Nothing Special   »   [go: up one dir, main page]

JPH11297331A - Secondary battery and its current collector - Google Patents

Secondary battery and its current collector

Info

Publication number
JPH11297331A
JPH11297331A JP10108802A JP10880298A JPH11297331A JP H11297331 A JPH11297331 A JP H11297331A JP 10108802 A JP10108802 A JP 10108802A JP 10880298 A JP10880298 A JP 10880298A JP H11297331 A JPH11297331 A JP H11297331A
Authority
JP
Japan
Prior art keywords
current collector
secondary battery
electrolytic foil
battery according
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10108802A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nakamura
恭之 中村
Tomoteru Oki
朝照 大木
Katsuhiro Nakamura
克弘 中村
Keiichi Nisato
圭一 仁里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA DENTO KOGYOSHO KK
TEIKOKU ION KK
Proterial Ltd
Original Assignee
SHOWA DENTO KOGYOSHO KK
TEIKOKU ION KK
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA DENTO KOGYOSHO KK, TEIKOKU ION KK, Sumitomo Special Metals Co Ltd filed Critical SHOWA DENTO KOGYOSHO KK
Priority to JP10108802A priority Critical patent/JPH11297331A/en
Publication of JPH11297331A publication Critical patent/JPH11297331A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current collector for a secondary battery formed into a thin film, having high open pore rate and moreover formed into an arbitrary pore pattern, and the secondary battery using the collector. SOLUTION: A secondary battery, such as an alkaline secondary battery and a lithium secondary battery, is constituted using a current collector formed as electrolyzed foil provided with a large number of meshed pores 2 of triangular shapes, hexagonal shapes or the like, and having 50 μm or less for film thickness and 10% or more for open pore rate. A fine particulate layer formed by a smaller current density than a forming current density for an electrodeposition layer main body is provided along the separation face of the electrodeposition layer main body of the foil and its electrodeposition growth face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池の電極を
構成するために用いる集電体に関する。更に、詳しくは
アルカリ二次電池やリチウム二次電池等の二次電池の電
極材として使用するのに好適な集電体の改良に関する。
[0001] The present invention relates to a current collector used for forming an electrode of a secondary battery. More specifically, the present invention relates to an improvement of a current collector suitable for use as an electrode material of a secondary battery such as an alkaline secondary battery and a lithium secondary battery.

【0002】[0002]

【従来の技術】従来、アルカリ二次電池の電極として
は、ニッケルメッキされた薄い鋼板や、ニッケル箔、銅
箔等の金属集電体に活物質を充填、塗布したものが用い
られている。このような集電体は、メッシュ孔の周縁部
も利用して活物質と接触する表面積を増やし、また、集
電体の表裏両面に存在する電解質イオンの移動を図るた
め、例えばクラッド法により製造された金属箔に微細な
スリットを入れて引っ張ることによりエキスパンドメタ
ルのようなメッシュ孔を多数形成して開孔率を大きくす
るように構成されている。前記集電体に形成されるメッ
シュ孔は、前記の通り、集電体の表面積を増やし、ま
た、集電体の表裏における電解質イオンの移動を図る観
点から、開孔率を大きくする方がよいことが知られてい
る。また、限られた電池容積において、高容量の電池を
得るためには、集電体の膜厚をできるだけ薄くして活物
質の充填量を増やした方がよいことも知られている。
2. Description of the Related Art Conventionally, as an electrode of an alkaline secondary battery, a nickel-plated thin steel plate, or a metal current collector such as a nickel foil or a copper foil filled with an active material and applied thereto has been used. Such a current collector is manufactured by, for example, a cladding method in order to increase the surface area in contact with the active material by using the peripheral portion of the mesh hole and to move electrolyte ions existing on both front and back surfaces of the current collector. A large number of mesh holes, such as expanded metal, are formed by inserting fine slits into the metal foil and pulling the metal foil to increase the opening ratio. As described above, the mesh holes formed in the current collector increase the surface area of the current collector, and from the viewpoint of moving electrolyte ions on the front and back of the current collector, it is preferable to increase the porosity. It is known. It is also known that in order to obtain a high-capacity battery in a limited battery capacity, it is better to reduce the thickness of the current collector as much as possible and increase the amount of the active material to be filled.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の集電体の場合、金属箔に微細なスリットを入れて引
っ張ることにより開口率の高いメッシュ孔を形成しよう
とすると、メッシュ孔が鋭角な形状であるため金属箔の
引っ張り強度が不足し、製法上、開孔率を大きくするこ
とに限界がある。また、孔径にも限度があり、孔のパタ
ーンも変えることができず、何よりも強度不足によりア
ルミニウムのような集電体にはメッシュ孔を開けること
ができないという不都合を有する。また、集電体を薄膜
に構成して活物質の充填量を増やそうとしても、前記の
ような製法では集電体を70μm以下の薄膜に形成する
ことができず、また、250mm以上の広幅に形成する
こともできないという不都合を有する。
However, in the case of the conventional current collector, if a mesh hole having a high aperture ratio is formed by forming a fine slit in a metal foil and pulling the metal foil, the mesh hole has a sharp angle. Therefore, the tensile strength of the metal foil is insufficient, and there is a limit in increasing the aperture ratio in the production method. Further, there is a limitation in the hole diameter, the pattern of the holes cannot be changed, and above all, there is a disadvantage that a mesh hole cannot be formed in a current collector such as aluminum due to insufficient strength. Further, even if the current collector is formed into a thin film to increase the filling amount of the active material, the current collector cannot be formed into a thin film having a thickness of 70 μm or less by the above-described manufacturing method. It has a disadvantage that it cannot be formed into

【0004】本発明は、以上の問題点を解決することを
目的とするもので、薄膜に、且つ高開孔率に構成でき、
しかも任意の開孔パターンに構成できる二次電池用集電
体と、この集電体を用いた二次電池を提供することを目
的とする。
An object of the present invention is to solve the above problems, and it is possible to form a thin film with a high porosity.
Moreover, it is an object of the present invention to provide a current collector for a secondary battery that can be configured in an arbitrary opening pattern and a secondary battery using the current collector.

