Nothing Special   »   [go: up one dir, main page]

JPH11288739A - Manufacture for lithium ion secondary battery - Google Patents

Manufacture for lithium ion secondary battery

Info

Publication number
JPH11288739A
JPH11288739A JP10087308A JP8730898A JPH11288739A JP H11288739 A JPH11288739 A JP H11288739A JP 10087308 A JP10087308 A JP 10087308A JP 8730898 A JP8730898 A JP 8730898A JP H11288739 A JPH11288739 A JP H11288739A
Authority
JP
Japan
Prior art keywords
electrode
container
electrodes
current collector
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10087308A
Other languages
Japanese (ja)
Other versions
JP3956478B2 (en
Inventor
Koji Kawamoto
浩二 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP08730898A priority Critical patent/JP3956478B2/en
Publication of JPH11288739A publication Critical patent/JPH11288739A/en
Application granted granted Critical
Publication of JP3956478B2 publication Critical patent/JP3956478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a cyclical characteristic of a lithium ion secondary battery. SOLUTION: A step 102 represents a hot-press process where a positive electrode and a negative electrode are pressured and they are hot-pressed at a temperature at which PVDF is melted. In this process, a binding agent is melted, and binding force is increased between electrode active materials and between the electrode materials and collector foil, thus stress within the electrodes is mitigated. A step 103 represents a cold-press process where the positive electrode and the negative electrode are pressured and they are cold- pressed at normal temperatures. In a step 106, an electrolyte is injected into a container. The injection of the electrolyte causes swelling of the electrodes and the closely contact of the electrodes with the container, thereby compression stress is developed between the electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン2次
電池の製造方法、特にサイクル特性に優れたリチウムイ
オン2次電池の製造方法に関する。
The present invention relates to a method for manufacturing a lithium ion secondary battery, and more particularly to a method for manufacturing a lithium ion secondary battery having excellent cycle characteristics.

【0002】[0002]

【従来の技術】従来、リチウム2次電池用電極を集電体
上に形成する際、電極活物質と結着剤を混合した電極材
に集電体を配し、これにプレスを施すことにより電極活
物質の密度を上げ、電流密度を上げる技術がある。
2. Description of the Related Art Conventionally, when an electrode for a lithium secondary battery is formed on a current collector, the current collector is arranged on an electrode material in which an electrode active material and a binder are mixed, and this is pressed. There is a technique for increasing the density of the electrode active material and increasing the current density.

【0003】例えば、特開昭62−226563号公報
には、リチウムと合金化可能な金属の粉末に黒鉛粉末及
び熱可塑性樹脂を混合した負極材を、ステンレスネット
からなる負極集電体をその内底面にスポット溶接して固
着した負極缶に盛込み、150℃,1ton/cm2の条件で
ホットプレスする技術が記載されている。
For example, Japanese Patent Application Laid-Open No. 62-226563 discloses a negative electrode material in which graphite powder and a thermoplastic resin are mixed with a powder of a metal that can be alloyed with lithium, and a negative electrode current collector made of a stainless steel net. A technique is described in which a negative electrode can is spot-welded to the bottom surface and is hot-pressed under the conditions of 150 ° C. and 1 ton / cm 2 .

【0004】このように電極材にホットプレスを施すこ
とにより、電極材中の結着剤を溶融させることができ、
電極活物質間及び電極活物質と集電体との結着力を増加
させることができる。しかし、このようにホットプレス
を施した電極をセパレータを介して容器内に配した場
合、容器に電解液を注入しても電極はほとんど膨潤しな
い為、電極及びセパレータと容器との密着力が高められ
ることにより生じる容器からの電極及びセパレータへの
圧縮応力は働かない。よって、電極とセパレータとの密
着性が悪く、正負極間の厚さがセパレータ厚と一致せず
不均一になる。この正負極間の厚さの不均一により、電
池の容量が安定せずサイクル特性が十分でないという問
題があった。
[0004] By subjecting the electrode material to hot pressing, the binder in the electrode material can be melted.
The binding force between the electrode active materials and between the electrode active material and the current collector can be increased. However, when the hot-pressed electrode is disposed in the container via the separator, the electrode hardly swells even when the electrolytic solution is injected into the container, so that the adhesion between the electrode and the separator and the container is increased. The resulting compressive stress from the container to the electrodes and separator does not work. Therefore, the adhesion between the electrode and the separator is poor, and the thickness between the positive and negative electrodes does not match the thickness of the separator and becomes non-uniform. Due to the uneven thickness between the positive and negative electrodes, there was a problem that the capacity of the battery was not stable and the cycle characteristics were not sufficient.

