of manufacturing device using the same, and method of manufacturing the silicon single-crystal wafer and evaluation method of the wafer |
DE102012217727A1 (en) | 2012-09-28 | 2014-04-17 | Siltronic Ag | Detecting defects in single crystal silicon, comprises e.g. providing sample of single crystal silicon, contaminating sample with nickel, palladium or platinum, thermal processing the contaminated sample, and cooling the sample |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7846252B2 (en) | Silicon wafer for IGBT and method for producing same | |
KR100319413B1 (en) | Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device | |
KR100298529B1 (en) | Methods for removing contaminants from silicon and improving minority carrier life | |
JP3381816B2 (en) | Semiconductor substrate manufacturing method | |
US5951755A (en) | Manufacturing method of semiconductor substrate and inspection method therefor | |
US6599816B2 (en) | Method of manufacturing silicon epitaxial wafer | |
JPH09283529A (en) | Manufacture and inspection of semiconductor substrate | |
JPH11297704A (en) | Evaluation method for oxygen deposit density | |
JP4035886B2 (en) | Silicon epitaxial wafer and manufacturing method thereof | |
JP5561245B2 (en) | Semiconductor substrate evaluation method | |
US5702973A (en) | Method for forming epitaxial semiconductor wafer for CMOS integrated circuits | |
JP2002208596A (en) | Silicon single crystal wafer | |
JPS63198334A (en) | Manufacture of semiconductor silicon wafer | |
JPH09223699A (en) | Silicon wafer and its manufacturing method | |
JP4305800B2 (en) | Method for evaluating nitride on silicon wafer surface | |
KR910008979B1 (en) | Poly-silicon film forming method of metal annealing | |
JPH11288942A (en) | Manufacture of semiconductor device | |
JP3944958B2 (en) | Silicon epitaxial wafer and manufacturing method thereof | |
WO1994025988A1 (en) | Epitaxial semiconductor wafer for cmos integrated circuits | |
JPH11243093A (en) | Manufacture of silicon epitaxial wafer | |
JP2019149471A (en) | Evaluating method of gettering ability of semiconductor wafer and manufacturing method of semiconductor wafer using the same | |
JP2002241194A (en) | Method for producing epitaxial silicon wafer and epitaxial silicon wafer | |
JP4356039B2 (en) | Epitaxial silicon wafer manufacturing method | |
HAHN et al. | Effects of n-type Substrate on Epilayer Quality For Twin Tub CMOS Technology | |
JPH1192300A (en) | Production of semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20040721 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070710 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070717 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070910 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071127 |