【0005】[0005]

【課題を解決するための手段】本発明の集電体は、前記
目的を達成するべく、多数のメッシュ孔を備えた電解箔
として構成したことを特徴とする二次電池の集電体であ
る。また、請求項2記載の二次電池の集電体は、多数の
メッシュ孔を備え、50μm以下の膜厚の電解箔として
構成したことを特徴とする二次電池の集電体である。ま
た、請求項3記載の二次電池の集電体は、請求項2記載
の二次電池の集電体において、前記電解箔が10〜45
μmの膜厚であることを特徴とする。また、請求項4記
載の二次電池の集電体は、多数のメッシュ孔を備え、1
0%以上の開口率の電解箔として構成したことを特徴と
する二次電池の集電体である。また、請求項5記載の二
次電池の集電体は、請求項4記載の二次電池の集電体に
おいて、前記電解箔の開孔率が20〜70%であること
を特徴とする。また、請求項6記載の二次電池の集電体
は、請求項1乃至5の何れかに記載の二次電池の集電体
において、前記メッシュ孔が三角形状であることを特徴
とする。また、請求項7記載の二次電池の集電体は、請
求項1乃至5の何れかに記載の二次電池の集電体におい
て、前記メッシュ孔が六角形状であることを特徴とす
る。また、請求項8記載の二次電池の集電体は、請求項
1乃至7の何れかに記載の二次電池の集電体において、
前記メッシュ孔の周縁部に一体形成された突起片を突出
させたことを特徴とする。また、請求項9記載の二次電
池の集電体は、請求項1乃至8の何れかに記載の二次電
池の集電体において、補強部を一体に形成されたことを
特徴とする。また、請求項10記載の二次電池の集電体
は、請求項9記載の二次電池の集電体において、前記補
強部は集電体素材の切り代から得られたものであること
を特徴とする。また、請求項11記載の二次電池の集電
体は、請求項1乃至10の何れかに記載の二次電池の集
電体において、リード部を一体に形成されたことを特徴
とする。また、請求項12記載の二次電池の集電体は、
請求項1乃至11の何れかに記載の二次電池の集電体に
おいて、電解箔の電着層本体の剥離面側に電着層本体の
形成電流密度より小さな電流密度による微粒子層を設け
てなることを特徴とする。また、請求項13記載の二次
電池の集電体は、請求項1乃至12の何れかに記載の二
次電池の集電体において、電解箔の電着層本体の電着成
長面に沿って電着層本体の形成電流密度より小さな電流
密度による微粒子層を設けてなることを特徴とする。ま
た、請求項14記載の二次電池の集電体は、請求項1乃
至13の何れかに記載の二次電池の集電体において、前
記電解箔は銅電解箔、銅合金電解箔、ニッケル電解箔、
或いは、ニッケル合金電解箔であることを特徴とする。
また、請求項15記載の二次電池の集電体は、請求項4
乃至13の何れかに記載の二次電池の集電体において、
前記電解箔は銅電解箔、銅合金電解箔、ニッケル電解
箔、或いは、ニッケル合金電解箔を芯体として、その両
面に芯体と異種金属である、銅電解箔、銅合金電解箔、
或いは、溶融メッキによるアルミ被膜を設けたものであ
ることを特徴とする。また、請求項16記載の二次電池
は、前記請求項1乃至15の何れかに記載の集電体を電
極材として用いてなる二次電池である。
According to the present invention, there is provided a current collector for a secondary battery, wherein the current collector is formed as an electrolytic foil having a large number of mesh holes to achieve the above object. . Further, the current collector of the secondary battery according to the present invention is a current collector for a secondary battery, comprising a large number of mesh holes and configured as an electrolytic foil having a thickness of 50 μm or less. The current collector for a secondary battery according to claim 3 is the current collector for a secondary battery according to claim 2, wherein the electrolytic foil is 10 to 45.
It is characterized in that it has a thickness of μm. Further, the current collector of the secondary battery according to claim 4 includes a large number of mesh holes,
A current collector for a secondary battery, wherein the current collector is configured as an electrolytic foil having an aperture ratio of 0% or more. The current collector for a secondary battery according to claim 5 is the current collector for a secondary battery according to claim 4, wherein the porosity of the electrolytic foil is 20 to 70%. According to a sixth aspect of the present invention, there is provided a current collector for a secondary battery according to any one of the first to fifth aspects, wherein the mesh holes have a triangular shape. According to a seventh aspect of the present invention, there is provided a current collector for a secondary battery according to any one of the first to fifth aspects, wherein the mesh holes have a hexagonal shape. The current collector for a secondary battery according to claim 8 is the current collector for a secondary battery according to any one of claims 1 to 7,
A projection piece integrally formed on the periphery of the mesh hole is projected. According to a ninth aspect of the present invention, there is provided a current collector for a secondary battery according to any one of the first to eighth aspects, wherein the reinforcing portion is integrally formed. Further, the current collector of the secondary battery according to claim 10 is the current collector of the secondary battery according to claim 9, wherein the reinforcing portion is obtained by cutting a current collector material. Features. According to an eleventh aspect of the present invention, there is provided a current collector for a secondary battery according to any one of the first to tenth aspects, wherein a lead portion is integrally formed. The current collector of the secondary battery according to claim 12 is:
The current collector for a secondary battery according to any one of claims 1 to 11, wherein a fine particle layer having a current density smaller than a formation current density of the electrodeposited layer main body is provided on the separation surface side of the electrodeposited layer main body of the electrolytic foil. It is characterized by becoming. The current collector for a secondary battery according to claim 13 is the current collector for a secondary battery according to any one of claims 1 to 12, wherein the current collector extends along the electrodeposition growth surface of the electrodeposition layer body of the electrolytic foil. And a fine particle layer having a current density smaller than the formation current density of the electrodeposition layer main body is provided. The current collector for a secondary battery according to claim 14 is the current collector for a secondary battery according to any one of claims 1 to 13, wherein the electrolytic foil is a copper electrolytic foil, a copper alloy electrolytic foil, nickel Electrolytic foil,
Alternatively, it is a nickel alloy electrolytic foil.
In addition, the current collector of the secondary battery according to claim 15 is the same as claim 4.
14. The current collector for a secondary battery according to any one of claims 13 to 13,
The electrolytic foil is a copper electrolytic foil, a copper alloy electrolytic foil, a nickel electrolytic foil, or a nickel alloy electrolytic foil as a core, on both surfaces of which the core is a dissimilar metal, a copper electrolytic foil, a copper alloy electrolytic foil,
Alternatively, it is characterized by providing an aluminum coating by hot-dip plating. A secondary battery according to a sixteenth aspect is a secondary battery using the current collector according to any one of the first to fifteenth aspects as an electrode material.