【0005】また、ホットプレスではなくコールドプレ
スを施した場合は、プレスにより電極材中に歪み応力が
残留し(ホットプレスでは加工中の熱により与えられた
歪み応力が除去される。)、電解液を注入した際、電極
が膨潤することにより容器と電極及びセパレータとの密
着力が高められ、容器から電極及びセパレータへ圧縮応
力が働き、正負極間の厚さが均一になる。しかし、電極
材にコールドプレスを施しただけでは電極材中の結着剤
を溶融させることができない為、電極活物質間及び電極
活物質と集電体との結着力は小さい。この為、充放電に
よる電極活物質の膨張収縮に伴い、繰り返し使ううちに
電極活物質間及び電極活物質と集電体との間で剥離が生
じ界面抵抗が増大してしまい、ホットプレスと同様にサ
イクル特性が十分でないという問題があった。
When cold pressing is performed instead of hot pressing, strain stress remains in the electrode material due to pressing (in hot pressing, strain stress given by heat during processing is removed), and electrolysis is performed. When the liquid is injected, the electrode swells to increase the adhesion between the container, the electrode, and the separator, and compressive stress acts on the electrode and the separator from the container, so that the thickness between the positive electrode and the negative electrode becomes uniform. However, since the binder in the electrode material cannot be melted only by performing cold pressing on the electrode material, the binding force between the electrode active materials and between the electrode active material and the current collector is small. For this reason, along with the expansion and contraction of the electrode active material due to charge and discharge, separation between the electrode active materials and between the electrode active material and the current collector occurs during repeated use, and the interface resistance increases. However, there is a problem that the cycle characteristics are not sufficient.

【0006】[0006]

【発明が解決しようとする課題】リチウムイオン2次電
池のサイクル特性を向上させることを課題とする。
An object of the present invention is to improve the cycle characteristics of a lithium ion secondary battery.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する請求
項1に記載のリチウムイオン2次電池の製造方法の特徴
は、電極活物質と結着剤とを含む電極材を集電体に配す
る行程と、該電極材が配された集電体を前記結着剤が溶
融する温度でホットプレスし電極を製造する行程と、該
電極にコールドプレスを施し該電極に歪み応力を与える
行程と、該歪み応力が与えられた電極を含む正極及び負
極をセパレータと共に容器内に配する行程と、該容器内
に電解液を注入することにより前記電極を膨潤させ前記
容器との間で圧縮応力を発生させる行程と、を有するこ
とである。
According to a first aspect of the present invention, there is provided a method of manufacturing a lithium ion secondary battery, comprising disposing an electrode material containing an electrode active material and a binder on a current collector. A process of hot-pressing the current collector on which the electrode material is disposed at a temperature at which the binder melts to produce an electrode, and a process of performing a cold press on the electrode to apply a strain stress to the electrode. Arranging a positive electrode and a negative electrode including the electrode subjected to the strain stress in a container together with a separator, and swelling the electrode by injecting an electrolytic solution into the container to reduce a compressive stress between the container and the container. And the step of generating.

【0008】また請求項2に記載のリチウムイオン2次
電池の製造方法の特徴は、電極活物質と結着剤とを含む
電極材を集電体に配する行程と、該電極材が配された集
電体をコールドプレスする行程と、該電極材を前記結着
剤が溶融する温度で加熱し電極を製造する行程と、該電
極にコールドプレスを施し該電極に歪み応力を与える行
程と、該歪み応力が与えられた電極を含む正極及び負極
をセパレータと共に容器内に配する行程と、該容器内に
電解液を注入することにより前記電極を膨潤させ前記容
器との間で圧縮応力を発生させる行程と、を有すること
である。
[0008] A feature of the method of manufacturing a lithium ion secondary battery according to the second aspect is that a step of disposing an electrode material containing an electrode active material and a binder on a current collector and the step of disposing the electrode material are performed. Cold pressing the current collector, heating the electrode material at a temperature at which the binder melts to produce an electrode, cold pressing the electrode to apply strain stress to the electrode, Disposing the positive electrode and the negative electrode including the electrode to which the strain stress is applied together with the separator in a container, and injecting an electrolytic solution into the container to swell the electrode and generate a compressive stress between the container and the container. And the process of causing

【0009】[0009]

【発明の実施の形態】以下、本件の実施の形態(以下実
施形態という)について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention (hereinafter referred to as an embodiment) will be described below.

【0010】実施形態1.本発明のリチウムイオン2次
電池の製造方法では、電極活物質と結着剤とを含む電極
材を集電体に配したものにホットプレスを行った後に結
着剤が溶融する温度で加熱することにより、電極活物質
間及び電極活物質と集電体との十分な結着力を得ること
ができる。また、その後こうして得られた電極にコール
ドプレスを施すことにより、電極に歪み応力を残留さ
せ、この電極を容器内に挿入した後、電解液を注入する
ことにより電極が膨潤し、容器との密着力が向上する。
電極と容器との密着力が向上することにより、容器から
電極へ圧縮応力が生じ、電極間厚さを均一に保つことが
できるようになる。
Embodiment 1 In the method for manufacturing a lithium ion secondary battery according to the present invention, the electrode material including the electrode active material and the binder is disposed on the current collector, and then hot pressed at a temperature at which the binder is melted. Thereby, a sufficient binding force between the electrode active materials and between the electrode active materials and the current collector can be obtained. In addition, the electrode thus obtained is subjected to a cold press to leave strain stress on the electrode. After the electrode is inserted into the container, the electrode is swelled by injecting the electrolyte, and the electrode adheres to the container. Power improves.
By improving the adhesion between the electrode and the container, a compressive stress is generated from the container to the electrode, and the thickness between the electrodes can be kept uniform.

【0011】即ち、本発明により電極活物質間及び電極
活物質と集電体との十分な結着力の確保と、電極間厚さ
の均一化が両立でき、サイクル特性を向上させることが
できる。
That is, according to the present invention, a sufficient binding force between the electrode active materials and between the electrode active material and the current collector can be ensured, and the thickness between the electrodes can be made uniform, so that the cycle characteristics can be improved.

【0012】ここで、ホットプレス又はコールドプレス
後加熱し、その後コールドプレスを施す処理は正極及び
負極のいずれか一方以上に行えば効果を有し、両方に行
えば一方に行ったものよりもなおいっそうの効果を有す
る。
Here, the process of heating after hot pressing or cold pressing and then performing cold pressing has an effect when performed on at least one of the positive electrode and the negative electrode, and when performed on both, it is more effective than that performed on one of them. Has even more effect.

【0013】また、上記ホットプレスまたはコールドプ
レス後に加熱を施す工程は、電極活物質間及び電極活物
質と集電体との密着力を向上させる為、結着剤の融点以
上の温度となるようにし、電極の充填率が30〜60体
積%(空孔率が40〜70体積%)となるように条件を
設定するのが望ましい。
Further, the step of heating after the hot press or the cold press is performed so that the temperature is higher than the melting point of the binder in order to improve the adhesion between the electrode active materials and between the electrode active material and the current collector. It is desirable to set conditions so that the electrode filling rate is 30 to 60% by volume (porosity is 40 to 70% by volume).

【0014】更に、その後のコールドプレス工程は、電
解液注入後に電極が膨潤するよう電極の充填率が40〜
70体積%となるようにプレスするのが望ましい。
Further, in the subsequent cold pressing step, the filling rate of the electrode is set to 40 to 50 so that the electrode swells after the electrolyte is injected.
It is desirable to press to 70% by volume.

【0015】実施形態2.実施形態1でホットプレスを
行う代わりに、コールドプレスを行い、その後結着剤が
溶融する温度で加熱して電極を製造することもできる。
この場合はコールドプレスで電極材中に歪み応力が残留
するが、加熱によりこの歪み応力が除去される為、実施
形態1と同様にこの後の処理で電極に歪み応力を付与す
る為のコールドプレスが必要である。実施形態2も1と
同様の理由で、サイクル特性を向上させることができ
る。
Embodiment 2 Instead of performing hot pressing in the first embodiment, cold pressing may be performed, and then heating may be performed at a temperature at which the binder melts to manufacture an electrode.
In this case, the strain stress remains in the electrode material by the cold press. However, since the strain stress is removed by heating, the cold press for applying the strain stress to the electrode in the subsequent processing is performed similarly to the first embodiment. is necessary. In the second embodiment, the cycle characteristics can be improved for the same reason as in the first embodiment.

【0016】以下に、上記実施形態の具体例を実施例と
して説明する。
Hereinafter, a specific example of the above embodiment will be described as an example.