【0006】[0006]

【発明の実施の形態】本発明の集電体は、図1に示すよ
うに、多数のメッシュ孔2を備えた電解箔1として構成
したために、図13に示す電解メッシュ箔の製造装置2
0を利用して、50μm以下の任意の薄膜に、また、開
口率10%以上の任意の開口率に、任意のパターンで連
続製造できる。前記電解箔の膜厚は10μm未満である
と機械的強度が不足して、製造時に電解メッシュ箔の製
造装置20のドラムマンドレル22から剥離することが
難しくなる等、取り扱い性が悪くなる。また、膜厚が、
50μmを超えるものでは、集電体としては厚すぎて、
活物質の充填量も不足するので、10〜45μmの膜厚
のものが特に好ましい。また、前記電解箔の開口率は1
0%未満であると電解箔の表裏に存在する電解質の移動
を図ることができず、また、70%を超えると機械的強
度が不足して、製造時にドラムマンドレルから剥離する
ことが難しくなる等、取り扱い性が悪くなるので、20
〜70%の開口率のものが特に好ましい。前記電解メッ
シュ箔の製造装置20は、塩化ビニル樹脂槽からなる電
解槽21の中心部に回転自在のステンレス製、チタン
製、或いは、クロムメッキされたドラムマンドレル(陰
極)22が配置され、また、電解槽21内にはドラムマ
ンドレル22の外周面に沿って電極(陽極)23が複数
個、図示の例では7個配置されている。尚、図中24は
送りロールを示し、ドラムマンドレル22の外周面に形
成される電解箔素材10を連続的に巻き取るものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The current collector of the present invention is formed as an electrolytic foil 1 having a large number of mesh holes 2 as shown in FIG.
By utilizing 0, it is possible to continuously produce an arbitrary thin film having a size of 50 μm or less and an arbitrary opening ratio of 10% or more in an arbitrary pattern. If the film thickness of the electrolytic foil is less than 10 μm, the mechanical strength is insufficient, and it is difficult to peel off from the drum mandrel 22 of the electrolytic mesh foil manufacturing apparatus 20 at the time of manufacturing, and the handleability is deteriorated. The film thickness is
If it exceeds 50 μm, it is too thick as a current collector,
Since the filling amount of the active material is also insufficient, a film having a film thickness of 10 to 45 μm is particularly preferable. The opening ratio of the electrolytic foil is 1
If it is less than 0%, the electrolyte existing on the front and back of the electrolytic foil cannot be moved, and if it exceeds 70%, the mechanical strength is insufficient, and it is difficult to peel off the drum mandrel during manufacturing. 20
Those having an aperture ratio of 70% are particularly preferred. In the electrolytic mesh foil manufacturing apparatus 20, a rotatable stainless steel, titanium, or chrome-plated drum mandrel (cathode) 22 is disposed at the center of an electrolytic tank 21 made of a vinyl chloride resin tank. In the electrolytic cell 21, a plurality of electrodes (anodes) 23 are arranged along the outer peripheral surface of the drum mandrel 22, and seven electrodes 23 are arranged in the illustrated example. In the drawing, reference numeral 24 denotes a feed roll, which continuously winds the electrolytic foil material 10 formed on the outer peripheral surface of the drum mandrel 22.

【0007】特に、前記電解箔1のメッシュ孔2を、図
2に示すように三角形状、或いは、図3に示すように六
角形状とすれば、メッシュ孔2の形成間隔となる集電部
3を均等間隔にでき、強度を高く構成でき、開口率を高
め、また、電解箔を薄膜に構成するのに最適のメッシュ
孔パターンとなる。特に、六角形状とした場合、メッシ
ュ孔に鋭角部分が現れないので最適のメッシュ孔パター
ンとなる。
In particular, if the mesh holes 2 of the electrolytic foil 1 are formed in a triangular shape as shown in FIG. 2 or a hexagonal shape as shown in FIG. Can be arranged at equal intervals, the strength can be configured to be high, the aperture ratio can be increased, and the mesh hole pattern is optimal for forming the electrolytic foil into a thin film. In particular, in the case of a hexagonal shape, since an acute angle portion does not appear in the mesh holes, an optimum mesh hole pattern is obtained.

【0008】また、図4(a),(b),(c)に示す
ように、電解箔1のメッシュ孔2の周縁部に突起片4を
一体に形成し、屈曲させる等してメッシュ面から突出さ
せることが可能なパターンに形成しておけば、このよう
にして得られた電解箔1に気体、液体等による流体圧を
加え、図5(a),(b),(c)に示すように、前記
突起片4を突出させ、三次元構造の集電体に構成でき
る。このように構成された集電体は、図6に示すよう
に、積層させたり、図7に示すように、折り返して重ね
ることにより、より、三次元的に開口率の高い集電体と
して構成することもできる。
Further, as shown in FIGS. 4 (a), 4 (b) and 4 (c), a projecting piece 4 is formed integrally with the periphery of the mesh hole 2 of the electrolytic foil 1 and is bent or the like to form a mesh surface. 5A, 5B and 5C, a fluid pressure such as a gas or a liquid is applied to the electrolytic foil 1 thus obtained. As shown in the figure, the projection 4 can be made to project to form a current collector having a three-dimensional structure. The current collector configured as described above is stacked as shown in FIG. 6 or folded back as shown in FIG. 7 to form a current collector having a three-dimensionally higher aperture ratio. You can also.