【実施例】(実施例1)図1に本件発明に係る実施例1
のリチウムイオン2次電池製造過程のフローチャートを
示す。図1において、ステップ100では、集電箔上に
電極活性物質と結着剤と溶剤からなるペーストを塗布す
る。
(Embodiment 1) FIG. 1 shows Embodiment 1 according to the present invention.
3 is a flowchart of a lithium ion secondary battery manufacturing process. In FIG. 1, in step 100, a paste made of an electrode active material, a binder and a solvent is applied on a current collector foil.

【0017】正極の場合、85wt%のLiMn2O4
を電極活性物質とし、10wt%のカーボンブラックを
導電化材として、結着剤PVDFを5wt%溶かしたN
−メチルピロリドン(NMP)溶液中に混合,混練して
ペースト状とした。このペーストをアルミニウム集電箔
上に塗布した。
In the case of the positive electrode, 85 wt% of LiMn 2 O 4
Is used as an electrode active material, 10 wt% of carbon black is used as a conductive material, and 5 wt% of a binder PVDF is dissolved in N.
-Methylpyrrolidone (NMP) solution was mixed and kneaded to form a paste. This paste was applied on an aluminum current collector foil.

【0018】負極の場合、90wt%の天然黒鉛を電極
活性物質とし、結着剤PVDFを10wt%溶かしたN
−メチルピロリドン(NMP)溶液中に混合,混練して
ペースト状とした。このペーストを銅集電箔上に塗布し
た。
In the case of the negative electrode, 90% by weight of natural graphite is used as an electrode active material, and Nb in which 10% by weight of a binder PVDF is dissolved is used.
-Methylpyrrolidone (NMP) solution was mixed and kneaded to form a paste. This paste was applied on a copper current collector foil.

【0019】ステップ101では、上記ペーストを集電
箔上で乾燥した。
In step 101, the paste was dried on a current collector foil.

【0020】ステップ102は、ホットプレス工程を表
す。正極は0.5ton/cm2、負極は0.1ton/cm2の圧
力をかけ、両者ともPVDFが溶融する175℃でホッ
トプレスを行った。この工程で結着剤は溶融し、電極活
物質間及び電極活物質と集電箔との結着力が向上すると
ともに、電極内部の応力は緩和される。
Step 102 represents a hot pressing process. Positive electrode 0.5 ton / cm 2, the negative electrode applying a pressure of 0.1ton / cm 2, PVDF both were subjected to hot pressing at 175 ° C. to melt. In this step, the binder is melted, the binding force between the electrode active materials and between the electrode active material and the current collector foil is improved, and the stress inside the electrodes is reduced.

【0021】ステップ103は、コールドプレス工程を
表す。正極は1ton/cm2、負極は0.2ton/cm2の圧力
をかけ、常温でコールドプレスを行った。この工程での
コールドプレスの加圧力は、後の工程で電解液を注入し
電極を膨張させることにより容器との間で発生させたい
応力量とする。
Step 103 represents a cold press process. The positive electrode 1 ton / cm 2, the negative electrode applying a pressure of 0.2ton / cm 2, was cold pressed at room temperature. The pressing force of the cold press in this step is set to the amount of stress to be generated between the cold press and the container by injecting the electrolyte and expanding the electrode in the subsequent step.

【0022】ステップ104では、こうして出来上がっ
た正極及び負極をセパレータを介して対向させ捲回する
ことにより捲回式電極を得た。
In step 104, the thus-prepared positive electrode and negative electrode were opposed to each other with a separator interposed therebetween and wound to obtain a wound electrode.

【0023】ステップ105では、上記捲回式電極を円
筒型容器に挿入した。
In step 105, the wound electrode was inserted into a cylindrical container.

【0024】ステップ106では、容器内にエチレンカ
ーボネート(EC)とジエチレンカーボネート(DE
C)を体積比1:1で混合した溶媒に1mol/lのLiB
F4を溶解させた電解液を注入した。電解液を注入する
ことによって、電極が膨張し電極と容器とが密着するこ
とにより電極間に圧縮応力が発生した。
In step 106, ethylene carbonate (EC) and diethylene carbonate (DE)
C) in a solvent mixed at a volume ratio of 1: 1 with 1 mol / l LiB
An electrolyte in which F4 was dissolved was injected. The injection of the electrolytic solution caused the electrodes to expand, causing the electrodes and the container to come into close contact with each other, thereby generating a compressive stress between the electrodes.

【0025】(実施例2)図2に本件発明に係る実施例
2の製造過程のフローチャートを示す。
(Embodiment 2) FIG. 2 shows a flowchart of a manufacturing process of Embodiment 2 according to the present invention.

【0026】実施例2では実施例1のステップ102の
ホットプレス代わりにステップ202として第1のコー
ルドプレスを行い、ステップ203として電極の加熱工
程が加わったのみで、他は実施例1と同様の条件で製造
した。
In the second embodiment, the first cold pressing is performed as a step 202 instead of the hot pressing in the step 102 of the first embodiment, and only a step of heating an electrode is added as a step 203. Manufactured under conditions.

【0027】ステップ202では、正極は1ton/cm2
負極は0.2ton/cm2の圧力をかけ、常温でコールドプ
レスを行った。また、ステップ203では、正極及び負
極をPVDFが溶融する175℃で加熱した。 (比較例1)比較例1では、電極にホットプレスのみを
施した例を示す。比較例1では、実施例1のステップ1
03のコールドプレスを行わなかった他は実施例1と同
様の条件で製造した。
In step 202, the positive electrode is 1 ton / cm 2 ,
The negative electrode was subjected to a cold press at room temperature by applying a pressure of 0.2 ton / cm 2 . In Step 203, the positive electrode and the negative electrode were heated at 175 ° C. at which PVDF melted. (Comparative Example 1) Comparative Example 1 shows an example in which only hot pressing was performed on the electrode. In Comparative Example 1, Step 1 of Example 1 was performed.
03 was manufactured under the same conditions as in Example 1 except that cold pressing was not performed.

【0028】(比較例2)比較例2では、電極にコール
ドプレスのみを施した例を示す。比較例2では、実施例
2のステップ203の加熱工程及びステップ204の第
2のコールドプレスを行わなかった他は実施例2と同様
の条件で製造した。
(Comparative Example 2) In Comparative Example 2, an example in which only a cold press is applied to an electrode is shown. Comparative Example 2 was manufactured under the same conditions as in Example 2 except that the heating step in Step 203 of Example 2 and the second cold pressing in Step 204 were not performed.

【0029】(評価)これら作製されたリチウムイオン
2次電池のサイクル特性を評価した。
(Evaluation) The cycle characteristics of the manufactured lithium ion secondary batteries were evaluated.

【0030】表1には、サイクル特性の評価結果が示さ
せる。サイクル特性は、(1/3)C、すなわち3時間
で満充電できる定電流を充放電させる工程を1サイクル
とし、初期容量に対する200サイクル後の容量で評価
した。
Table 1 shows the evaluation results of the cycle characteristics. The cycle characteristics were evaluated by (1/3) C, that is, the step of charging and discharging a constant current capable of being fully charged in 3 hours was defined as one cycle, and the capacity was 200 cycles after the initial capacity.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から分かるように、本実施例はいずれ
の比較例に比べてもサイクル特性が大きく向上している
ことが分かる。
As can be seen from Table 1, it can be seen that the present embodiment has significantly improved cycle characteristics as compared with any of the comparative examples.

【0033】比較例1でサイクル特性が低いのは、正負
極間の厚さが不均一である為、充放電容量が安定しない
ことによると考えられる。また、比較例2でサイクル特
性が低いのは、電極活物質間及び電極活物質と集電箔と
の結着力が小さく、繰り返し使ううちに電極活物質間及
び電極活物質と集電箔との間で剥離が生じ界面抵抗が増
大してしまうことによると考えられる。
It is considered that the reason why the cycle characteristics are low in Comparative Example 1 is that the charge / discharge capacity is not stable because the thickness between the positive and negative electrodes is not uniform. Further, the cycle characteristics in Comparative Example 2 were low because the binding force between the electrode active materials and between the electrode active material and the current collector foil was small, and between the electrode active materials and between the electrode active material and the current collector foil during repeated use. It is considered that peeling occurs between the layers and the interface resistance increases.

【0034】これに対して、実施例1及び2のサイクル
特性が高いのは、正負極間の厚さの均一化と電極活物質
間及び電極活物質と集電箔との結着力向上が両立してい
る為だと考えられる。
On the other hand, the high cycle characteristics of Examples 1 and 2 are because the uniformity of the thickness between the positive and negative electrodes and the improvement of the binding force between the electrode active materials and between the electrode active material and the current collector foil are both compatible. It is thought that it is because.