【0009】また、集電体は、前記の通り、任意のパタ
ーンに形成できるので、例えば、図8に示すように、補
強部5を一体に形成することも、また、図9に示すよう
に、リード部6を一体に形成することもできる。尚、前
記補強部4は、図10に切断線で示すように、ドラムマ
ンドレル22の外周面に沿って形成される集電体素材1
0を個々の集電体(電解箔)1に切断する際の切り代1
1から得られたものとすることが、集電体素材の取り扱
い強度を上げるためにも好ましい。尚、図中12はドラ
ムマンドレル22に対する集電体素材10の位置合わせ
孔を示す。
As described above, the current collector can be formed in an arbitrary pattern. For example, as shown in FIG. 8, the reinforcing portion 5 can be formed integrally, or as shown in FIG. Alternatively, the lead portion 6 can be formed integrally. The reinforcing portion 4 is formed by a current collector material 1 formed along the outer peripheral surface of the drum mandrel 22 as shown by a cutting line in FIG.
Cutting margin 1 when cutting 0 into individual current collectors (electrolytic foils) 1
It is preferable to use the one obtained from No. 1 in order to increase the handling strength of the current collector material. In the drawing, reference numeral 12 denotes an alignment hole of the current collector material 10 with respect to the drum mandrel 22.

【0010】また、集電体は、陽極側電極23の電流密
度を調整することにより、例えば、図11に示すよう
に、電解箔1の電着層本体1Aの剥離面1b側に電着層
本体1Aの形成電流密度よりも小さな電流密度による緻
密な微粒子層1Bを設けることができる。この場合、脆
い電着層本体1Aを微粒子層1Bで補強することがで
き、集電体製造時、電極製造時、或いは、電池組立時の
取り扱い性が向上する。また、同様に前記製造装置を用
い、図12に示すように、電解箔1の電着層本体1Aの
電着成長面1cに沿って電着層本体1Aの形成電流密度
よりも小さな電流密度による緻密な微粒子層1Cを設け
ることができる。前記電着層本体1Aは活物質を密接状
態で充填できる構造をとるが、脆いという欠点を有して
いたが、前記微粒子層1Bと同様に、脆い電着層本体1
Aを微粒子層1Cで補強することができ、集電体製造
時、電極製造時、或いは、電池組立時の取り扱い性が向
上する。
The current collector is formed by adjusting the current density of the anode-side electrode 23 so that, for example, as shown in FIG. A fine particle layer 1B having a current density smaller than the current density formed in the main body 1A can be provided. In this case, the brittle electrodeposition layer main body 1A can be reinforced by the fine particle layer 1B, and the handleability during current collector production, electrode production, or battery assembly is improved. Similarly, by using the above-described manufacturing apparatus, as shown in FIG. 12, the current density is smaller than the formation current density of the electrodeposition layer main body 1A along the electrodeposition growth surface 1c of the electrodeposition layer main body 1A of the electrolytic foil 1. A fine particle layer 1C can be provided. Although the electrodeposition layer main body 1A has a structure capable of filling the active material in a close state, it has a disadvantage that it is brittle, but like the fine particle layer 1B, the brittle electrodeposition layer main body 1A has a disadvantage.
A can be reinforced with the fine particle layer 1C, so that the handleability during current collector production, electrode production, or battery assembly is improved.

【0011】前記の通り、本発明の集電体は、電解メッ
シュ箔の製造装置により電解箔として形成されるので、
電極材料と、電解液の選択、或いは、複数回の電解メッ
キ、溶融メッキとの組み合わせにより、銅電解箔、銅合
金電解箔、ニッケル電解箔、或いは、ニッケル合金電解
箔として、或いは、これら電解箔を芯体として、その両
面に芯体と異種金属である、銅電解箔、銅合金電解箔、
或いは、溶融メッキによるアルミ箔を設けた集電体とし
て簡単に構成できる。
As described above, the current collector of the present invention is formed as an electrolytic foil by the electrolytic mesh foil manufacturing apparatus.
Electrode material and selection of electrolyte, or combination of electrolytic plating and hot-dip plating multiple times, as copper electrolytic foil, copper alloy electrolytic foil, nickel electrolytic foil, or nickel alloy electrolytic foil, or these electrolytic foils The core body, the core body and dissimilar metals on both sides thereof, copper electrolytic foil, copper alloy electrolytic foil,
Alternatively, it can be simply configured as a current collector provided with aluminum foil by hot-dip plating.

【0012】前記のようにして得られた集電体を利用し
て、銅箔や、ニッケル箔を芯体としてその両面に銅電解
箔を設けた集電体は、黒鉛層間化合物のカーボンペース
トを塗布してリチウムイオン二次電池の負極に構成でき
る。また、ニッケル電解箔を芯体としてその両面に溶融
アルミメッキによるアルミ被膜を設けた集電体は、Li
CoO2のペーストを塗布してリチウムイオン二次電池
の正極に構成できる。
Using the current collector obtained as described above, a current collector having a copper foil or a nickel foil as a core and copper electrolytic foils provided on both surfaces thereof is made of a carbon paste of a graphite intercalation compound. It can be applied to form a negative electrode of a lithium ion secondary battery. In addition, a current collector having a nickel electrolytic foil as a core and an aluminum coating provided on both surfaces thereof by hot-dip aluminum plating is Li
A positive electrode of a lithium ion secondary battery can be formed by applying a paste of CoO 2 .

【0013】また、ニッケル電解箔からなる集電体は、
水酸化カドミウム球状微粒子を充填し、或いは、オキシ
水酸化ニッケルと水酸化ニッケル微粒子を充填してニッ
ケル・カドミ蓄電池の負極、或いは、正極に構成でき
る。
[0013] The current collector made of nickel electrolytic foil is
A negative electrode or a positive electrode of a nickel-cadmium storage battery can be formed by filling spherical particles of cadmium hydroxide or by filling particles of nickel oxyhydroxide and nickel hydroxide.

【0014】また、ニッケル電解箔からなる集電体は、
水素吸蔵合金粉末ペーストを充填し、或いは、オキシ水
酸化ニッケルと水酸化ニッケル微粒子を充填してニッケ
ル・水素蓄電池の負極、或いは、正極を構成できる。
The current collector made of nickel electrolytic foil is
A negative electrode or a positive electrode of a nickel-metal hydride storage battery can be formed by filling a hydrogen storage alloy powder paste or by filling nickel oxyhydroxide and nickel hydroxide fine particles.

【0015】これら電極を用い、リチウムイオン二次電
池、ニッケル・カドミ電池、ニッケル・水素二次電池等
を構成することができる。この場合、集電体を薄膜に、
しかも高開口率に構成できるので、コンパクトで高容量
の二次電池を得ることができる。尚、前記集電体を構成
する電解箔には、光沢剤、メッキ補助剤等、各種添加剤
を含ませることは任意である。
Using these electrodes, a lithium-ion secondary battery, a nickel-cadmium battery, a nickel-hydrogen secondary battery and the like can be constructed. In this case, the current collector is turned into a thin film,
In addition, since the aperture ratio can be configured to be high, a compact and high capacity secondary battery can be obtained. In addition, it is optional to include various additives such as a brightener and a plating aid in the electrolytic foil constituting the current collector.

【0016】[0016]

【実施例】次に、具体的な実施例を説明する。 (実施例1)銅電解箔集電体の製造 図13に示す電解被膜の製造装置を用い、電極23a,
23b,23c,23d,23e,23f,23gを銅
電極、電解液を硫酸銅メッキ浴とし、電流密度を5A/
dm2として、20分の電着を行ったところ、厚み30
μmの銅電解箔が得られた。尚、メッシュパターンは図
1,2に示すものとして、開口率41.2%のものを得
た。また、補強部、リード部も一体に形成した。得られ
た銅電解箔集電体を観察したところ、ドラムマンドレル
からの電着層本体の剥離面側は平滑に形成され、電着層
本体の電着成長面側は粗面に形成されていた。
Next, a specific embodiment will be described. Example 1 Production of Copper Electrolyte Foil Current Collector Using the electrolytic film production apparatus shown in FIG.
23b, 23c, 23d, 23e, 23f, and 23g were used as copper electrodes, the electrolytic solution was used as a copper sulfate plating bath, and the current density was 5 A /
dm 2 , and the electrodeposition was performed for 20 minutes.
A μm copper electrolytic foil was obtained. The mesh pattern shown in FIGS. 1 and 2 had an aperture ratio of 41.2%. Further, the reinforcing portion and the lead portion were also integrally formed. Observation of the obtained copper electrolytic foil current collector revealed that the peeled surface side of the electrodeposited layer main body from the drum mandrel was formed smoothly, and the electrodeposited growth surface side of the electrodeposited layer main body was formed rough. .

【0017】(実施例2) 微粒子層を備えた銅電解箔
集電体の製造 次に、前記実施例1と同様に、但し、8個の電極23
a,23b,23c,23d,23e,23f,23g
を、それぞれ、3A/dm2 ,5A/dm2 ,5A/d
2,10A/dm2,10A/dm2,10A/dm2
5A/dm2,3A/dm2の電流密度として、20分の
電着を行ったところ、厚み30μmの銅電解箔が得られ
た。得られた銅電解箔集電体を観察したところ、ドラム
マンドレルからの電着層本体の剥離面側に微粒子層が形
成され、また、電着層本体の電着成長面側にも電着成長
面に沿った微粒子層が形成されていた。そして、得られ
た銅電解箔集電体は前記実施例1の一定の電流密度5A
m/dm2の電着で得られたものに比べ、機械的強度が
格段に高く、取り扱い性に優れたものであった。
(Example 2) Production of a copper electrolytic foil current collector provided with a fine particle layer Next, as in Example 1, except that eight electrodes 23 were used.
a, 23b, 23c, 23d, 23e, 23f, 23g
To 3 A / dm 2 , 5 A / dm 2 , 5 A / d
m 2 , 10 A / dm 2 , 10 A / dm 2 , 10 A / dm 2 ,
Electrodeposition was performed at a current density of 5 A / dm 2 and 3 A / dm 2 for 20 minutes, and a copper electrolytic foil having a thickness of 30 μm was obtained. Observation of the obtained copper electrolytic foil current collector revealed that a fine particle layer was formed on the side of the peeling surface of the electrodeposited layer main body from the drum mandrel, and that the electrodeposited layer was grown on the electrodeposited growth side of the electrodeposited layer main body. A fine particle layer was formed along the surface. Then, the obtained copper electrolytic foil current collector has a constant current density of 5 A according to the first embodiment.
The mechanical strength was much higher than that obtained by electrodeposition at m / dm 2 , and the handleability was excellent.

【0018】(実施例3)アルミ被膜集電体の製造 前記実施例1並びに実施例2で得られた銅電解箔を芯体
として、これを水洗、フラックス浸けした後、溶融アル
ミ槽に浸け、余分なアルミを除去し、銅電解箔の両面に
溶融アルミメッキによる各10μmのアルミ被膜を形成
した。
(Example 3) Manufacture of an aluminum-coated current collector The copper electrolytic foil obtained in Examples 1 and 2 was used as a core, washed with water and dipped in flux, and then dipped in a molten aluminum tank. Excess aluminum was removed, and aluminum coatings of 10 μm each were formed on both surfaces of the copper electrolytic foil by hot-dip aluminum plating.

【0019】(実施例4) ニッケル電解箔集電体の製
造 前記実施例2と同様に、但し、銅電をニッケル電極に代
え、また、硫酸銅メッキ浴をスルファミン酸ニッケル浴
に代え、20分の電着を行ったところ、厚み30μmニ
ッケル銅電解箔が得られた 得られた銅電解箔集電体を観察したところ、ドラムマン
ドレルからの電着層本体の剥離面側に微粒子層が形成さ
れ、また、電着層本体の電着成長面側にも電着成長面に
沿った微粒子層が形成されていた。
Example 4 Production of Nickel Electrolytic Foil Current Collector In the same manner as in Example 2, except that the copper electrode was replaced with a nickel electrode, and the copper sulfate plating bath was replaced with a nickel sulfamate bath, and the mixture was heated for 20 minutes. When electrodeposition was performed, a 30 μm-thick nickel-copper electrolytic foil was obtained. Observation of the obtained copper electrolytic foil current collector revealed that a fine particle layer was formed on the peeling surface side of the electrodeposition layer main body from the drum mandrel. Also, a fine particle layer was formed on the electrodeposition growth surface side of the electrodeposition layer body along the electrodeposition growth surface.

【0020】[0020]

【発明の効果】このように、本発明によれば、薄膜に、
且つ高開孔率に構成でき、しかも任意の開孔パターンに
構成できる二次電池用集電体と、この集電体を用いた二
次電池を提供することができる。
As described above, according to the present invention, a thin film
In addition, it is possible to provide a current collector for a secondary battery which can be configured to have a high aperture ratio and an arbitrary aperture pattern, and a secondary battery using the current collector.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明集電体の平面図FIG. 1 is a plan view of a current collector of the present invention.

【図2】 本発明集電体のメッシュ孔のパターンを示す
平面図
FIG. 2 is a plan view showing a pattern of mesh holes of the current collector of the present invention.

【図3】 本発明集電体のメッシュ孔のパターンを示す
平面図
FIG. 3 is a plan view showing a mesh hole pattern of the current collector of the present invention.

【図4】 (a),(b),(c)は本発明集電体の三
次元メッシュ孔の各パターンを示す平面図
FIGS. 4A, 4B and 4C are plan views showing respective patterns of three-dimensional mesh holes of the current collector of the present invention.

【図5】 (a),(b),(c)は本発明集電体の三
次元メッシュ孔の各パターンを示す斜視図
5 (a), 5 (b) and 5 (c) are perspective views showing respective patterns of three-dimensional mesh holes of the current collector of the present invention.

【図6】 本発明三次元メッシュ孔パターンを備える集
電体の積層状態を示す側面図
FIG. 6 is a side view showing a stacked state of a current collector having a three-dimensional mesh hole pattern of the present invention.

【図7】 本発明三次元メッシュ孔パターンを備える集
電体の折り返しによる積層状態を示す側面図
FIG. 7 is a side view showing a state in which a current collector having a three-dimensional mesh hole pattern according to the present invention is stacked by folding back;

【図8】 本発明ガイド部を備えた集電体の平面図FIG. 8 is a plan view of a current collector provided with a guide section of the present invention.

【図9】 本発明リード部を備えた集電体の平面図FIG. 9 is a plan view of a current collector having a lead portion of the present invention.

【図10】本発明集電体を得るための集電体素材の平面
FIG. 10 is a plan view of a current collector material for obtaining the current collector of the present invention.

【図11】本発明集電体の断面を模式的に示した線図FIG. 11 is a diagram schematically showing a cross section of the current collector of the present invention.

【図12】本発明集電体の断面を模式的に示した線図FIG. 12 is a diagram schematically showing a cross section of the current collector of the present invention.

【図13】本発明集電体を製造するための製造装置の構
成線図
FIG. 13 is a configuration diagram of a manufacturing apparatus for manufacturing the current collector of the present invention.

【符号の説明】[Explanation of symbols]

1 電解被膜 1A 電着層本体 1B 微粒子層 1C 微粒子層 1b 剥離面 1c 電着成長面 2 メッシュ孔 3 形成間隔(集電部) 4 突起片 5 補強部 6 リード部 10 集電体素材 11 切り代 12 位置合わせ孔 20 電解メッシュ箔の製造装置 21 電解槽 22 ドラムマンドレル(陰極) 23 電極(陽極) 24 送りロール DESCRIPTION OF SYMBOLS 1 Electrolytic coating 1A Electrodeposition layer main body 1B Fine particle layer 1C Fine particle layer 1b Separation surface 1c Electrodeposition growth surface 2 Mesh hole 3 Forming interval (current collection part) 4 Projection piece 5 Reinforcement part 6 Lead part 10 Collector material 11 Cutting margin DESCRIPTION OF SYMBOLS 12 Alignment hole 20 Electrolyzed mesh foil manufacturing apparatus 21 Electrolytic tank 22 Drum mandrel (cathode) 23 Electrode (anode) 24 Feed roll

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z (72)発明者 大木 朝照 大阪府吹田市南吹田2丁目19番1号 住友 特殊金属株式会社吹田製作所内 (72)発明者 中村 克弘 大阪府東大阪市柏田西1丁目12番26号 帝 国イオン株式会社内 (72)発明者 仁里 圭一 大阪府大阪市城東区諏訪3丁目12番33号 有限会社昭和電鍍工業所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 10/40 H01M 10/40 Z (72) Inventor Assho Oki 2-9-1-1, Minami Suita, Suita City, Osaka Sumitomo Special Metals Inside Suita Manufacturing Co., Ltd. (72) Inventor Katsuhiro Nakamura 1-12-26 Kashiwada Nishi, Higashi-Osaka City, Osaka Teikoku Aeon Co., Ltd. (72) Keiichi Nisato 3-12 Suwa, Joto-ku, Osaka City, Osaka Prefecture No. 33 Inside Showa Electroplating Co., Ltd.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 多数のメッシュ孔を備えた電解箔として
構成したことを特徴とする二次電池の集電体。
1. A current collector for a secondary battery, wherein the current collector is configured as an electrolytic foil having a large number of mesh holes.
【請求項2】 多数のメッシュ孔を備え、50μm以下
の膜厚の電解箔として構成したことを特徴とする二次電
池の集電体。
2. A current collector for a secondary battery comprising a large number of mesh holes and constituted as an electrolytic foil having a thickness of 50 μm or less.
【請求項3】 前記電解箔の膜厚が10〜45μmであ
ることを特徴とする請求項2記載の二次電池の集電体。
3. The current collector for a secondary battery according to claim 2, wherein said electrolytic foil has a thickness of 10 to 45 μm.
【請求項4】 多数のメッシュ孔を備え、10%以上の
開口率の電解箔として構成したことを特徴とする二次電
池の集電体。
4. A current collector for a secondary battery, comprising a large number of mesh holes and configured as an electrolytic foil having an aperture ratio of 10% or more.
【請求項5】 前記電解箔の開孔率が20〜70%であ
ることを特徴とする請求項4記載の二次電池の集電体。
5. The current collector for a secondary battery according to claim 4, wherein the porosity of the electrolytic foil is 20 to 70%.
【請求項6】 前記メッシュ孔が三角形状であることを
特徴とする請求項1乃至5の何れかに記載の二次電池の
集電体。
6. The current collector for a secondary battery according to claim 1, wherein the mesh holes have a triangular shape.
【請求項7】 前記メッシュ孔が六角形状であることを
特徴とする請求項1乃至5の何れかに記載の二次電池の
集電体。
7. The current collector for a secondary battery according to claim 1, wherein the mesh holes have a hexagonal shape.
【請求項8】 前記メッシュ孔の周縁部に一体形成され
た突起片を突出させたことを特徴とする請求項1乃至7
の何れかに記載の二次電池の集電体。
8. A method according to claim 1, wherein a projecting piece integrally formed on a peripheral portion of said mesh hole is projected.
The current collector for a secondary battery according to any one of the above.
【請求項9】 補強部を一体に形成されたことを特徴と
する請求項1乃至8の何れかに記載の二次電池の集電
体。
9. The current collector for a secondary battery according to claim 1, wherein the reinforcing portion is integrally formed.
【請求項10】 前記補強部は集電体素材の切り代から得
られたものであることを特徴とする請求項9記載の二次
電池の集電体。
10. The current collector for a secondary battery according to claim 9, wherein the reinforcing portion is obtained from a margin of a current collector material.
【請求項11】 リード部を一体に形成されたことを特徴
とする請求項1乃至10の何れかに記載の二次電池の集
電体。
11. The current collector for a secondary battery according to claim 1, wherein the lead portion is formed integrally.
【請求項12】 電解箔の電着層本体の剥離面側に電着層
本体の形成電流密度よりも小さな電流密度による微粒子
層を設けてなることを特徴とする請求項1乃至11の何
れかに記載の二次電池の集電体。
12. The method according to claim 1, wherein a fine particle layer having a current density smaller than the current density of the electrodeposited layer main body is provided on the side of the electrolytic foil where the electrodeposited layer main body is peeled off. 4. The current collector for a secondary battery according to claim 1.
【請求項13】 電解箔の電着層本体の電着成長面に沿っ
て電着層本体の形成電流密度よりも小さな電流密度によ
る微粒子層を設けてなることを特徴とする請求項1乃至
12の何れかに記載の二次電池の集電体。
13. The method according to claim 1, wherein a fine particle layer having a current density smaller than a formation current density of the electrodeposited layer main body is provided along an electrodeposition growth surface of the electrodeposited layer main body of the electrolytic foil. The current collector for a secondary battery according to any one of the above.
【請求項14】 前記電解箔は銅電解箔、銅合金電解箔、
ニッケル電解箔、或いは、ニッケル合金電解箔であるこ
とを特徴とする請求項1乃至13の何れかに記載の二次
電池の集電体。
14. The electrolytic foil is a copper electrolytic foil, a copper alloy electrolytic foil,
The current collector for a secondary battery according to any one of claims 1 to 13, wherein the current collector is a nickel electrolytic foil or a nickel alloy electrolytic foil.
【請求項15】 前記電解箔は銅電解箔、銅合金電解箔、
ニッケル電解箔、或いは、ニッケル合金電解箔を芯体と
して、その両面に芯体と異種金属である、銅電解箔、銅
合金電解箔、或いは、溶融メッキによるアルミ被膜を設
けたものであることを特徴とする請求項4乃至13の何
れかに記載の二次電池の集電体。
15. The electrolytic foil is a copper electrolytic foil, a copper alloy electrolytic foil,
Nickel electrolytic foil or nickel alloy electrolytic foil as a core body, copper electrolytic foil which is a metal different from the core body, a copper alloy electrolytic foil, or an aluminum coating by hot-dip plating provided on both surfaces. The current collector of a secondary battery according to claim 4, wherein
【請求項16】 前記請求項1乃至15の何れかに記載の
集電体を電極材として用いてなる二次電池。
A secondary battery using the current collector according to any one of claims 1 to 15 as an electrode material.
JP10108802A 1998-04-03 1998-04-03 Secondary battery and its current collector Withdrawn JPH11297331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10108802A JPH11297331A (en) 1998-04-03 1998-04-03 Secondary battery and its current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10108802A JPH11297331A (en) 1998-04-03 1998-04-03 Secondary battery and its current collector

Publications (1)

Publication Number Publication Date
JPH11297331A true JPH11297331A (en) 1999-10-29

Family

ID=14493862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10108802A Withdrawn JPH11297331A (en) 1998-04-03 1998-04-03 Secondary battery and its current collector

Country Status (1)

Country Link
JP (1) JPH11297331A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038834A1 (en) * 2000-11-13 2002-05-16 Matsushita Electric Industrial Co., Ltd. Porous nickel foil for alkaline battery cathode, production method therefor and production device therefor
JP2002184411A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nonaqueous battery and its manufacturing method and negative electrode for nonaqueous battery
JP2002184409A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nickel hydrogen battery, its manufacturing method, and negative electrode for nickel hydrogen battery
JP2005509736A (en) * 2001-07-25 2005-04-14 シーメンス アクチエンゲゼルシヤフト Method and apparatus for producing textured metal strip
KR100624972B1 (en) 2005-01-28 2006-09-19 삼성에스디아이 주식회사 Electrode Plate of Li Secondary Battery and Method of fabricating the same and Li Secondary Battery with the same
JP2007103197A (en) * 2005-10-05 2007-04-19 Sony Corp Negative electrode, and battery
JP2007149612A (en) * 2005-11-30 2007-06-14 Sony Corp Anode and battery
WO2009021379A1 (en) * 2007-08-10 2009-02-19 Shenzhen Bak Battery Co., Ltd A current collector of lithium ion battery, a high-capacity cylindrical lithium ion battery and the preparation method of the same
KR101127024B1 (en) 2009-01-09 2012-03-13 주식회사 엘지화학 Elastic Thin Film Battery, the Method for Preparing the Same, and Heating or Cooling Device Using the Same
US8530071B2 (en) 2008-06-25 2013-09-10 Samsung Electronics Co., Ltd. Secondary battery having improved flexibility
JP2015521345A (en) * 2012-05-09 2015-07-27 コリア インスティチュート オブ マシナリー アンド マテリアルズ Battery current collector including metal mesh layer and method of manufacturing the same
US20210159502A1 (en) * 2019-11-27 2021-05-27 GM Global Technology Operations LLC Electrode components with laser induced surface modified current collectors and methods of making the same
JPWO2023033118A1 (en) * 2021-09-01 2023-03-09

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998329B2 (en) 2000-11-13 2011-08-16 Panasonic Corporation Porous nickel foil for negative electrode of alkaline battery, production method therefor and production device therefor
CN100400715C (en) * 2000-11-13 2008-07-09 松下电器产业株式会社 Multi-porous Ni foil for cathode of alkaline battery method for mfg. Ni foil and mfg. device thereof
WO2002038834A1 (en) * 2000-11-13 2002-05-16 Matsushita Electric Industrial Co., Ltd. Porous nickel foil for alkaline battery cathode, production method therefor and production device therefor
JP2002184411A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nonaqueous battery and its manufacturing method and negative electrode for nonaqueous battery
JP2002184409A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nickel hydrogen battery, its manufacturing method, and negative electrode for nickel hydrogen battery
JP2005509736A (en) * 2001-07-25 2005-04-14 シーメンス アクチエンゲゼルシヤフト Method and apparatus for producing textured metal strip
KR100624972B1 (en) 2005-01-28 2006-09-19 삼성에스디아이 주식회사 Electrode Plate of Li Secondary Battery and Method of fabricating the same and Li Secondary Battery with the same
JP2007103197A (en) * 2005-10-05 2007-04-19 Sony Corp Negative electrode, and battery
JP2007149612A (en) * 2005-11-30 2007-06-14 Sony Corp Anode and battery
WO2009021379A1 (en) * 2007-08-10 2009-02-19 Shenzhen Bak Battery Co., Ltd A current collector of lithium ion battery, a high-capacity cylindrical lithium ion battery and the preparation method of the same
US8530071B2 (en) 2008-06-25 2013-09-10 Samsung Electronics Co., Ltd. Secondary battery having improved flexibility
KR101127024B1 (en) 2009-01-09 2012-03-13 주식회사 엘지화학 Elastic Thin Film Battery, the Method for Preparing the Same, and Heating or Cooling Device Using the Same
JP2015521345A (en) * 2012-05-09 2015-07-27 コリア インスティチュート オブ マシナリー アンド マテリアルズ Battery current collector including metal mesh layer and method of manufacturing the same
US20210159502A1 (en) * 2019-11-27 2021-05-27 GM Global Technology Operations LLC Electrode components with laser induced surface modified current collectors and methods of making the same
US11984599B2 (en) * 2019-11-27 2024-05-14 GM Global Technology Operations LLC Electrode components with laser induced surface modified current collectors and methods of making the same
JPWO2023033118A1 (en) * 2021-09-01 2023-03-09

Similar Documents

Publication Publication Date Title
US6800399B2 (en) Non-sintered thin electrode for battery, battery using same and process for same
US7838154B2 (en) Negative electrode for nonaqueous secondary battery
JPH11297331A (en) Secondary battery and its current collector
CN102412386B (en) Lithium secondary battery and anode therefor
RU2336603C2 (en) Secondary storage battery electrode, method of its production and secondary storage battery
JPH0640491B2 (en) Non-sintered nickel electrode
CA3151028C (en) Metal negative electrode, method for fabricating the same and secondary battery including the same
JP2005505102A (en) Current collector structure and method for improving the performance of lead acid batteries
CN102931382A (en) Lithium secondary battery and anode therefor
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
JPH08236120A (en) Manufacture of porous electrolytic metal foil and secondary battery electrode using this electrolytic metal foil
JP2004522856A (en) Method for producing electrical conductors, solar collectors, electrochemical cells and use of conductors produced by such a method
US20030180621A1 (en) Non-sintered type thin electrode for battery, battery using same and process for same
JP2006216565A (en) Electrode for secondary battery, manufacturing method of same, and secondary battery
CN117995992A (en) 3D lithium-philic metal current collector negative electrode structure and preparation method thereof
WO2005055345A1 (en) Secondary battery-use electrode and production method therefor and secondary battery
WO2005108647A1 (en) Porous metal foil with carrier foil and process for producing the same
CN100514715C (en) Electrode for secondary battery, process of producing the electrode and secondary battery
JP2000285926A (en) Electromagnetic wave shield body and application thereof
CN110875478A (en) Current collector and negative electrode for metal lithium battery, and preparation and application of current collector and negative electrode
TWI703238B (en) Microporous copper foil manufacturing method and microporous copper foil
CN111575761B (en) Alumina template, highly vertical ordered antimony nanowire array and preparation method thereof
JP4763995B2 (en) Nonaqueous electrolyte secondary battery electrode
JP2005129264A (en) Porous metallic foil and its manufacturing method
JP2002216771A (en) Electrolytic metal foil for secondary battery negative electrode collector and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607