【0035】[0035]

【発明の効果】即ち、本発明のリチウムイオン2次電池
の製造方法では、電極活物質間及び電極活物質と集電体
との十分な結着力が得られるとともに、容器から電極へ
圧縮応力を生じさせ、正負極間の厚さを均一化すること
ができ、サイクル特性を向上させることができる。
That is, in the method for manufacturing a lithium ion secondary battery of the present invention, a sufficient binding force between the electrode active materials and between the electrode active material and the current collector can be obtained, and a compressive stress is applied from the container to the electrodes. As a result, the thickness between the positive and negative electrodes can be made uniform, and the cycle characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例1の製造過程のフローチャートを
示す図である。
FIG. 1 is a view showing a flowchart of a manufacturing process according to a first embodiment of the present invention.

【図2】本発明実施例2の製造過程のフローチャートを
示す図である。
FIG. 2 is a view illustrating a flowchart of a manufacturing process according to a second embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極活物質と結着剤とを含む電極材を集
電体に配する行程と、該電極材が配された集電体を前記
結着剤が溶融する温度でホットプレスし電極を製造する
行程と、該電極にコールドプレスを施し該電極に歪み応
力を与える行程と、該歪み応力が与えられた電極を含む
正極及び負極をセパレータと共に容器内に配する行程
と、該容器内に電解液を注入することにより前記電極を
膨潤させ前記容器との間で圧縮応力を発生させる行程
と、を有するリチウムイオン2次電池の製造方法。
1. A process of disposing an electrode material containing an electrode active material and a binder on a current collector, and hot-pressing the current collector on which the electrode material is disposed at a temperature at which the binder melts. A step of producing an electrode, a step of applying a strain to the electrode by cold pressing the electrode, a step of disposing a positive electrode and a negative electrode including the electrode to which the strain is applied in a container together with a separator, A step of injecting an electrolytic solution into the inside to swell the electrodes and generate a compressive stress between the electrodes and the container.
【請求項2】 電極活物質と結着剤とを含む電極材を集
電体に配する行程と、該電極材が配された集電体をコー
ルドプレスする行程と、該電極材を前記結着剤が溶融す
る温度で加熱し電極を製造する行程と、該電極にコール
ドプレスを施し該電極に歪み応力を与える行程と、該歪
み応力が与えられた電極を含む正極及び負極をセパレー
タと共に容器内に配する行程と、該容器内に電解液を注
入することにより前記電極を膨潤させ前記容器との間で
圧縮応力を発生させる行程と、を有するリチウムイオン
2次電池の製造方法。
2. A step of disposing an electrode material containing an electrode active material and a binder on a current collector; a step of cold pressing the current collector on which the electrode material is disposed; A step of manufacturing the electrode by heating at a temperature at which the adhesive is melted, a step of performing a cold press on the electrode to apply a strain stress to the electrode, and a container including a positive electrode and a negative electrode including the electrode provided with the strain stress together with a separator. And a step of injecting an electrolytic solution into the container to swell the electrodes and generate a compressive stress with the container.
JP08730898A 1998-03-31 1998-03-31 Method for manufacturing lithium ion secondary battery Expired - Fee Related JP3956478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08730898A JP3956478B2 (en) 1998-03-31 1998-03-31 Method for manufacturing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08730898A JP3956478B2 (en) 1998-03-31 1998-03-31 Method for manufacturing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH11288739A true JPH11288739A (en) 1999-10-19
JP3956478B2 JP3956478B2 (en) 2007-08-08

Family

ID=13911215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08730898A Expired - Fee Related JP3956478B2 (en) 1998-03-31 1998-03-31 Method for manufacturing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3956478B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216957A (en) * 2000-02-04 2001-08-10 Matsushita Electric Ind Co Ltd Method for manufacturing electrode for secondary battery of nonaqueous electrolyte
JP2002025540A (en) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery and electrode plate for nonaqueous electrolyte secondary battery
JP2005276516A (en) * 2004-03-23 2005-10-06 Nec Tokin Corp Secondary battery and its manufacturing method
JP2011222388A (en) * 2010-04-13 2011-11-04 Sharp Corp Laminated secondary battery
JP2012142228A (en) * 2011-01-05 2012-07-26 Toyota Motor Corp Method for manufacturing electrode body, and method for manufacturing battery
CN104425846A (en) * 2013-08-22 2015-03-18 三星Sdi株式会社 Method for preparing lithium secondary battery and lithium secondary battery prepared with method
US20150280208A1 (en) * 2014-03-26 2015-10-01 Hitachi, Ltd. Method and apparatus for manufacturing negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN114527178A (en) * 2022-03-17 2022-05-24 星恒电源股份有限公司 Porous reference electrode and preparation method thereof, and battery and preparation method thereof
CN115224366A (en) * 2021-04-16 2022-10-21 北京好风光储能技术有限公司 Preparation method of battery
JP2022170170A (en) * 2021-04-28 2022-11-10 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrode sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216957A (en) * 2000-02-04 2001-08-10 Matsushita Electric Ind Co Ltd Method for manufacturing electrode for secondary battery of nonaqueous electrolyte
JP4649696B2 (en) * 2000-02-04 2011-03-16 パナソニック株式会社 Method for producing electrode for non-aqueous electrolyte secondary battery
JP2002025540A (en) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery and electrode plate for nonaqueous electrolyte secondary battery
JP2005276516A (en) * 2004-03-23 2005-10-06 Nec Tokin Corp Secondary battery and its manufacturing method
JP2011222388A (en) * 2010-04-13 2011-11-04 Sharp Corp Laminated secondary battery
JP2012142228A (en) * 2011-01-05 2012-07-26 Toyota Motor Corp Method for manufacturing electrode body, and method for manufacturing battery
CN104425846A (en) * 2013-08-22 2015-03-18 三星Sdi株式会社 Method for preparing lithium secondary battery and lithium secondary battery prepared with method
CN104425846B (en) * 2013-08-22 2019-01-29 三星Sdi株式会社 The lithium secondary battery for preparing the method for lithium secondary battery and being prepared using this method
US20150280208A1 (en) * 2014-03-26 2015-10-01 Hitachi, Ltd. Method and apparatus for manufacturing negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN115224366A (en) * 2021-04-16 2022-10-21 北京好风光储能技术有限公司 Preparation method of battery
JP2022170170A (en) * 2021-04-28 2022-11-10 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrode sheet
CN114527178A (en) * 2022-03-17 2022-05-24 星恒电源股份有限公司 Porous reference electrode and preparation method thereof, and battery and preparation method thereof
CN114527178B (en) * 2022-03-17 2024-03-29 星恒电源股份有限公司 Porous reference electrode and preparation method thereof, battery and preparation method thereof

Also Published As

Publication number Publication date
JP3956478B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
US6689176B2 (en) Method for manufacturing a battery
CN100380715C (en) Lithium secondary battery having ptc powder and manufacturing method thereof
CN1327565C (en) Battery unit, lithium polymer battery therewith and manufacture thereof
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
JP3956478B2 (en) Method for manufacturing lithium ion secondary battery
CN111313101B (en) Low-internal-resistance solid sulfide electrolyte lithium battery cell, battery and preparation method thereof
JP2013065478A (en) Method for manufacturing lithium ion secondary battery
KR101750203B1 (en) Method and apparatus for manufacturing of high density electrodes for reserve battery
CN118039793A (en) Composite positive electrode material of all-solid-state lithium-sulfur battery, preparation method of composite positive electrode material and battery
WO1999048162A1 (en) Lithium ion battery and method of manufacture thereof
JP2000149905A (en) Solid electrolyte battery
JPS60112261A (en) Method of producing solid state battery
JP3263198B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3109497B2 (en) Lithium secondary battery and method of manufacturing the same
KR100362286B1 (en) Method for Manufacturing pole plate of Lithium Secondry Battery
JP2001216957A (en) Method for manufacturing electrode for secondary battery of nonaqueous electrolyte
CN109817883B (en) Lithium battery pole piece, preparation method thereof and lithium battery
JP2002025540A (en) Manufacturing method of nonaqueous electrolyte secondary battery and electrode plate for nonaqueous electrolyte secondary battery
JP2808610B2 (en) Manufacturing method of lithium secondary battery
JPH05159803A (en) Manufacture of solid secondary battery
CN112635842B (en) Solid-state battery and processing method thereof
KR101373723B1 (en) Manufacturing method of cathode of lithium primary battery
JP2780391B2 (en) Manufacturing method of solid state secondary battery
JP2001210317A (en) Manufacturing method of electrode for nonaqueous electrolytic solution secondary battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees