Nothing Special   »   [go: up one dir, main page]

JPH11275828A - Rotatary machine - Google Patents

Rotatary machine

Info

Publication number
JPH11275828A
JPH11275828A JP7747898A JP7747898A JPH11275828A JP H11275828 A JPH11275828 A JP H11275828A JP 7747898 A JP7747898 A JP 7747898A JP 7747898 A JP7747898 A JP 7747898A JP H11275828 A JPH11275828 A JP H11275828A
Authority
JP
Japan
Prior art keywords
sin
cos
current
μim
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7747898A
Other languages
Japanese (ja)
Other versions
JP3480302B2 (en
Inventor
Masaki Nakano
正樹 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP07747898A priority Critical patent/JP3480302B2/en
Priority to DE69912504T priority patent/DE69912504T2/en
Priority to EP99105953A priority patent/EP0945963B1/en
Priority to US09/275,785 priority patent/US6049152A/en
Publication of JPH11275828A publication Critical patent/JPH11275828A/en
Application granted granted Critical
Publication of JP3480302B2 publication Critical patent/JP3480302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the magnetic pole of a rotor and a revolving magnetic field produced for driving the rotor from affecting the rotation of the other rotor, when two rotors are provided. SOLUTION: Having a body 1, this rotating machine is constituted of two rotors 3, 4 and a stator 2 structured in three layers on the same shaft. Then, a single coil 6 is formed on the stator 2 and compound currents are caused to flow in this single coil 6, in such a way that the same number of revolving magnetic fields with the number of rotors 3, 4 are produced. In this case, the ratio of the number of magnetic poles of the two rotors 3, 4 is expressed as a combination of K:L (where K is an even number, and L is an odd number).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は回転電機に関す
る。
The present invention relates to a rotating electric machine.

【0002】[0002]

【従来の技術】同一定格トルクの同期モータを独立に2
つ設け、それぞれを同期回転させるようにしたものが提
案されている(特開平9−275673号公報参照)。
[Prior Art] Synchronous motors with the same rated torque
There has been proposed a configuration in which a plurality is provided and each is rotated synchronously (see Japanese Patent Application Laid-Open No. 9-275573).

【0003】[0003]

【発明が解決しようとする課題】ところで、構造をコン
パクトにするため、2つのロータと1つのステータを三層
構造かつ同一の軸上に構成することが考えられる(特開
平8−340663号公報参照)。
By the way, in order to make the structure compact, it is conceivable that two rotors and one stator are formed in a three-layer structure on the same shaft (see Japanese Patent Application Laid-Open No. 8-34063). ).

【0004】この場合、2つのロータを別々に同期回転
させるため、ステータには各ロータに専用のコイルを用
意するとともに、この各専用コイルに流す電流を制御す
るインバータ(電流制御器)を2つ備えさせなければな
らない。
In this case, in order to separately rotate the two rotors synchronously, a dedicated coil is prepared for each rotor in the stator, and two inverters (current controllers) for controlling the current flowing through each dedicated coil are provided. You have to be prepared.

【0005】しかしながら、それぞれのコイル、それぞ
れのインバータに電流を流すのでは、電流による損失
(銅損、スイッチングロス)をまぬがれない。
However, when current flows through each coil and each inverter, losses due to the current (copper loss and switching loss) cannot be avoided.

【0006】そこで、コイルを共用化するため単一のコ
イルとし、このコイルに複数の回転磁場が発生するよう
に複合電流を流すことにより、電流による損失を防止す
ることが考えられる。
Therefore, it is conceivable to prevent a loss due to a current by forming a single coil in order to share the coil and supplying a composite current to the coil so as to generate a plurality of rotating magnetic fields.

【0007】たとえば、図1に示したように、円筒状の
ステータ2の外周側と内周側に所定のギャップをおいて
永久磁石からなるロータ3、4を配置し、ステータ2に
は、同一円周上に、単一のコイル6を形成するのであ
る。
For example, as shown in FIG. 1, rotors 3 and 4 made of permanent magnets are arranged at a predetermined gap on the outer peripheral side and the inner peripheral side of a cylindrical stator 2. A single coil 6 is formed on the circumference.

【0008】この場合、外側ロータ3と内側ロータ4の磁
極数の比によっては、内側ロータ4(あるいは内側回転磁
界)による影響を受けて外側ロータ3の回転にトルク変動
を生じたり、この逆に外側ロータ3(あるいは外側回転磁
界)による影響を受けて内側ロータ4の回転にトルク変動
を生じたりすることが考えられ、このようにトルク変動
が生じるのでは、一定回転で運転させることができな
い。
In this case, depending on the ratio of the number of magnetic poles between the outer rotor 3 and the inner rotor 4, the rotation of the outer rotor 3 may be affected by the inner rotor 4 (or the inner rotating magnetic field) to cause a torque fluctuation, or vice versa. It is conceivable that the rotation of the inner rotor 4 may undergo torque fluctuations under the influence of the outer rotor 3 (or the outer rotating magnetic field). If such torque fluctuations occur, the motor cannot be operated at a constant rotation.

【0009】そこで本発明は、2つのロータの磁極数の
比をK:L(Kは偶数、Lは奇数)の組み合わせとすること
により、一方のロータの磁極やそのロータを駆動するた
めに作る回転磁界が、他のロータの回転に影響しないよ
うにすることを目的とする。
Therefore, the present invention is made to drive the magnetic poles of one of the rotors and the other by setting the ratio of the number of magnetic poles of the two rotors to a combination of K: L (K is an even number and L is an odd number). An object is to prevent a rotating magnetic field from affecting the rotation of another rotor.

【0010】[0010]

【課題を解決するための手段】第1の発明は、2つのロ
ータと1つのステータを三層構造かつ同一の軸上に構成
するとともに、前記ステータに単一のコイルを形成し、
この単一のコイルに前記ロータの数と同数の回転磁場が
発生するように複合電流を流すようにした回転電機にお
いて、前記2つのロータの磁極数の比がK:L(Kは偶数、
Lは奇数)の組み合わせである。
According to a first aspect of the present invention, two rotors and one stator are formed in a three-layer structure on the same axis, and a single coil is formed on the stator.
In a rotating electric machine in which a composite current flows so as to generate the same number of rotating magnetic fields as the number of rotors in this single coil, the ratio of the number of magnetic poles of the two rotors is K: L (K is an even number,
L is an odd number).

【0011】第2の発明では、第1の発明において前記
複合電流のうち磁極数の少ない側のロータ駆動電流が2K
×3相の交流である。
According to a second aspect, in the first aspect, the rotor drive current on the side of the composite current having the smaller number of magnetic poles is 2K.
× 3-phase alternating current.

【0012】第3の発明では、第1の発明において磁極
数の少ない側のロータの1極当たり3相になるように前記
コイルを区切り、その区切られた中の各コイルに、磁極
数の少ない側のロータ駆動電流をその区切られたコイル
の数で割った電流値を流す。
According to a third aspect of the present invention, in the first aspect, the coils are divided into three phases per pole of the rotor having the smaller number of magnetic poles, and each of the divided coils has a smaller number of magnetic poles. A current value is obtained by dividing the rotor driving current on the side by the number of divided coils.

【0013】[0013]

【発明の効果】第1の発明では、一方のロータの磁極や
そのロータを駆動するために作る回転磁界が、他のロー
タの回転に影響することがなく、これによっていずれの
ロータについても一定回転での運転が可能となる。
According to the first aspect of the present invention, the magnetic poles of one of the rotors and the rotating magnetic field generated for driving the rotor do not affect the rotation of the other rotor. It becomes possible to drive at

【0014】磁極数の少ない側のロータ駆動電流が3相
の交流であるときは、特定のコイルに電流が集中するの
であるが、第2の発明によれば、2K×3相の交流(たと
えばKが2のとき12相交流)であるので、特定のコイルに
電流が集中することがなく、これによって銅損を抑える
ことができる。
When the rotor drive current on the side with the smaller number of magnetic poles is a three-phase alternating current, the current concentrates on a specific coil. According to the second invention, a 2K × 3 phase alternating current (for example, Since K is 2 and 12-phase alternating current), current does not concentrate on a specific coil, thereby suppressing copper loss.

【0015】また、理論解析によれば、磁極数の少ない
側のロータ駆動電流が3相の交流であるときと比較し
て、磁極数の少ない側のロータに同じ駆動トルクを発生
させるのに駆動電流がたとえばK=2のとき1/4で足りる
ことから、電流整流器をさらに小型化できる。
According to the theoretical analysis, the drive current for generating the same drive torque on the rotor with the smaller number of magnetic poles is smaller than that when the rotor drive current on the side with the smaller number of magnetic poles is three-phase AC. When the current is, for example, K = 2, 1/4 is sufficient, so that the current rectifier can be further miniaturized.

【0016】第3の発明でも、特定のコイルに電流が集
中することがなく、これによって銅損を抑えることがで
きる。
Also in the third invention, the current is not concentrated on a specific coil, thereby suppressing copper loss.

【0017】[0017]

【発明の実施の形態】図1は回転電機本体1の断面図で
ある。同図において、円筒状のステータ2の外側と内側
に所定の間隔をおいてロータ3、4が配置され(3層構
造)、外側と内側の各ロータ3、4は全体を被覆する外枠
5(図3参照)に対して回転可能にかつ同軸に設けられ
ている。
FIG. 1 is a sectional view of a rotary electric machine main body 1. FIG. In the figure, rotors 3 and 4 are arranged at predetermined intervals on the outside and inside of a cylindrical stator 2 (three-layer structure), and each of the outside and inside rotors 3 and 4 is an outer frame that covers the whole.
5 (see FIG. 3) and rotatably and coaxially.

【0018】内側ロータ4は半周をS極、もう半周をN極
とした一対の永久磁石で形成され、これに対して、外側
ロータ3は内側ロータ4の一極当たり2倍の極数を持つよ
うに永久磁石極が配置される。つまり、外側ロータ3のS
極、N極は各2個であり、90度毎にS極とN極が入れ替わる
ように構成されている。
The inner rotor 4 is formed of a pair of permanent magnets having a half circumference of S pole and another half circumference of N pole, while the outer rotor 3 has twice the number of poles per one pole of the inner rotor 4. The permanent magnet poles are arranged as follows. That is, S of the outer rotor 3
There are two poles and two N poles, and the S pole and the N pole are switched every 90 degrees.

【0019】このように各ロータ3、4の磁極を配置する
と、内側ロータ4の磁石は外側ロータ3の磁石により回転
力を与えられることがなく、この逆に外側ロータ3の磁
石が内側ロータ4の磁石により回転力を与えられること
もない。
By arranging the magnetic poles of the rotors 3 and 4 in this manner, the magnet of the inner rotor 4 is not given a rotational force by the magnet of the outer rotor 3 and, conversely, the magnet of the outer rotor 3 is No rotational force is given by the magnet.

【0020】たとえば、内側ロータ4の磁石が外側ロー
タ3に及ぼす影響を考えてみる。簡単のため内側ロータ4
は固定して考える。まず、内側ロータ4のS極とこれに対
峙する外側ロータ3の上側磁石SNとの関係において、図
示の状態で仮に内側ロータ4のS極が出す磁力を受けて、
外側ロータの上側磁石SNが時計方向に回転しようとした
とすると、内側ロータ4のN極とこれに対峙する外側ロー
タ3の下側磁石SNとの関係においては、内側ロータ4のN
極により外側ロータ3の下側磁石SNが反時計方向に回転
しようとする。つまり、内側ロータ4のS極が外側ロータ
3の上側磁石に及ぼす磁力と内側ロータ4のN極が外側ロ
ータ3の下側磁石に及ぼす磁力とがちょうど相殺するこ
とになり、外側ロータ3は内側ロータ4と関係なく、ステ
ータ2との関係だけで制御可能となるわけである。この
ことは、後述するようにステータコイルに発生する回転
磁場とロータとの間でも同じである。
For example, consider the effect of the magnet of the inner rotor 4 on the outer rotor 3. Inner rotor 4 for simplicity
Is fixed. First, in the relationship between the S pole of the inner rotor 4 and the upper magnet SN of the outer rotor 3 opposed thereto, temporarily receive the magnetic force generated by the S pole of the inner rotor 4 in the illustrated state,
If the upper magnet SN of the outer rotor attempts to rotate in the clockwise direction, the relationship between the N pole of the inner rotor 4 and the lower magnet SN of the outer rotor 3 facing the N pole indicates that
The pole causes the lower magnet SN of the outer rotor 3 to rotate counterclockwise. In other words, the south pole of the inner rotor 4 is
The magnetic force exerted on the upper magnet 3 and the magnetic force exerted by the N pole of the inner rotor 4 on the lower magnet of the outer rotor 3 exactly cancel each other, so that the outer rotor 3 has no relation to the inner rotor 4 but has a relation to the stator 2. It is possible to control only by. This is the same between the rotating magnetic field generated in the stator coil and the rotor as described later.

【0021】ステータ2は、外側ロータ3の1磁極当たり3
個のコイル6で構成され、合計12個(=3×4)のコイル6
が同一の円周上に等分に配置されている。なお、7はコ
イルが巻回されるコアで、コイル6と同数のコア7が円周
上に等分に所定の間隔(ギャップ)8をおいて配列され
ている。
The stator 2 has three magnetic poles per magnetic pole of the outer rotor 3.
Consisting of six coils 6, a total of 12 (= 3 × 4) coils 6
Are equally spaced on the same circumference. Reference numeral 7 denotes a core around which the coil is wound, and the same number of cores 7 as the coil 6 are arranged on the circumference at equal intervals with a predetermined interval (gap) 8.

【0022】なお、後述するように、12個のコイルは番
号で区別しており、この場合に6番目のコイルという意
味でコイル6が出てくる。構成要素としてのコイル6とい
う表現と紛らわしいが、意味するところは異なってい
る。
As will be described later, the twelve coils are distinguished by numbers, and in this case, the coil 6 comes out in the meaning of the sixth coil. Although confusing with the expression coil 6 as a component, the meaning is different.

【0023】これら12個のコイルには次のような複合電
流I1〜I12を流す。
The following composite currents I 1 to I 12 flow through these 12 coils.

【0024】まず内側ロータ4に対する回転磁場を発生
させる電流(三相交流)を流すため、[1,2]=[7
8]、[34]=[9,10]、[5,6]=[1112]の3
組のコイルに120度ずつ位相のずれた電流Id、If、Ieを
設定する。
First, in order to supply a current (three-phase alternating current) for generating a rotating magnetic field to the inner rotor 4, [1, 2] = [ 7 ,
8 ], [ 3 , 4 ] = [9, 10], [5, 6] = [ 11 , 12 ]
The currents Id, If, and Ie, which are out of phase by 120 degrees, are set in the set coils.

【0025】ここで、番号の下に付けたアンダーライン
は反対方向に電流を流すことを意味させている。たとえ
ば、1組のコイル[1,2]=[78]に電流Idを流すと
は、コイル1からコイル7に向けてIdの半分の電流を、か
つコイル2からコイル8に向けてIdのもう半分の電流を流
すことである。1と2、78が円周上でそれぞれ近い位置
にあるので、この電流供給により、内側ロータ4の磁極
と同数(2極)の回転磁場を生じさせることが可能とな
る。
Here, an underline below the number means that a current flows in the opposite direction. For example, flowing a current Id through a set of coils [1, 2] = [ 7 , 8 ] means that half of the current Id flows from coil 1 to coil 7 , and Id flows from coil 2 to coil 8. Is to pass the other half of the current. Since 1 and 2, 7 and 8 are close to each other on the circumference, it is possible to generate the same number (two poles) of rotating magnetic fields as the number of magnetic poles of the inner rotor 4 by this current supply.

【0026】次に、外側ロータ3に対する回転磁場を発
生させる電流(三相交流)を流すため、[1]=[4]=
[7]=[10]、[2]=[5]=[8]=[11]、[3]
=[6]=[9]=[12]の3組のコイルに120度ずつ位相
がずれた電流Ia、Ic、Ibを設定する。
Next, in order to flow a current (three-phase alternating current) for generating a rotating magnetic field for the outer rotor 3, [1] = [ 4 ] =
[7] = [ 10 ], [ 2 ] = [5] = [ 8 ] = [11], [3]
Currents Ia, Ic, and Ib, which are out of phase by 120 degrees, are set in three sets of coils of = [ 6 ] = [9] = [ 12 ].

【0027】たとえば、1組のコイル[1]=[4]=
[7]=[10]に電流Iaを流すとは、コイル1からコイル
4にIaの電流をかつコイル7からコイル10に向けてもIaの
電流を流すことである。コイル1と7、コイル410がそ
れぞれ円周上の180度ずつ離れた位置にあるため、この
電流供給により、外側ロータ3の磁極と同数(4極)の回
転磁場を生じさせることができる。
For example, one set of coils [1] = [ 4 ] =
Flowing the current Ia at [7] = [ 10 ] means that coil 1
4 is to pass the current of Ia even when the current of Ia is directed from the coil 7 to the coil 10 . Since the coils 1 and 7 and the coils 4 and 10 are located 180 degrees apart on the circumference, the current supply can generate the same number (4 poles) of rotating magnetic fields as the magnetic poles of the outer rotor 3 .

【0028】この結果、12個のコイルには次の各複合電
流I1〜I12を流せばよいことになる。
As a result, the following composite currents I 1 to I 12 only need to flow through the 12 coils.

【0029】I1=(1/2)Id+Ia I2=(1/2)Id+Ic I3=(1/2)If+Ib I4=(1/2)IfIa I5=(1/2)Ie+Ic I6=(1/2)Ie+Ib I7=(1/2)Id+Ia I8=(1/2)IdIc I9=(1/2)If+Ib I10=(1/2)If+Ia I11=(1/2)IeIc I12=(1/2)Ie+Ib ただし、電流記号の下につけたアンダーラインは逆向き
の電流であることを表している。
[0029] I 1 = (1/2) Id + Ia I 2 = (1/2) Id + Ic I 3 = (1/2) If + Ib I 4 = (1/2) If + Ia I 5 = (1/2 ) Ie + Ic I 6 = ( 1/2) Ie + Ib I 7 = (1/2) Id + Ia I 8 = (1/2) Id + Ic I 9 = (1/2) If + Ib I 10 = (1/2) If + Ia I 11 = (1/2 ) Ie + Ic I 12 = (1/2) Ie + Ib however, underline attached under the current symbol represents that a reverse current.

【0030】さらに図2を参照して複合電流の設定を説
明すると、図2は、図1との比較のため、ステータ2の
内周側と外周側に各ロータに対して別々の回転磁場を発
生させる専用のコイルを配置したものである。つまり、
内周側コイルd、f、eの配列が内側ロータに対する回転
磁場を、また外周側コイルa、c、bの配列が外側ロータ
に対する回転磁場を発生する。この場合に、2つの専用
コイルを共通化して、図1に示した単一のコイルに再構
成するには、内周側コイルのうち、コイルdに流す電流
の半分ずつをコイルdの近くにあるコイルaとcに負担さ
せ、同様にして、コイルfに流す電流の半分ずつをコイ
ルfの近くにあるコイルbとaに、またコイルeに流す電流
の半分ずつをコイルeの近くにあるコイルcとbに負担さ
せればよいわけである。上記複合電流I1〜I12の式はこ
のような考え方を数式に表したものある。なお、電流設
定の方法はこれに限られるものでなく、後述するよう
に、他の電流設定方法でもかまわない。
Further, the setting of the composite current will be described with reference to FIG. 2. FIG. 2 shows that, for comparison with FIG. 1, different rotating magnetic fields are applied to the inner and outer peripheral sides of the stator 2 for each rotor. A dedicated coil to be generated is arranged. That is,
The arrangement of the inner peripheral coils d, f, and e generates a rotating magnetic field for the inner rotor, and the arrangement of the outer coils a, c, and b generates a rotating magnetic field for the outer rotor. In this case, in order to share the two dedicated coils and reconstruct the single coil shown in FIG. 1, half of the current flowing through the coil d in the inner peripheral side coil is placed near the coil d. In the same way, half of the current flowing through coil f is placed on coils b and a near coil f, and half of the current flowing through coil e is placed near coil e. That is, the coils c and b may be charged. The expressions of the composite currents I 1 to I 12 express such a concept in a mathematical expression. The current setting method is not limited to this, and another current setting method may be used as described later.

【0031】このように電流設定を行うと、単一のコイ
ルでありながら、内側ロータ4に対する回転磁場と外側
ロータ3に対する回転磁場との2つの磁場が同時に発生す
るが、内側ロータ4の磁石は外側ロータ3に対する回転磁
場により回転力を与えられることがなく、また外側ロー
タ3の磁石が内側ロータ4に対する回転磁場により回転力
を与えられることもない。この点は、後述するように、
理論解析で証明されている。
When the current is set in this manner, two magnetic fields, a rotating magnetic field for the inner rotor 4 and a rotating magnetic field for the outer rotor 3, are simultaneously generated in spite of a single coil. Neither is the rotating force applied to the outer rotor 3 by the rotating magnetic field, nor is the magnet of the outer rotor 3 applied to the inner rotor 4 by the rotating magnetic field. This point, as described later,
Proven by theoretical analysis.

【0032】上記Id、If、Ieの電流設定は内側ロータ4
の回転に同期して、また上記Ia、Ic、Ibの電流設定は外
側ロータ3の回転に同期してそれぞれ行う。トルクの方
向に対して位相の進み遅れを設定するが、これは同期モ
ータに対する場合と同じである。
The above Id, If, and Ie current settings are based on the inner rotor 4
The current setting of Ia, Ic, and Ib is performed in synchronization with the rotation of the outer rotor 3, respectively. The phase lead / lag is set for the direction of the torque, which is the same as for the synchronous motor.

【0033】図3は上記回転電機を制御するためのブロ
ック図である。
FIG. 3 is a block diagram for controlling the rotating electric machine.

【0034】上記複合電流I1〜I12をステータコイルに
供給するため、バッテリなどの電源11からの直流電流
を交流電流に変換するインバータ12を備える。瞬時電流
の全ての和は0になるためこのインバータ12は、図4に
詳細を示したように、通常の3相ブリッジ型インバータ
を12相にしたものと同じで、24個のトランジスタTr1〜T
r24とこのトランジスタと同数のダイオードから構成さ
れる。
In order to supply the composite currents I 1 to I 12 to the stator coil, an inverter 12 for converting a DC current from a power source 11 such as a battery into an AC current is provided. Since the sum of all instantaneous currents becomes zero, this inverter 12 is the same as a normal three-phase bridge type inverter having 12 phases, as shown in detail in FIG. 4, and has 24 transistors Tr1 to T
It consists of r24 and the same number of diodes as this transistor.

【0035】インバータ12の各ゲート(トランジスタの
ベース)に与えるON、OFF信号はPWM信号であ
る。
The ON / OFF signal applied to each gate (base of the transistor) of the inverter 12 is a PWM signal.

【0036】各ロータ3、4を同期回転させるため、各ロ
ータ3、4の位相を検出する回転角センサ13、14が設けら
れ、これらセンサ13、14からの信号が入力される制御回
路15では、外側ロータ3、内側ロータ4に対する必要トル
ク(正負あり)のデータ(必要トルク指令)に基づいて
PWM信号を発生させる。
In order to rotate the rotors 3 and 4 synchronously, rotation angle sensors 13 and 14 for detecting the phases of the rotors 3 and 4 are provided, and a control circuit 15 to which signals from these sensors 13 and 14 are input is provided. A PWM signal is generated based on required torque (positive / negative) data (required torque command) for the outer rotor 3 and the inner rotor 4.

【0037】このように、本発明の実施の形態では、2
つのロータ3、4と1つのステータ2を三層構造かつ同一
の軸上に構成するとともに、ステータ2に単一のコイル6
を形成し、この単一のコイル6にロータの数と同数の回
転磁場が発生するように複合電流を流すようにしたこと
から、ロータの一方をモータとして、残りをジェネレー
タとして運転する場合に、モータ駆動電力と発電電力の
差の分の電流を単一のコイルに流すだけでよいので、効
率を大幅に向上させることができる。
As described above, in the embodiment of the present invention, 2
One rotor 3 and 4 and one stator 2 have a three-layer structure on the same axis, and a single coil 6
Is formed, and a composite current is caused to flow through the single coil 6 so that the same number of rotating magnetic fields as the number of rotors is generated.When one of the rotors is operated as a motor and the other is operated as a generator, Since only the current corresponding to the difference between the motor drive power and the generated power needs to flow through a single coil, the efficiency can be greatly improved.

【0038】また、2つのロータに対してインバータが1
つでよくなり、さらにロータの一方をモータとして、残
りをジェネレータとして運転する場合には、上記のよう
に、モータ駆動電力と発電電力の差の分の電流を単一の
コイルに流すだけでよくなることから、インバータの電
力スイッチングトランジスタのキャパシタンスを減らす
ことができ、これによってスイッチング効率が向上し、
より全体効率が向上する。
An inverter is provided for each of the two rotors.
In the case where one of the rotors is operated as a motor and the other is operated as a generator, as described above, it suffices to flow only a current corresponding to the difference between the motor driving power and the generated power to a single coil. Therefore, the capacitance of the power switching transistor of the inverter can be reduced, thereby improving the switching efficiency,
Overall efficiency is improved.

【0039】また、外側ロータ3と内側ロータ4の磁極数
比(以下単に磁極数比という)が2:1の組み合わせであ
るので、一方のロータの磁極やそのロータを駆動するた
めに作る回転磁界が、他のロータの回転に影響すること
がなく、これによっていずれのロータについても一定回
転での運転が可能となる。
Since the ratio of the number of magnetic poles between the outer rotor 3 and the inner rotor 4 (hereinafter referred to simply as the ratio of the number of magnetic poles) is a combination of 2: 1, the magnetic poles of one of the rotors and the rotating magnetic field generated for driving the rotor are combined. However, it does not affect the rotation of the other rotors, which allows any rotor to operate at a constant rotation.

【0040】これに対して、比較のため、図6、図7に
磁極数比が3:1の組み合わせのものを示す。磁極数比が
3:1の組み合わせのものでは、磁極数比が2:1の組み合
わせのものと異なり、外側ロータ3の磁石と内側ロータ4
の磁石の間に影響が若干発生する。つまり、外側ロータ
3の磁石は内側ロータ4に対する回転磁場により回転力を
与えられることがないのであるが、内側ロータ4の磁石
のほうは、外側ロータ3に与える回転磁場の影響を受け
るため、内側ロータ4がトルク変動を生じながら回転す
るのである。この点は後述する理論解析により証明す
る。
On the other hand, for comparison, FIGS. 6 and 7 show combinations having a magnetic pole ratio of 3: 1. The pole ratio is
In the case of the 3: 1 combination, the magnetic pole ratio is different from that of the 2: 1 combination, and the magnet of the outer rotor 3 and the inner rotor 4 are different.
Some effect occurs between the magnets. That is, the outer rotor
The magnet No. 3 is not given a rotational force by the rotating magnetic field to the inner rotor 4, but the magnet of the inner rotor 4 is affected by the rotating magnetic field applied to the outer rotor 3. It rotates with fluctuations. This point is proved by the theoretical analysis described later.

【0041】なお、この内側ロータ4の回転に対する外
側ロータ3の干渉、つまり、内側ロータ4に生じる一定の
トルク変動は、後述する理論解析からわかるように、外
側ロータ3と内側ロータ4の位相差(ω1−ω2)の関数にな
ることから、予めその一定トルク変動分を打ち消すよう
に、振幅変調を、外側コイルに対する回転磁場を発生さ
せるための交流に対してかけることで、内側ロータ4に
生じるトルク変動を打ち消すことができる。
Incidentally, the interference of the outer rotor 3 with the rotation of the inner rotor 4, that is, the constant torque fluctuation generated in the inner rotor 4 is, as understood from the theoretical analysis described later, the phase difference between the outer rotor 3 and the inner rotor 4. Since it becomes a function of (ω 1 −ω 2 ), amplitude modulation is applied to an alternating current for generating a rotating magnetic field for the outer coil so as to cancel the constant torque fluctuation in advance, so that the inner rotor 4 Can cancel the torque fluctuations that occur.

【0042】図5は第2実施形態で、第1実施形態の図
1に対応する。
FIG. 5 shows a second embodiment, which corresponds to FIG. 1 of the first embodiment.

【0043】図1ではコイルを巻回するコア7がコイル6
の総数と同数の12個あったのに対して、第2実施形態
は、2つのコイル当たり1個のコア21としたものである。
ただし、2つのコイル6に発生する磁束どうしの干渉を
避けるため、コア21の円周方向中央にスリット22を設け
ている。
In FIG. 1, the core 7 for winding the coil is the coil 6
In the second embodiment, one core 21 is provided for each two coils, whereas the total number of twelve coils is equal to twelve.
However, in order to avoid interference between magnetic fluxes generated in the two coils 6, a slit 22 is provided in the center of the core 21 in the circumferential direction.

【0044】第2実施形態では、コア21の総数が第1実
施形態の場合の半分の6個となることから、制作工数が
減少する。
In the second embodiment, since the total number of cores 21 is six, which is half that in the first embodiment, the number of production steps is reduced.

【0045】さて、上記の第1、第2の各実施形態では
磁極数比が2:1の組み合わせである場合に、一方のロー
タの磁極やそのロータを駆動するために作る回転磁界
が、他のロータの回転に影響することがなく、これに対
して比較のため図6、図7を用いて磁極数比が3:1の組
み合わせである場合に、外側ロータの磁極やそのロータ
を駆動するために作る回転磁界が、内側ロータの回転に
影響することを述べたが、その根拠となった理論的解析
を以下に項を分けて説明する。
In the first and second embodiments, when the ratio of the number of magnetic poles is a combination of 2: 1, the magnetic pole of one rotor and the rotating magnetic field generated for driving the rotor are different from each other. 6 and 7 for comparison, when the ratio of the number of magnetic poles is a combination of 3: 1, the magnetic poles of the outer rotor and the rotor are driven. It has been described that the rotating magnetic field created for this influences the rotation of the inner rotor. The theoretical analysis on which this is based will be explained in the following sections.

【0046】〈1〉N(2p-2p)基本形 磁極数比が1:1の組み合わせの場合である。<1> N (2p-2p) basic type This is the case of a combination in which the ratio of the number of magnetic poles is 1: 1.

【0047】ここで、N(2p-2p)の表記について説明して
おくと、左側の2pが外側磁石(外側ロータ)の磁極数、
右側の2pが内側磁石(内側ロータ)の磁極数を表す。ま
た、Nは整数であり、(2p-2p)を展開して整数倍し円環に
したものでも同じであることを表している。
Here, the notation of N (2p-2p) will be described. The left 2p is the number of magnetic poles of the outer magnet (outer rotor),
2p on the right side indicates the number of magnetic poles of the inner magnet (inner rotor). Also, N is an integer, which indicates that the same applies to a ring obtained by expanding (2p-2p) and multiplying it by an integer.

【0048】磁極数比が1:1の最もシンプルなものは、
外側磁石の磁極数が2、内側磁石の磁極数が2の場合で、
これを図8に示す。
The simplest one having a magnetic pole ratio of 1: 1 is
When the outer magnet has two magnetic poles and the inner magnet has two magnetic poles,
This is shown in FIG.

【0049】〈1-1〉図8において、外側磁石m1、内側
磁石m2を等価コイルに置き換えると、各磁石に発生す
る磁束密度B1、B2は次のように表現することができる。
<1-1> In FIG. 8, when the outer magnet m 1 and the inner magnet m 2 are replaced with equivalent coils, the magnetic flux densities B 1 and B 2 generated in the respective magnets can be expressed as follows. .

【0050】 B1=Bm1 sin(ω1t-θ)=μIm1 sin(ω1t-θ) …(1) B2=Bm2 sin(ω2t+α-θ)=μIm2 sin(ω2t+α-θ) …(2) ただし、Bm1、Bm2:振幅 μ:透磁率 Im1:外側磁石の等価直流電流 Im2:内側磁石の等価直流電流 ω1:外側磁石の回転角速度 ω2:内側磁石の回転角速度 α:2つの磁石の位相差(t=0のとき) ただし、図8では外側磁石とコイルの位相が合った時刻
を0として考える。
B 1 = Bm 1 sin (ω 1 t-θ) = μIm 1 sin (ω 1 t-θ) (1) B 2 = Bm 2 sin (ω 2 t + α-θ) = μIm 2 sin (ω 2 t + α-θ)… (2) where Bm 1 , Bm 2 : amplitude μ: magnetic permeability Im 1 : equivalent DC current of outer magnet Im 2 : equivalent DC current of inner magnet ω 1 : outer magnet Rotational angular velocity ω 2 : Rotational angular velocity of inner magnet α: Phase difference between two magnets (when t = 0) However, in FIG. 8, the time when the phases of the outer magnet and the coil match are considered to be 0.

【0051】ステータコイルに流す電流を3相交流とす
れば、ステータコイルによる磁束密度Bcは Bc=μn (Ica(t)sin(θ)+Icb(t)sin(θ-2π/3) +Icc(t)sin(θ-4π/3)) …(3) ただし、n:コイル定数 の式により与えることができる。
Assuming that the current flowing through the stator coil is a three-phase alternating current, the magnetic flux density Bc of the stator coil is Bc = μn (Ica (t) sin (θ) + Icb (t) sin (θ-2π / 3) + Icc (t) sin (θ-4π / 3)) (3) where n: coil constant.

【0052】(3)式において、Ica(t)、Icb(t)、Icc(t)
は120度ずつ位相のずれた電流である。
In the equation (3), Ica (t), Icb (t), Icc (t)
Are currents that are out of phase by 120 degrees.

【0053】上記磁束密度B1、B2、Bcの変化を図9に示
すと、各磁束密度は正弦波で変化する。
FIG. 9 shows changes in the magnetic flux densities B 1 , B 2 , and Bc. Each magnetic flux density changes as a sine wave.

【0054】角度θにおける全体の磁束密度Bは次のよ
うになる。
The total magnetic flux density B at the angle θ is as follows.

【0055】 B=B1+B2+Bc =μIm1 sin(ω1t-θ)+μIm2 sin(ω2t+α-θ) +μn(Ica(t)sin(θ)+Icb(t)sin(θ-2π/3) +Icc(t)sin(θ-4π/3)) …(4) ここで、外側磁石m1に作用するトルクをτ1とすると、
直径を中心として線対称的に発生トルクが等しい。した
がってf1を半周分の力とすると、全体の駆動力は2f1
なることから、 τ1=2f1×r1(r1は半径) である。
B = B 1 + B 2 + Bc = μIm 1 sin (ω 1 t−θ) + μIm 2 sin (ω 2 t + α−θ) + μn (Ica (t) sin (θ) + Icb ( in t) sin (θ-2π / 3) + Icc (t) sin (θ-4π / 3)) ... (4) here, when the torque applied to the outer magnet m 1 and tau 1,
The generated torques are equal in line symmetry about the diameter. Therefore, when the half circumference of the force of f 1, the whole driving force from becoming a 2f 1, τ 1 = 2f 1 × r 1 (r 1 is the radius) is.

【0056】トルクτ1を考察するにはf1(つまり等価
直流電流Im1が磁場(磁束密度B)の影響を受けて生じる
駆動力)を考えておけばよい。半周には1つの等価直流
電流が流れるだけなので、f1は次のようになる。
To consider the torque τ 1 , it is sufficient to consider f 1 (that is, the driving force generated when the equivalent DC current Im 1 is affected by the magnetic field (magnetic flux density B)). Since only flows one equivalent DC current to the semicircle, f 1 is as follows.

【0057】 f1=Im1×B(θ=ω1t) =Im1(μIm2 sin(ω2t+α-ω1t) +μn(Ica(t)sin(ω1t)+Icb(t)sin(ω1t-2π/3) +Icc(t)sin(ω1t-4π/3))) …(5) 同様にして、内側磁石m2に作用するトルクτ2も直径を
中心として線対称的に発生トルクが等しく、したがって
f2を半周分の力とすると、 τ2=2f2×r2(r2は半径) である。半周には1つの等価直流電流が流れるだけなの
で、f2は次のようになる。
F 1 = Im 1 × B (θ = ω 1 t) = Im 1 (μIm 2 sin (ω 2 t + α−ω 1 t) + μn (Ica (t) sin (ω 1 t) + Icb (t) sin (ω 1 t-2π / 3) + Icc (t) sin (ω 1 t-4π / 3))) (5) Similarly, the torque τ 2 acting on the inner magnet m 2 is also the diameter. The generated torques are equal in line symmetry with respect to
Assuming that f 2 is a force for a half turn, τ 2 = 2f 2 × r 2 (r 2 is a radius). Since only one equivalent DC current flows in a half circumference, f 2 is as follows.

【0058】 f2=Im2×B(θ=ω2t+α) =Im2(μIm1 sin(ω1t-ω2t-α) +μn(Ica(t)sin(ω2t+α)+Icb(t)sin(ω2t+α-2π/3) +Icc(t)sin(ω2t+α-4π/3))) …(6) 〈1-2〉外側回転磁界を与えた場合 コイルに外側磁石の位相に合わせてβの位相差電流を流
すため、(3)式の3相交流Ica(t)、Icb(t)、Icc(t)を Ica(t)=Ic cos(ω1t-β) …(7a) Icb(t)=Ic cos(ω1t-β-2π/3) …(7b) Icc(t)=Ic cos(ω1t-β-4π/3) …(7c) ただし、Ic:振幅 β:位相のズレ分 とする。
F 2 = Im 2 × B (θ = ω 2 t + α) = Im 2 (μIm 1 sin (ω 1 t−ω 2 t−α) + μn (Ica (t) sin (ω 2 t + α) + Icb (t) sin (ω 2 t + α-2π / 3) + Icc (t) sin (ω 2 t + α-4π / 3)))… (6) <1-2> Outer rotating magnetic field When a phase difference current of β flows through the coil in accordance with the phase of the outer magnet, the three-phase alternating currents Ica (t), Icb (t), and Icc (t) in equation (3) are calculated as Ica (t) = Ic cos (ω 1 t-β)… (7a) Icb (t) = Ic cos (ω 1 t-β-2π / 3)… (7b) Icc (t) = Ic cos (ω 1 t-β-4π / 3)… (7c) where Ic: amplitude β: phase shift.

【0059】(7a)〜(7c)式を(5)、(6)式に代入して駆動
力f1、f2を計算する。
The driving forces f 1 and f 2 are calculated by substituting the equations (7a) to (7c) into the equations (5) and (6).

【0060】 f1=Im1×B(θ=ω1t) =Im1(μIm2 sin(ω2t+α-ω1t)) +μn Ic(cos(ω1t-β)sin(ω1t) +cos(ω1t-β-2π/3)sin(ω1t-2π/3) +cos(ω1t-β-4π/3)sin(ω1t-4π/3))) ここで、cos(a+b)=1/2(sin(2a+b)-sin(b))の公式を用いて f1=Im1(μIm2 sin(ω2t+α-ω1t) +μn Ic(1/2(sin(2ω1t-β)+sin(β)) +1/2(sin(2(ω1t-2π/3)-β)+sin(β)) +1/2(sin(2(ω1t-4π/3)-β)+sin(β))) =Im1(μIm2 sin(ω2t+α-ω1t) +1/2μn Ic(3sin(β)+sin(2(ω1t-2π/3)-β) +sin(2(ω1t-4π/3)-β))) =Im1(μIm2 sin(ω2t+α-ω1t) +1/2μn Ic(3sin(β)+sin(2ω1t-4π/3-β) +sin(2ω1t-8π/3-β))) =Im1(μIm2 sin(ω2t+α-ω1t) +1/2μn Ic(3sin(β)+sin(2ω1t-β-2π/3) +sin(2ω1t-β-4π/3))) =-Im1(μIm2 sin((ω21)t-α)-3/2μn Ic sin(β)) …(8) (8)式によれば一定トルクの項(第2項)に内側磁石の磁場
の影響によるトルク変動(第1項)の項が加算された形と
なっている。
F 1 = Im 1 × B (θ = ω 1 t) = Im 1 (μIm 2 sin (ω 2 t + α−ω 1 t)) + μn Ic (cos (ω1t−β) sin (ω 1 t) + cos (ω 1 t-β-2π / 3) sin (ω 1 t-2π / 3) + cos (ω 1 t-β-4π / 3) sin (ω 1 t-4π / 3))) Here, using the formula of cos (a + b) = 1/2 (sin (2a + b) -sin (b)), f 1 = Im 1 (μIm 2 sin (ω 2 t + α-ω 1 t) ) + μn Ic (1/2 (sin (2ω 1 t-β) + sin (β)) +1/2 (sin (2 (ω 1 t-2π / 3) -β) + sin (β)) + 1/2 (sin (2 (ω 1 t-4π / 3) -β) + sin (β))) = Im 1 (μIm 2 sin (ω 2 t + α-ω 1 t) + 1 / 2μn Ic ( 3sin (β) + sin (2 (ω 1 t-2π / 3) -β) + sin (2 (ω 1 t-4π / 3) -β))) = Im 1 (μIm 2 sin (ω 2 t + α-ω 1 t) + 1 / 2μn Ic (3sin (β) + sin (2ω 1 t-4π / 3-β) + sin (2ω 1 t-8π / 3-β))) = Im 1 (μIm 2 sin (ω 2 t + α-ω 1 t) + 1 / 2μn Ic (3sin (β) + sin (2ω 1 t-β-2π / 3) + sin (2ω 1 t-β-4π / 3))) = -Im 1 (μIm 2 sin ((ω 21 ) t-α) -3 / 2μn Ic sin (β)) (8) According to equation (8), a constant torque term (second term) The term of torque fluctuation (the first term) due to the influence of the magnetic field of the inner magnet is added to the above.

【0061】 f2=Im2×B(θ=ω2t+α) Im2(μIm1 sin(ω1t-ω2t-α) +μn Ic(cos(ω1t-β)sin(ω2t+α) +cos(ω1t-2π/3-β)sin(ω2t-2π/3+α) +cos(ω1t-4π/3-β)sin(ω2t-4π/3+α)) ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a−b))の公式を用いて f2=Im2(μIm1 sin(ω1t-ω2t-α) +μn Ic 1/2(sin(ω1t-β+ω2t+α)-sin(ω1t-β-ω2t-α) +sin(ω1t-2π/3-β+ω2t-2π/3+α)-sin(ω1t-2π/3-β-ω2t+2π/3-α) +sin(ω1t-4π/3-β+ω2t-4π/3+α)-sin(ω1t-4π/3-β-ω2t+4π/3-α)) =Im2(μIm1 sin(ω1t-ω2t-α) +μn Ic 1/2(sin((ω12)t+α-β)-sin((ω12)t-α-β) +sin((ω12)t-4π/3+α-β)-sin((ω12)t-α-β) +sin((ω12)t-8π/3+α-β)-sin((ω12)t-α-β) =Im2(μIm1 sin(ω1t-ω2t-α) -3/2μn Ic sin((ω12)t-α-β) +μn Ic 1/2(sin((ω12)t+α-β) +sin((ω12)t+α-β-2π/3) +sin((ω12)t+α-β-4π/3)) =μIm2(Im1 sin((ω12)t-α)-3/2n Ic sin((ω12)t-α-β))…(9) 〈1-3〉内側回転磁界を与えた場合 コイルに内側磁石の位相に合わせてγの位相差電流を流
すため、今度は上記の3相交流Ica(t)、Icb(t)、Icc(t)
を Ica(t)=Ic cos(ω2t-γ) …(10a) Icb(t)=Ic cos(ω2t-γ-2π/3) …(10b) Icc(t)=Ic cos(ω2t-γ-4π/3) …(10c) ただし、Ic:振幅 γ:位相のズレ分 とする。
F 2 = Im 2 × B (θ = ω 2 t + α) Im 2 (μIm 1 sin (ω 1 t-ω 2 t-α) + μn Ic (cos (ω 1 t-β) sin ( ω 2 t + α) + cos (ω 1 t-2π / 3-β) sin (ω 2 t-2π / 3 + α) + cos (ω 1 t-4π / 3-β) sin (ω 2 t- 4π / 3 + α)) Here, using the formula of cos (a) sin (b) = 1/2 (sin (a + b) -sin (a−b)), f 2 = Im 2 (μIm 1 sin ( ω 1 t-ω 2 t-α) + μn Ic 1/2 (sin (ω 1 t-β + ω 2 t + α) -sin (ω 1 t-β-ω 2 t-α) + sin (ω 1 t-2π / 3-β + ω 2 t-2π / 3 + α) -sin (ω 1 t-2π / 3-β-ω 2 t + 2π / 3-α) + sin (ω 1 t-4π / 3-β + ω 2 t-4π / 3 + α) -sin (ω 1 t-4π / 3-β-ω 2 t + 4π / 3-α)) = Im 2 (μIm 1 sin (ω 1 t -ω 2 t-α) + μn Ic 1/2 (sin ((ω 1 + ω 2 ) t + α-β) -sin ((ω 12 ) t-α-β) + sin ((ω 1 + ω 2 ) t-4π / 3 + α-β) -sin ((ω 12 ) t-α-β) + sin ((ω 1 + ω 2 ) t-8π / 3 + α-β ) -sin ((ω 12 ) t-α-β) = Im 2 (μIm 1 sin (ω 1 t-ω 2 t-α) -3 / 2μn Ic sin ((ω 12 ) t -α-β) + μn Ic 1/2 (sin ((ω 1 + ω 2 ) t + α-β) + sin ((ω 1 + ω 2 ) t + α-β-2π / 3) + sin ( (ω 1 + ω 2 ) t + α-β-4π / 3)) = μIm 2 (Im 1 sin ((ω 12 ) t-α) -3 / 2n Ic sin ((ω 12 ) t-α-β))… (9) <1-3> When an inner rotating magnetic field is applied A phase difference current of γ flows through the coil in accordance with the phase of the inner magnet. Phase exchange Ica (t), Icb (t), Icc (t)
Ica (t) = Ic cos (ω 2 t−γ)… (10a) Icb (t) = Ic cos (ω 2 t−γ−2π / 3)… (10b) Icc (t) = Ic cos (ω 2 t-γ-4π / 3 ) ... (10c) however, Ic: amplitude gamma: the shift of the phase.

【0062】(10a)〜(10c)式を(5)、(6)式に代入して外
側磁石と内側磁石の各駆動力f1、f2を計算する。
The driving forces f 1 and f 2 of the outer magnet and the inner magnet are calculated by substituting the equations (10a) to (10c) into the equations (5) and (6).

【0063】 f1=Im1(μIm2 sin(ω2t+α-ω1t) +μn Ic(cos(ω2t-γ)sin(ω1t) +cos(ω2t-γ-2π/3)sin(ω1t-2π/3) +cos(ω2t-γ-4π/3)sin(ω1t-4π/3)) ここでも、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて f1=Im1(μIm2 sin(ω2t+α-ω1t) +1/2μn Ic(sin(ω2t-γ+ω1t)-sin(ω2t-γ-ω1t) +sin(ω2t-γ-2π/3+ω1t-2π/3)-sin(ω2t-γ-2π/3-ω1t+2π/3) +sin(ω2t-γ-4π/3+ω1t-4π/3)-sin(ω2t-γ-4π/3+ω1t+4π/3)) =Im1(μIm2 sin((ω2−ω1)t+α) +1/2μn Ic(sin((ω21)t-γ)-sin((ω21)t-γ) +sin((ω2+ω1)t-γ-4π/3)-sin((ω21)t-γ) +sin((ω2+ω1)t-γ-8π/3)-sin((ω21)t-γ))) =Im1(μIm2 sin((ω21)t+α)-3/2μn Ic sin((ω21)t-γ) +1/2μn Ic(sin((ω2+ω1)t-γ)+sin((ω21)t-γ-2π/3) +sin((ω2t+ω1)t-γ-4π/3))) =-μIm1(Im2 sin((ω21)t-α)-3/2 n Ic sin((ω12)t+γ)) …(11) (11)式は外側磁石にトルク変動のみが発生することを示
している。
F 1 = Im 1 (μIm 2 sin (ω 2 t + α−ω 1 t) + μn Ic (cos (ω 2 t−γ) sin (ω 1 t) + cos (ω 2 t−γ− 2π / 3) sin (ω 1 t-2π / 3) + cos (ω 2 t-γ-4π / 3) sin (ω 1 t-4π / 3)) Again, cos (a) sin (b) = Using the formula of 1/2 (sin (a + b) -sin (ab)), f 1 = Im 1 (μIm 2 sin (ω 2 t + α-ω 1 t) + 1 / 2μn Ic (sin (ω 2 t-γ + ω 1 t) -sin (ω 2 t-γ-ω 1 t) + sin (ω 2 t-γ-2π / 3 + ω 1 t-2π / 3) -sin (ω 2 t- γ-2π / 3-ω 1 t + 2π / 3) + sin (ω 2 t-γ-4π / 3 + ω 1 t-4π / 3) -sin (ω 2 t-γ-4π / 3 + ω 1 t + 4π / 3)) = Im 1 (μIm 2 sin ((ω 2 −ω 1 ) t + α) + 1 / 2μn Ic (sin ((ω 2 + ω 1 ) t-γ) -sin ((ω 21 ) t-γ) + sin ((ω 2 + ω 1 ) t-γ-4π / 3) -sin ((ω 21 ) t-γ) + sin ((ω 2 + ω 1 ) t -γ-8π / 3) -sin ((ω 21 ) t-γ))) = Im 1 (μIm 2 sin ((ω 21 ) t + α) -3 / 2μn Ic sin (( ω 21 ) t-γ) + 1 / 2μn Ic (sin ((ω 2 + ω 1 ) t-γ) + sin ((ω 2 + ω 1 ) t-γ-2π / 3) + sin (( ω 2 t + ω 1 ) t-γ-4π / 3))) = -μIm 1 (Im 2 sin ((ω 21 ) t-α) -3/2 n Ic sin ((ω 12) t + γ)) ... (11) (11) equation only torque fluctuation outside magnet generator Which indicates that.

【0064】 f2=Im2(μIm1 sin(ω2t-ω1t-α) +μn Ic(cos(ω2t-γ)sin(ω2t+α) +cos(ω2t-γ-2π/3)sin((ω2t+α-2π/3) +cos(ω2t-γ-4π/3)sin((ω2t+α-4π/3))) ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))を用いて f2=Im2(μIm1 sin(ω1t-ω2t-α)-3/2μn Ic sin(-α-γ) +1/2μn Ic(sin(2ω2t+α-γ)+sin(2ω2t+α-γ-2π/3) +sin(2ω2t+α-γ-4π/3))) =μIm2(Im1 sin((ω12)t-α)+3/2 n Ic sin(α+γ)) …(12) (12)式によれば、一定トルクの項(第2項)に内側磁石の
磁場の影響によるトルク変動の項(第1項)が加算された
形をしている。
F 2 = Im 2 (μIm 1 sin (ω 2 t−ω 1 t−α) + μn Ic (cos (ω 2 t−γ) sin (ω 2 t + α) + cos (ω 2 t− γ-2π / 3) sin ((ω 2 t + α-2π / 3) + cos (ω 2 t-γ-4π / 3) sin ((ω 2 t + α-4π / 3))) where Using cos (a) sin (b) = 1/2 (sin (a + b) -sin (ab)), f 2 = Im 2 (μIm 1 sin (ω 1 t-ω 2 t-α) -3 / 2μn Ic sin (-α-γ) + 1 / 2μn Ic (sin (2ω 2 t + α-γ) + sin (2ω 2 t + α-γ-2π / 3) + sin (2ω 2 t + α- γ-4π / 3))) = μIm 2 (Im 1 sin ((ω 12 ) t-α) +3/2 n Ic sin (α + γ))… (12) For example, it has a form in which a term of torque variation (first term) due to the influence of the magnetic field of the inner magnet is added to a term of constant torque (second term).

【0065】〈1-4〉外側回転磁界と内側回転磁界をと
もに与えた場合 コイルに外側磁石と内側磁石にそれぞれ同期する電流を
流すため、上記のIca(t)、Icb(t)、Icc(t)を Ica(t)=Ic cos(ω1t-β)+Ic2 cos(ω2t-γ) …(13a) Icb(t)=Ic cos(ω1t-β-2π/3)+Ic2 cos(ω2t-γ-2π/3) …(13b) Icc(t)=Ic cos(ω1t-β-4π/3)+Ic2 cos(ω2t-γ-4π/3) …(13c) とする。
<1-4> When Both Outer Rotating Magnetic Field and Inner Rotating Magnetic Field Are Applied In order to supply currents synchronized with the outer magnet and the inner magnet to the coil, respectively, the above Ica (t), Icb (t), Icc ( t) is Ica (t) = Ic cos (ω 1 t-β) + Ic 2 cos (ω 2 t-γ)… (13a) Icb (t) = Ic cos (ω 1 t-β-2π / 3) + Ic 2 cos (ω 2 t-γ-2π / 3)… (13b) Icc (t) = Ic cos (ω 1 t-β-4π / 3) + Ic 2 cos (ω 2 t-γ-4π / 3)… (13c)

【0066】 f1=Im1(μIm2 sin(ω2t+α-ω1t) +μn((Ic cos(ω1t-β)+Ic2 cos(ω2t-γ))sin(ω1t) +(Ic cos(ω1t-β-2π/3)+Ic2 cos(ω2t-γ-2π/3))sin(ω1t-2π/3) +(Ic cos(ω1t-β-4π/3)+Ic2 cos(ω2t-γ-4π/3))sin(ω1t-4π/3))) =Im1(μIm2 sin(ω2t+α-ω1t) +μn(Ic cos(ω1t-β)sin(ω1t) +Ic2 cos(ω2t-γ)sin(ω1t) +Ic cos(ω1t-β-2π/3)sin(ω1t-2π/3) +Ic2 cos(ω2t-γ-2π/3)sin(ω1t-2π/3) +Ic cos(ω1t-β-4π/3)sin(ω1t-4π/3) +Ic2 cos(ω2t-γ-4π/3)sin(ω1t-4π/3))) =Im1(μIm2 sin(ω2t+α-ω1t) +μn(Ic(cos(ω1t-β)sin(ω1t) +cos(ω1t-β-2π/3)sin(ω1t-2π/3) +cos(ω1t-β-4π/3)sin(ω1t-4π/3)) +Ic2(cos(ω2t-γ)sin(ω1t) +cos(ω2t-γ-2π/3)sin(ω1t-2π/3) +cos(ω2t-γ-4π/3)sin(ω1t-4π/3)))) =Im1(μIm2 sin(ω2t+α-ω1t) +μn(Ic(3/2sin(β))+Ic2(3/2sin((ω12)t+γ))))…(14) (14)式によれば外側磁石に対する回転位相差(β)に応じ
た一定トルクに回転変動が乗った形となる。
F 1 = Im 1 (μIm 2 sin (ω 2 t + α-ω 1 t) + μn ((Ic cos (ω 1 t-β) + Ic 2 cos (ω 2 t-γ)) sin ( ω 1 t) + (Ic cos (ω 1 t-β-2π / 3) + Ic 2 cos (ω 2 t-γ-2π / 3)) sin (ω 1 t-2π / 3) + (Ic cos ( ω 1 t-β-4π / 3) + Ic 2 cos (ω 2 t-γ-4π / 3)) sin (ω 1 t-4π / 3))) = Im 1 (μIm 2 sin (ω 2 t + α-ω 1 t) + μn (Ic cos (ω 1 t-β) sin (ω 1 t) + Ic 2 cos (ω 2 t-γ) sin (ω 1 t) + Ic cos (ω 1 t-β -2π / 3) sin (ω 1 t-2π / 3) + Ic 2 cos (ω 2 t-γ-2π / 3) sin (ω 1 t-2π / 3) + Ic cos (ω 1 t-β- 4π / 3) sin (ω 1 t-4π / 3) + Ic 2 cos (ω 2 t-γ-4π / 3) sin (ω 1 t-4π / 3))) = Im 1 (μIm 2 sin (ω 2 t + α-ω 1 t) + μn (Ic (cos (ω 1 t-β) sin (ω 1 t) + cos (ω 1 t-β-2π / 3) sin (ω 1 t-2π / 3 ) + cos (ω 1 t-β-4π / 3) sin (ω 1 t-4π / 3)) + Ic 2 (cos (ω 2 t-γ) sin (ω 1 t) + cos (ω 2 t- γ-2π / 3) sin (ω 1 t-2π / 3) + cos (ω 2 t-γ-4π / 3) sin (ω 1 t-4π / 3)))) = Im 1 (μIm 2 sin ( ω 2 t + α-ω 1 t) + μn (Ic (3 / 2sin (β)) + Ic 2 (3 / 2sin ((ω 12 ) t + γ)))))… (14) (14 According to the expression (3), the motor is turned to a constant torque corresponding to the rotational phase difference (β) with respect to the outer magnet. The form that change was riding.

【0067】 f2=Im2(μIm1 sin(ω1t-ω2t-α) +μn((Ic cos(ω1t-β) +Ic2 cos(ω2t-γ))sin(ω2t+α) +(Ic cos(ω1t-β-2π/3) +Ic2 cos(ω2t-γ-2π/3))sin(ω2t+α-2π/3) +(Ic cos(ω1t-β-4π/3) +Ic2 cos(ω2t-γ-4π/3))sin(ω2t+α-4π/3))) =Im2(μIm1 sin(ω1t-ω2t-α) +μn(Ic cos(ω1t-β)sin(ω2t+α) +Ic2 cos(ω2t-γ)sin(ω2t+α) +Ic cos(ω1t-β-2π/3)sin(ω2t+α-2π/3) +Ic2 cos(ω2t-γ-2π/3)sin(ω2t+α-2π/3) +Ic cos(ω1t-β-4π/3)sin(ω2t+α-4π/3) +Ic2 cos(ω2t-γ-4π/3)sin(ω2t+α-4π/3)) =Im2(μIm1 sin(ω1t-ω2t-α) +μn(Ic(cos(ω1t-β)sin(ω2t+α) +cos(ω1t-β-2π/3)sin(ω2t+α-2π/3) +cos(ω1t-β-4π/3)sin(ω2t+α-4π/3)) +Ic2(cos(ω2t-γ)sin(ω2t+α) +cos(ω2t-γ-2π/3)sin(ω2t+α-2π/3) +cos(ω2t-γ-4π/3)sin(ω2t+α-4π/3))) ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))を用いて f2=Im2(μIm1 sin(ω1t-ω2t-α) +μn(Ic(1/2sin(ω1t-β+ω2t+α) -sin(ω1t-β-ω2t-α)) +1/2sin(ω1t-β-2π/3+ω2t+α-2π/3) -sin(ω1t-β-2π/3-ω2t-α+2π/3)) +1/2sin(ω1t-β-4π/3+ω2t+α-4π/3) -sin(ω1t-β-4π/3-ω2t-α+4π/3))) +Ic2(1/2sin(ω2t-γ+ω2t+α) -sin(ω2t-γ-ω2t-α)) +1/2sin(ω2t-γ-2π/3+ω2t+α-2π/3) -sin(ω2t-γ-2π/3-ω2t-α+2π/3)) +1/2sin(ω2t-γ-4π/3+ω2t+α-4π/3) -sin(ω2t-γ-4π/3-ω2t-α+4π/3)))) =Im2(μIm1 sin(ω1t-ω2t-α) +μn(Ic(1/2sin(ω1t-β+ω2t+α) -sin(ω1t-β-ω2t-α)) +1/2sin(ω1t-β+ω2t+α-4π/3) -sin(ω1t-β-ω2t-α)) +1/2sin(ω1t-β+ω2t+α-8π/3) -sin(ω1t-β-ω2t-α))) +Ic2(1/2sin(ω2t-γ+ω2t+α) -sin(ω2t-γ-ω2t-α)) +1/2sin(ω2t-γ+ω2t+α-4π/3) -sin(ω2t-γ-ω2t-α)) +1/2sin(ω2t-γ+ω2t+α-8π/3) -sin(ω2t-γ-ω2t-α)))) =Im2(μIm1 sin(ω1t-ω2t-α) +1/2μn Ic(sin(ω1t-β+ω2t+α)-sin(ω1t-β-ω2t-α) +sin(ω1t-β+ω2t+α-4π/3)-sin(ω1t-β-ω2t-α) +sin(ω1t-β+ω2t+α-8π/3)-sin(ω1t-β-ω2t-α)) +1/2μn Ic2(sin(ω2t-γ+ω2t+α)-sin(ω2t-γ-ω2t-α)) +sin(ω2t-γ+ω2t+α-4π/3)-sin(ω2t-γ-ω2t-α) +sin(ω2t-γ+ω2t+α-8π/3)-sin(ω2t-γ-ω2t-α)) =Im2(μIm1 sin(ω1t-ω2t-α) +1/2μn Ic(-3sin((ω21)t-α-β) +1/2μn Ic2(-3sin(-α-γ)) =Im2(μIm1 sin(ω1t-ω2t-α) -3/2μn Ic sin((ω21)t-α-β) +3/2μn Ic2 3sin(α+γ) …(15) (15)式も内側磁石に対する回転位相差(α+γ)に応じた
一定トルクに回転変動が乗った形となる。
F 2 = Im 2 (μIm 1 sin (ω 1 t−ω 2 t−α) + μn ((Ic cos (ω 1 t−β) + Ic 2 cos (ω 2 t−γ)) sin ( ω 2 t + α) + (Ic cos (ω 1 t-β-2π / 3) + Ic 2 cos (ω 2 t-γ-2π / 3)) sin (ω 2 t + α-2π / 3) + (Ic cos (ω 1 t-β-4π / 3) + Ic 2 cos (ω 2 t-γ-4π / 3)) sin (ω 2 t + α-4π / 3))) = Im 2 (μIm 1 sin (ω 1 t-ω 2 t-α) + μn (Ic cos (ω 1 t-β) sin (ω 2 t + α) + Ic 2 cos (ω 2 t-γ) sin (ω 2 t + α ) + Ic cos (ω 1 t-β-2π / 3) sin (ω 2 t + α-2π / 3) + Ic 2 cos (ω 2 t-γ-2π / 3) sin (ω 2 t + α- 2π / 3) + Ic cos (ω 1 t-β-4π / 3) sin (ω 2 t + α-4π / 3) + Ic 2 cos (ω 2 t-γ-4π / 3) sin (ω 2 t + α-4π / 3)) = Im 2 (μIm 1 sin (ω 1 t-ω 2 t-α) + μn (Ic (cos (ω 1 t-β) sin (ω 2 t + α) + cos ( ω 1 t-β-2π / 3) sin (ω 2 t + α-2π / 3) + cos (ω 1 t-β-4π / 3) sin (ω 2 t + α-4π / 3)) + Ic 2 (cos (ω 2 t-γ) sin (ω 2 t + α) + cos (ω 2 t-γ-2π / 3) sin (ω 2 t + α-2π / 3) + cos (ω 2 t- γ-4π / 3) sin (ω 2 t + α-4π / 3))) where cos (a) sin (b) = 1/2 (sin (a + b) -sin (ab)) Te f 2 = Im 2 (μIm 1 sin (ω 1 t-ω 2 t-α) + μn (Ic (1 / 2sin (ω 1 t-β + ω 2 t + α) -sin (ω 1 t- -ω 2 t-α)) + 1 / 2sin (ω 1 t-β-2π / 3 + ω 2 t + α-2π / 3) -sin (ω 1 t-β-2π / 3-ω 2 t- α + 2π / 3)) + 1 / 2sin (ω 1 t-β-4π / 3 + ω 2 t + α-4π / 3) -sin (ω 1 t-β-4π / 3-ω 2 t-α + 4π / 3))) + Ic 2 (1 / 2sin (ω 2 t-γ + ω 2 t + α) -sin (ω 2 t-γ-ω 2 t-α)) + 1 / 2sin (ω 2 t-γ-2π / 3 + ω 2 t + α-2π / 3) -sin (ω 2 t-γ-2π / 3-ω 2 t-α + 2π / 3)) + 1 / 2sin (ω 2 t -γ-4π / 3 + ω 2 t + α-4π / 3) -sin (ω 2 t-γ-4π / 3-ω 2 t-α + 4π / 3)))) = Im 2 (μIm 1 sin (ω 1 t-ω 2 t-α) + μn (Ic (1 / 2sin (ω 1 t-β + ω 2 t + α) -sin (ω 1 t-β-ω 2 t-α)) +1 / 2sin (ω 1 t-β + ω 2 t + α-4π / 3) -sin (ω 1 t-β-ω 2 t-α)) + 1 / 2sin (ω 1 t-β + ω 2 t + α-8π / 3) -sin (ω 1 t-β-ω 2 t-α)))) + Ic 2 (1 / 2sin (ω 2 t-γ + ω 2 t + α) -sin (ω 2 t- γ-ω 2 t-α)) + 1 / 2sin (ω 2 t-γ + ω 2 t + α-4π / 3) -sin (ω 2 t-γ-ω 2 t-α)) + 1 / 2sin (ω 2 t-γ + ω 2 t + α-8π / 3) -sin (ω 2 t-γ-ω 2 t-α))))) = Im 2 (μIm 1 sin (ω 1 t-ω 2 t -α) + 1 / 2μn Ic (sin (ω 1 t-β + ω 2 t + α) -sin (ω 1 t-β-ω 2 t-α) + sin (ω 1 t-β + ω 2 t + α-4π / 3) -sin (ω 1 t-β-ω 2 t-α) + sin (ω 1 t-β + ω 2 t + α-8π / 3) -sin (ω 1 t-β-ω 2 t-α)) + 1 / 2μn Ic 2 (sin (ω 2 t-γ + ω 2 t + α) -sin (ω 2 t-γ-ω 2 t- α)) + sin (ω 2 t-γ + ω 2 t + α-4π / 3) -sin (ω 2 t-γ-ω 2 t-α) + sin (ω 2 t-γ + ω 2 t + α-8π / 3) -sin (ω 2 t-γ-ω 2 t-α)) = Im 2 (μIm 1 sin (ω 1 t-ω 2 t-α) + 1 / 2μn Ic (-3sin (( ω 21 ) t-α-β) + 1 / 2μn Ic 2 (-3sin (-α-γ)) = Im 2 (μIm 1 sin (ω 1 t-ω 2 t-α) -3 / 2μn depending on Ic sin ((ω 2 -ω 1 ) t-α-β) + 3 / 2μn Ic 2 3sin (α + γ) ... (15) (15) rotating the phase difference also with respect to the inner magnet (alpha + gamma) This is a form in which the rotation fluctuation is superimposed on the constant torque.

【0068】〈1-5〉まとめ このようにして得られた上記(8)、(9)、(11)、(12)、(1
4)、(15)の式を次に並べる。
<1-5> Conclusion The above (8), (9), (11), (12), (1)
4) and (15) are arranged next.

【0069】 外側回転磁界を与えた場合 f1=-μIm1(Im2 sin((ω21)t-α)-3/2n Ic sin(β)) …(8) f2=μIm2(Im1 sin((ω12)t-α)-3/2n Ic sin((ω12)t-α-β)) …(9) 内側回転磁界を与えた場合 f1=-μIm1(Im2 sin((ω21)t-α)-3/2 n Ic sin((ω12)t+γ)) …(11) f2=μIm2(Im1 sin((ω12)t-α)+3/2 n Ic sin(α+γ)) …(12) 外側回転磁界と内側回転磁界をともに与えた場合 f1=Im1(μIm2 sin(ω2t+α-ω1t) +μn(Ic(3/2sin(β)) +Ic2(3/2sin((ω12)t+γ)))) …(14) f2=μIm2(Im1 sin(ω1t-ω2t-α) +3/2n Ic sin((ω12)t-α-β) +3/2n Ic2 sin(α+γ)) …(15) これらの式のもつ意味は次の通りである。(8)式の右辺
第2項、(12)式の右辺第2項、(14)式の右辺第2項、(15)
式の右辺第3項だけが固定項(一定値)であり、固定項
が含まれるときだけ回転トルクが発生する。これに対し
て、固定項以外の項は三角関数であるため、駆動力fの
平均値がゼロとなり、したがって、固定項以外の項によ
っては回転トルクが発生しない。つまり、外側磁石に同
期させてステータコイルに電流を流したときは外側磁石
にのみ、内側磁石に同期させてステータコイルに電流を
流したときは内側磁石にのみ回転トルクが発生し、外側
磁石と内側磁石のそれぞれに同期させてステータコイル
に電流を流すと、両方の磁石にそれぞれ回転トルクが発
生する。
When an outer rotating magnetic field is applied, f 1 = −μIm 1 (Im 2 sin ((ω 2 −ω 1 ) t-α) -3 / 2n Ic sin (β)) (8) f 2 = μIm 2 (Im 1 sin ((ω 12 ) t-α) -3 / 2n Ic sin ((ω 12 ) t-α-β))… (9) When an inner rotating magnetic field is applied f 1 = -μIm 1 (Im 2 sin ((ω 21 ) t-α) -3/2 n Ic sin ((ω 12 ) t + γ))… (11) f 2 = μIm 2 (Im 1 sin ((ω 12 ) t-α) +3/2 n Ic sin (α + γ))… (12) When both the outer rotating magnetic field and the inner rotating magnetic field are given, f 1 = Im 1 (μIm 2 sin (ω 2 t + α-ω 1 t) + μn (Ic (3 / 2sin (β)) + Ic 2 (3 / 2sin ((ω 12 ) t + γ))))… (14) f 2 = μIm 2 (Im 1 sin (ω 1 t-ω 2 t-α) + 3 / 2n Ic sin ((ω 12 ) t-α-β) + 3 / 2n Ic 2 sin (α + γ)) (15) The meanings of these expressions are as follows. The second term on the right side of equation (8), the second term on the right side of equation (12), the second term on the right side of equation (14), (15)
Only the third term on the right side of the equation is a fixed term (constant value), and a rotational torque is generated only when the fixed term is included. On the other hand, since the terms other than the fixed term are trigonometric functions, the average value of the driving force f is zero, and therefore, no rotational torque is generated depending on the term other than the fixed term. In other words, when a current flows through the stator coil in synchronization with the outer magnet, a rotational torque is generated only in the outer magnet, and when a current flows through the stator coil in synchronization with the inner magnet, a rotational torque is generated only in the inner magnet. When a current is supplied to the stator coil in synchronization with each of the inner magnets, a rotational torque is generated in both magnets.

【0070】このことから、磁極数比が1:1の組み合わ
せであるとき、回転電機として働くことが可能であるこ
とが証明された。これより類推して磁極数が任意の組み
合わせであるときにも、回転電機として働くことが可能
である。
From this, it has been proved that when the ratio of the number of magnetic poles is 1: 1, it is possible to function as a rotating electric machine. By analogy with this, it is possible to work as a rotating electric machine even when the number of magnetic poles is an arbitrary combination.

【0071】〈1-6〉トルク変動の抑制 一方、固定項を含む式において固定項の残りの項、つま
り(8)式の右辺第1項、(14)式の右辺第1項および第3項に
より2つの磁石の位相差(ω12)に応じた一定のトルク
変動が外側磁石の回転に、また(12)式の右辺第1項、(1
5)式の右辺第1項および第2項により同じく2つの磁石の
位相差(ω12)に応じた一定のトルク変動が内側磁石
の回転に生じる。
<1-6> Suppression of Torque Fluctuation On the other hand, in the equation including the fixed term, the remaining term of the fixed term, that is, the first term on the right side of the equation (8), the first term and the third term on the right side of the equation (14) The constant torque fluctuation corresponding to the phase difference (ω 1 −ω 2 ) between the two magnets due to the term causes the rotation of the outer magnet, and the first term on the right side of the equation (12), (1
According to the first and second terms on the right side of equation (5), a constant torque fluctuation corresponding to the phase difference (ω 1 −ω 2 ) between the two magnets also occurs in the rotation of the inner magnet.

【0072】そこで、外側回転磁界と内側回転磁界をと
もに与えた場合にトルク変動を抑えることを考える。上
記の(14)式より f1=μIm1Im2 sin(ω2t+α-ω1t)+Icμn Im1 Ic(3/2sin
(β))+Ic2Im1 3/2 sin((ω12)t+γ) であるから、f1を次のようにおく。
Therefore, it is considered that the torque fluctuation is suppressed when both the outer rotating magnetic field and the inner rotating magnetic field are applied. From the above equation (14), f 1 = μIm 1 Im 2 sin (ω 2 t + α−ω 1 t) + Icμn Im 1 Ic (3 / 2sin
(β)) + because Ic is a 2 Im 1 3/2 sin ((ω 1 -ω 2) t + γ), put the f 1 in the following manner.

【0073】 f1=A+IcC+Ic2V …(16) ただし、A=μIm1Im2 sin(ω2t+α-ω1t) V=Im1 3/2 sin((ω12)t+γ) C=μn Im1 Ic(3/2sin(β)) ここで、Ic=(C1-A-Ic2V)/Cという変調を加えればf
1=C1(定数)となり、外側磁石の回転からトルク変動が
解消される。
[0073] f 1 = A + IcC + Ic 2 V ... (16) where, A = μIm 1 Im 2 sin (ω 2 t + α-ω 1 t) V = Im 1 3/2 sin ((ω 1 - ω 2) t + γ) C = μn Im 1 Ic (3 / 2sin (β)) where, Ic = (C1-a- Ic 2 V) / C that f be added modulation
1 = C1 (constant), and the torque fluctuation is eliminated from the rotation of the outer magnet.

【0074】同様にして、上記の(15)式より f2=μIm2Im1 sin(ω1t-ω2t-α)+Ic 3/2μIm2 n sin
((ω12)t-α-β)+Ic2 3/2μIm2 n sin(α+γ) であるから、f2を次のようにおく。
Similarly, from the above equation (15), f 2 = μIm 2 Im 1 sin (ω 1 t−ω 2 t−α) + Ic 3/2 μIm 2 n sin
Since ((ω 1 −ω 2 ) t−α−β) + Ic 2 3/2 μm 2 n sin (α + γ), f 2 is set as follows.

【0075】 f2=-A+IcD+Ic2E …(17) ただし、D=3/2μIm2 n sin((ω12)t-α-β) E=3/2μIm2 n sin(α+γ) ここで、Ic2=(C2+A-IcD)/Eという変調を加えれ
ば、f2=C2(定数)となり、内側磁石の回転からトルク
変動が解消される。
F 2 = −A + IcD + Ic 2 E (17) where D = 3/2 μIm 2 n sin ((ω 1 −ω 2 ) t−α-β) E = 3/2 μIm 2 n sin (α + γ) Here, if the modulation of Ic 2 = (C 2 + A−IcD) / E is added, f 2 = C 2 (constant), and the torque fluctuation is eliminated from the rotation of the inner magnet.

【0076】したがって、両方の磁石とも一定回転にす
るには、次の連立2元方程式をIc、Ic2について解けば
よい。
[0076] Thus, in both of the magnet to a constant rotation may be solved following simultaneous binary equations Ic, the Ic 2.

【0077】 C1=A+IcC+Ic2V …(18) C2=-A+IcD+Ic2E …(19) 〈2〉N(2(2p)−2p)基本形 〈2-1〉図10を参照して磁極数比が2:1(図10では
外側磁石の磁極数が4、内側磁石の磁極数が2)であると
きを考える。
[0077] C1 = A + IcC + Ic 2 V ... (18) C2 = -A + IcD + Ic 2 E ... (19) <2> N (2 (2p) -2p) Basic <2-1> 10 Let us consider a case where the ratio of the number of magnetic poles is 2: 1 (the number of magnetic poles of the outer magnet is 4 and the number of magnetic poles of the inner magnet is 2 in FIG. 10).

【0078】各磁石を等価コイルに置き換えると、外側
磁石に発生する磁束密度B1は B1=Bm1 sin(2ω1t-2θ)=μIm1 sin(2ω1t-2θ) …(21) となるのに対して、内側磁石に発生する磁束密度B2は上
記(2)式と同じ、つまり B2=Bm2 sin(ω2t+α-θ)=μIm2 sin(ω2t+α-θ) …(22) である。
When each magnet is replaced with an equivalent coil, the magnetic flux density B 1 generated in the outer magnet becomes B 1 = Bm 1 sin (2ω 1 t−2θ) = μIm 1 sin (2ω 1 t−2θ) (21) On the other hand, the magnetic flux density B 2 generated in the inner magnet is the same as the above equation (2), that is, B 2 = Bm 2 sin (ω 2 t + α-θ) = μIm 2 sin (ω 2 t + α−θ) (22)

【0079】ステータコイルの作る磁場は、外側回転磁
界用と内側回転磁界用に分けて計算するため、図10の
ようにコイルを配置し、外周側と内周側の各磁石用のス
テータコイルによる磁束密度Bc1、Bc2を、 Bc1=μn(Ica(t)sin(2θ)+Icb(t)sin(2θ-2π/3) +Icc(t)sin(2θ-4π/3)) …(23) Bc2=μn(Icd(t)sin(θ)+Ice(t)sin(θ-2π/3) +Icf(t)sin(θ-4π/3)) …(24) とする。
Since the magnetic field generated by the stator coil is calculated separately for the outer rotating magnetic field and the inner rotating magnetic field, the coils are arranged as shown in FIG. 10 and the outer and inner stator magnet coils are used. The magnetic flux densities Bc 1 and Bc 2 are calculated as follows: Bc 1 = μn (Ica (t) sin (2θ) + Icb (t) sin (2θ−2π / 3) + Icc (t) sin (2θ−4π / 3)) (23) Bc 2 = μn (Icd (t) sin (θ) + Ice (t) sin (θ−2π / 3) + Icf (t) sin (θ−4π / 3)) (24)

【0080】ただし、Ica(t)、Icb(t)、Icc(t)のほか、
Icd(t)、Ice(t)、Icf(t)も120度位相のずれた電流であ
る。
However, in addition to Ica (t), Icb (t) and Icc (t),
Icd (t), Ice (t) and Icf (t) are also currents that are 120 degrees out of phase.

【0081】上記の磁束密度B1、B2、Bc1、Bc2の変化を
モデル的に図11に示す。
FIG. 11 shows a model change in the magnetic flux densities B 1 , B 2 , Bc 1 , and Bc 2 .

【0082】角度θでの磁束密度Bは上記4つの磁束密度
の和である。
The magnetic flux density B at the angle θ is the sum of the above four magnetic flux densities.

【0083】 B=B1+B2+Bc1+Bc2 =μIm1 sin(2ω1t-2θ)+μIm2 sin(ω2t+α-θ) +μn(Ica(t)sin(2θ)+Icb(t)sin(2θ-2π/3) +Icc(t)sin(2θ-4π/3)) +μn(Icd(t)sin(θ)+Ice(t)sin(θ-2π/3) +Icf(t)sin(θ-4π/3)) …(25) 外側磁石m1に作用するトルクをτ1とすると、τ1=f1
×r1(r1は半径)である。図10では直径を中心として線
対称的に発生トルクが等しくならないので、一周の全て
について考える。一周に4つの等価直流電流が流れるの
で、これら4つの電流に働く力の和がf1となる。
B = B 1 + B 2 + Bc 1 + Bc 2 = μIm 1 sin (2ω 1 t−2θ) + μIm 2 sin (ω 2 t + α−θ) + μn (Ica (t) sin (2θ ) + Icb (t) sin (2θ-2π / 3) + Icc (t) sin (2θ-4π / 3)) + μn (Icd (t) sin (θ) + Ice (t) sin (θ-2π / 3) + Icf (t) sin (θ−4π / 3)) (25) Assuming that the torque acting on the outer magnet m 1 is τ 1 , τ 1 = f 1
× r 1 (r 1 is a radius). In FIG. 10, since the generated torques are not equal symmetrically with respect to the diameter, the entire circumference is considered. Flows through four equivalent direct current round, the sum of the forces acting on these four current is f 1.

【0084】 f1=Im1×B(θ=ω1t)+Im1×B(θ=ω1t+π) -Im1×B(θ=ω1t+π/2) -Im1×B(θ=ω1t+3π/2) =μIm1(Im1 sin(2ω1t-2ω1t)+Im1 sin(2ω1t-2ω1t-2π) -Im1 sin(2ω1t-2ω1t-π) -Im1 sin(2ω1t-2ω1t+3π) +Im2 sin(ω2t+α-ω1t)+Im2 sin(ω2t+α-ω1t+π) -Im2 sin(ω2t+α-ω1t+π/2) -Im2 sin(ω2t+α-ω1t+π/2) +n(Ica(t)sin(2ω1t)+Icb(t)sin(2ω1t-2π/3) +Icc(t)sin(2ω1t-4π/3)) +n(Ica(t)sin(2ω1t+2π)+Icb(t)sin(2ω1t+2π-2π/3) +Icc(t)sin(2ω1t+2π-4π/3)) -n(Ica(t)sin(2ω1t+π)+Icb(t)sin(2ω1t+π/3) +Icc(t)sin(2ω1t-π/3) -n(Ica(t)sin(2ω1t+π)+Icb(t)sin(2ω1t+π/3) +Icc(t)sin(2ω1t-π/3)) +n(Icd(t)sin(ω1t)+Ice(t)sin(ω1t-2π/3) +Icf(t)sin(ω1t-4π/3)) +n(Icd(t)sin(ω1t+π)+Ice(t)sin(ω1t+π-2π/3) +Icf(t)sin(ω1t+π-4π/3)) -n(Icd(t)sin(ω1t+π/2)+Ice(t)sin(ω1t+π/2-2π/3) +Icf(t)sin(ω1t+π/2-4π/3) -n(Icd(t)sin(ω1t+3π/2)+Ice(t)sin(ω1t+3π/2-2π/3) +Icf(t)sin(ω1t+3π/2-4π/3) =4μIm1n(Ica(t)sin(2ω1t)+Icb(t)sin(2ω1t-2π/3) +Icc(t)sin(2ω1t-4π/3)) …(26) (26)式によれば、コイルa、b、cの励磁電流によって外
側磁石に作用するトルクをコントロールできることを示
している。また、コイルd、e、fの励磁電流の影響を受
けないことも示している。
F 1 = Im 1 × B (θ = ω 1 t) + Im 1 × B (θ = ω 1 t + π) -Im 1 × B (θ = ω 1 t + π / 2) -Im 1 × B (θ = ω 1 t + 3π / 2) = μIm 1 (Im 1 sin (2ω 1 t-2ω 1 t) + Im 1 sin (2ω 1 t-2ω 1 t-2π) -Im 1 sin (2ω 1 t-2ω 1 t-π) -Im 1 sin (2ω 1 t-2ω 1 t + 3π) + Im 2 sin (ω 2 t + α-ω 1 t) + Im 2 sin (ω 2 t + α- ω 1 t + π) -Im 2 sin (ω 2 t + α-ω 1 t + π / 2) -Im 2 sin (ω 2 t + α-ω 1 t + π / 2) + n (Ica (t ) sin (2ω 1 t) + Icb (t) sin (2ω 1 t-2π / 3) + Icc (t) sin (2ω 1 t-4π / 3)) + n (Ica (t) sin (2ω 1 t + 2π) + Icb (t) sin (2ω 1 t + 2π-2π / 3) + Icc (t) sin (2ω 1 t + 2π-4π / 3)) -n (Ica (t) sin (2ω 1 t) + π) + Icb (t) sin (2ω 1 t + π / 3) + Icc (t) sin (2ω 1 t-π / 3) -n (Ica (t) sin (2ω 1 t + π) + Icb (t) sin (2ω 1 t + π / 3) + Icc (t) sin (2ω 1 t-π / 3)) + n (Icd (t) sin (ω 1 t) + Ice (t) sin (ω 1 t-2π / 3) + Icf (t) sin (ω 1 t-4π / 3)) + n (Icd (t) sin (ω 1 t + π) + Ice (t) sin (ω 1 t + π -2π / 3) + Icf (t) sin (ω 1 t + π-4π / 3)) -n (Icd (t) sin (ω 1 t + π / 2) + Ice (t) sin (ω 1 t + π / 2-2π / 3) + Icf (t) sin (ω 1 t + π / 2-4π / 3) -n (Icd (t) sin (ω 1 t + 3π / 2) + Ice (t) sin (ω 1 t + 3π / 2-2π / 3) + Icf (t) sin (ω 1 t + 3π / 2-4π / 3) = 4μIm 1 n (Ica (t) sin (2ω 1 t) + Icb (t) sin (2ω 1 t-2π / 3) + Icc (t) sin (2ω 1 t -4π / 3)) (26) Equation (26) indicates that the torque acting on the outer magnet can be controlled by the exciting current of the coils a, b, and c. It also shows that it is not affected by the exciting current of the coils d, e, and f.

【0085】次に、内側磁石m2に作用するトルクをτ2
とすると、 τ12=f2×r2(r2は半径) である。一周に2つの等価直流電流が流れるので、これ
ら2つの電流に働く力の和がf2となる。
Next, the torque acting on the inner magnet m 2 is given by τ 2
Then, τ 12 = f 2 × r 2 (r 2 is a radius). Since two equivalent direct current flows in one round, the sum of the forces acting on these two currents is f 2.

【0086】 f2=Im2×B(θ=ω2t+α)-Im2×B(θ=ω2t+π+α) =μIm2(Im1 sin(2ω1t-2ω2t-2α)-Im1 sin(2ω1t-2ω2t-2α-2π) +Im2 sin(2ω2t+2α-2ω2t-2α) -Im2 sin(2ω2t+2α-2ω2t-2α-2π) +n(Ica(t)sin(2ω2t+2α)+Icb(t)sin(2ω2t+2α-2π/3) +Icc(t)sin(2ω2t+2α-4π/3) -n(Ica(t)sin(2ω2t+2π+2α)+Icb(t)sin(2ω2t+2π+2α-2π/3) +Icc(t)sin(2ω2t+2π+2α-4π/3) +n(Icd(t)sin(ω2t+α)+Ice(t)sin(ω2t+α-2π/3) +Icf(t)sin(ω2t+α-4π/3)) -n(Icd(t)sin(ω2t+π+α)+Ice(t)sin(ω2t+π+α-2π/3) +Icf(t)sin(ω2t+π+α-4π/3))) =2μIm2n(Icd(t)sin(ω2t+α)+Ice(t)sin(ω2t+α-2π/3) +Icf(t)sin(ω2t+α-4π/3)) …(27) (27)式によれば、コイルd、e、fの励磁電流によって内
側磁石に作用するトルクをコントロールでき、また、コ
イルa、b、cの励磁電流の影響を受けないことを示して
いる。
F 2 = Im 2 × B (θ = ω 2 t + α) −Im 2 × B (θ = ω 2 t + π + α) = μIm 2 (Im 1 sin (2ω 1 t−2ω 2 t) -2α) -Im 1 sin (2ω 1 t-2ω 2 t-2α-2π) + Im 2 sin (2ω 2 t + 2α-2ω 2 t-2α) -Im 2 sin (2ω 2 t + 2α-2ω 2 t-2α-2π) + n (Ica (t) sin (2ω 2 t + 2α) + Icb (t) sin (2ω 2 t + 2α-2π / 3) + Icc (t) sin (2ω 2 t + 2α -4π / 3) -n (Ica (t) sin (2ω 2 t + 2π + 2α) + Icb (t) sin (2ω 2 t + 2π + 2α-2π / 3) + Icc (t) sin (2ω 2 t + 2π + 2α-4π / 3) + n (Icd (t) sin (ω 2 t + α) + Ice (t) sin (ω 2 t + α-2π / 3) + Icf (t) sin (ω 2 t + α-4π / 3)) -n (Icd (t) sin (ω 2 t + π + α) + Ice (t) sin (ω 2 t + π + α-2π / 3) + Icf (t ) sin (ω 2 t + π + α-4π / 3))) = 2μIm 2 n (Icd (t) sin (ω 2 t + α) + Ice (t) sin (ω 2 t + α-2π / 3 ) + Icf (t) sin (ω 2 t + α-4π / 3))… (27) According to equation (27), the torque acting on the inner magnet can be controlled by the exciting current of coils d, e, and f. , And that they are not affected by the exciting currents of the coils a, b, and c.

【0087】〈2-2〉外側回転磁界を与えた場合 コイルa、b、cに外側磁石に合わせてβの位相差の電流
を流す。つまり、上記の3相交流Ica(t)、Icb(t)、Icc
(t)は Ica(t)=Ic cos(2ω1t-2β) …(28a) Icb(t)=Ic cos(2ω1t-2β-2π/3) …(28b) Icc(t)=Ic cos(2ω1t-2β-4π/3) …(28c) である。(28a)〜(28c)を(26)、(27)式に代入してf1
計算する。
<2-2> When an outer rotating magnetic field is applied A current having a phase difference of β is applied to the coils a, b and c in accordance with the outer magnet. That is, the above three-phase alternating currents Ica (t), Icb (t), Icc
(t) is Ica (t) = Ic cos (2ω 1 t−2β) ... (28a) Icb (t) = Ic cos (2ω 1 t−2β−2π / 3)… (28b) Icc (t) = Ic cos (2ω 1 t-2β-4π / 3)… (28c). The (28a) ~ (28c) (26), to calculate the f 1 are substituted into the expression (27).

【0088】 f1=4μIm1 n Ic(cos(2ω1t-2β)sin(2ω1t) +cos(2ω1t-2β-2π/3)sin(2ω1t-2π/3) +cos(2ω1t-2β-4π/3)sin(2ω1t-4π/3)) ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて f1=4μIm1 n Ic(1/2(sin(2ω1t-2β+2ω1t) -sin(2ω1t-2β-2ω1t)) +1/2(sin(2ω1t-2β-2π/3+2ω1t-2π/3) -sin(2ω1t-2β-2π/3-2ω1t+2π/3)) +1/2(sin(2ω1t-2β-4π/3+2ω1t-4π/3) -sin(2ω1t-2β-4π/3-2ω1t+4π/3))) =2μIm1 n Ic(sin(4ω1t-2β)+sin(2β) +sin(4ω1t-2β-4π/3)+sin(2β) +sin(4ω1t-2β-8π/3)+sin(2β)) =2μIm1 n Ic(sin(4ω1t-2β) +sin(4ω1t-2β-4π/3) +sin(4ω1t-2β-4π/3) +3sin(2β)) =6μIm1 n Ic sin(2β) …(29) (29)式によれば、位相差(β)に応じて外側磁石のトルク
が変化することを示している。したがって、外側磁石の
回転角度を計測し、それに対しβだけ位相をずらしてコ
イルa、b、cに励磁電流を供給すればよいことがわか
る。
F 1 = 4 μIm 1 n Ic (cos (2ω 1 t-2β) sin (2ω 1 t) + cos (2ω 1 t-2β-2π / 3) sin (2ω 1 t-2π / 3) + cos (2ω 1 t-2β-4π / 3) sin (2ω 1 t-4π / 3)) where cos (a) sin (b) = 1/2 (sin (a + b) -sin (ab)) F 1 = 4μIm 1 n Ic (1/2 (sin (2ω 1 t-2β + 2ω 1 t) -sin (2ω 1 t-2β-2ω 1 t)) +1/2 (sin ( 2ω 1 t-2β-2π / 3 + 2ω 1 t-2π / 3) -sin (2ω 1 t-2β-2π / 3-2ω 1 t + 2π / 3)) +1/2 (sin (2ω 1 t -2β-4π / 3 + 2ω 1 t-4π / 3) -sin (2ω 1 t-2β-4π / 3-2ω 1 t + 4π / 3))) = 2μIm 1 n Ic (sin (4ω 1 t- 2β) + sin (2β) + sin (4ω 1 t-2β-4π / 3) + sin (2β) + sin (4ω 1 t-2β-8π / 3) + sin (2β)) = 2μIm 1 n Ic ( sin (4ω 1 t-2β) + sin (4ω 1 t-2β-4π / 3) + sin (4ω 1 t-2β-4π / 3) + 3sin (2β)) = 6μIm 1 n Ic sin (2β)… (29) Equation (29) indicates that the torque of the outer magnet changes according to the phase difference (β). Therefore, it is understood that the rotation angle of the outer magnet is measured, and the excitation current is supplied to the coils a, b, and c by shifting the phase by β.

【0089】〈2-3〉内側回転磁界を与えた場合コイル
d、e、fに外側磁石に合わせてγの位相差電流を流すた
め、Icd(t)、Ice(t)、Icf(t)を Icd(t)=Ic cos(ω2t-γ) …(30a) Ice(t)=Ic cos(ω2t-γ-2π/3) …(30b) Icf(t)=Ic cos(ω2t-γ-4π/3) …(30c) とする。
<2-3> Coil when inner rotating magnetic field is applied
To allow a phase difference current of γ to flow through d, e, and f according to the outer magnet, Icd (t), Ice (t), and Icf (t) are calculated as follows: Icd (t) = Ic cos (ω 2 t−γ) (30a) Ice (t) = Ic cos (ω 2 t−γ−2π / 3) (30b) Icf (t) = Ic cos (ω 2 t−γ−4π / 3) (30c)

【0090】これらを(27)式に代入してf2を計算す
る。
These are substituted into equation (27) to calculate f 2 .

【0091】 f2=2μIm2 n(Ic cos(ω2t-γ)sin(ω2t+α) +Ic cos(ω2t-γ-2π/3)sin(ω2t+α-2π/3) +Ic cos(ω2t-γ-4π/3)sin(ω2t+α-4π/3) ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて f2=2μIm2 n Ic(1/2(sin(ω2t-γ+ω2t+α) -sin(ω2t-γ-ω2t-α)) +1/2(sin(ω2t-γ-2π/3+ω2t+α-2π/3) -sin(ω2t-γ-2π/3-ω2t-α+2π/3)) +1/2(sin(ω2t-γ-4π/3+ω2t+α-4π/3) -sin(ω2t-γ-4π/3-ω2t-α+4π/3)) =μIm2 n Ic(sin(2ω2t-γ+α)+sin(γ+α) +sin(2ω2t-γ-4π/3+α)+sin(γ+α) +sin(2ω2t-γ-8π/3+α)+sin(γ+α)) =μIm2 n Ic(sin(2ω2t-γ+α)+sin(2ω2t-γ-4π/3+α) +sin(2ω2t-γ-8π/3+α) +3sin(γ+α)) =3μIm2 n Ic sin(γ+α) …(31) (31)式によれば位相差(γ+α)により内側磁石のトルク
が変化することを示している。したがって、内側磁石の
回転角度を計測し、それに対し(γ+α)だけ位相をずら
してコイルd、e、fに励磁電流を供給すればよいことが
わかる。
F 2 = 2 μIm 2 n (Ic cos (ω 2 t−γ) sin (ω 2 t + α) + Ic cos (ω 2 t−γ−2π / 3) sin (ω 2 t + α−2π / 3) + Ic cos (ω 2 t-γ-4π / 3) sin (ω 2 t + α-4π / 3) where cos (a) sin (b) = 1/2 (sin (a + b ) -sin (ab)) formula, f 2 = 2μIm 2 n Ic (1/2 (sin (ω 2 t-γ + ω 2 t + α) -sin (ω 2 t-γ-ω 2 t -α)) +1/2 (sin (ω 2 t-γ-2π / 3 + ω 2 t + α-2π / 3) -sin (ω 2 t-γ-2π / 3-ω 2 t-α + 2π / 3)) +1/2 (sin (ω 2 t-γ-4π / 3 + ω 2 t + α-4π / 3) -sin (ω 2t -γ-4π / 3-ω 2 t-α + 4π / 3)) = μIm 2 n Ic (sin (2ω 2 t-γ + α) + sin (γ + α) + sin (2ω 2 t-γ-4π / 3 + α) + sin (γ + α) + sin (2ω 2 t-γ-8π / 3 + α) + sin (γ + α)) = μIm 2 n Ic (sin (2ω 2 t-γ + α) + sin (2ω 2 t-γ-4π / 3 + α) + sin (2ω 2 t-γ-8π / 3 + α) + 3sin (γ + α)) = 3μIm 2 n Ic sin (γ + α)… (31) According to equation (31), This indicates that the torque of the inner magnet changes due to the phase difference (γ + α) .Therefore, the rotation angle of the inner magnet is measured, and the phase is shifted by (γ + α) to the coils d, e, and f. It is sufficient to supply the exciting current. It is seen.

【0092】〈2-4〉まとめ (29)式は外側磁石に同期させてステータコイルに電流を
流したときは外側磁石にのみ、また(31)式は内側磁石に
同期させてステータコイルに電流を流したときは内側磁
石にのみ回転トルクが発生する。それぞれの磁界はそれ
ぞれの相電流にしか対応しないため、計算はしなかった
が、外側磁石と内側磁石のそれぞれに同期させてステー
タコイルに電流を流すと、両方の磁石にそれぞれ回転ト
ルクが発生する。
<2-4> Conclusion Equation (29) applies the current to the outer coil only when the current flows through the stator coil in synchronization with the outer magnet, and Equation (31) applies the current to the stator coil in synchronization with the inner magnet. , A rotational torque is generated only in the inner magnet. Since each magnetic field corresponds only to each phase current, it was not calculated, but when a current is applied to the stator coil in synchronization with the outer magnet and the inner magnet, a rotating torque is generated in both magnets .

【0093】このことから、磁極数比が2:1の組み合わ
せであるときにも、回転電機として働くことが可能であ
ることが証明された。
From this, it was proved that even when the ratio of the number of magnetic poles was a combination of 2: 1, it was possible to function as a rotating electric machine.

【0094】〈2-5〉ステータコイルに流す電流の設定 図10では理論計算のため、外側回転磁場を発生させる
ための専用コイルと、内側回転磁場を発生させるための
専用コイルとを考えたが、いま図12に示したように、
コイルを共用させることを考える。図10において、コ
イルaとd、コイルbとf、コイルcとe、コイルaとd、コイ
ルbとf、コイルcとeをまとめることができる。そこで、
図10と図12のコイルを対照させると、図12のコイ
ル1〜12に流す複合電流I1〜I12は、 I1=Ia+Id I2Ic I3=Ib+If I4Ia I5=Ic+Ie I6Ib I7=Ia+Id I8Ic I9=Ib+If I10Ia I11=Ic+Ie I12Ib であればよいことがわかる。
<2-5> Setting of Current Flowing in Stator Coil In FIG. 10, for theoretical calculation, a dedicated coil for generating the outer rotating magnetic field and a dedicated coil for generating the inner rotating magnetic field were considered. Now, as shown in FIG.
Consider sharing a coil. In FIG. 10, coils a and d, coils b and f , coils c and e, coils a and d , coils b and f, and coils c and e can be summarized. Therefore,
When comparing the coils of FIGS. 10 and 12 with each other, the composite currents I 1 to I 12 flowing through the coils 1 to 12 of FIG. 12 are as follows: I 1 = Ia + Id I 2 = Ic I 3 = Ib + If I 4 = Ia I 5 = Ic + Ie I 6 = Ib I 7 = Ia + Id I 8 = Ic I 9 = Ib + if I 10 = Ia I 11 = Ic + Ie I 12 = it can be seen that if Ib.

【0095】この場合、I1、I3、I5、I7、I9、I11の各
電流を流すコイルの負担が、I2、I4、I6、I8、I10、I12
の各電流を流す残りのコイルよりも大きくなるため、残
りのコイルにも負担を分散させて内側回転磁界を形成さ
せることを考える。
In this case, the load of the coils for passing the currents I 1 , I 3 , I 5 , I 7 , I 9 , I 11 is I 2 , I 4 , I 6 , I 8 , I 10 , I 12
Therefore, it is considered that the load is distributed to the remaining coils to form an inner rotating magnetic field because the current is larger than the remaining coils through which the respective currents flow.

【0096】たとえば、図2と図1を対照すると、図1
の1、12、2に対応する部分は、図2では外周側コイル
のa、ac、cと内周側コイルのd、dである。この場合
に、コイルd、dの位相を等価的にずらした状態を考え、
そのずらせたものを新たにコイルd´、とすると、こ
のうちコイルd´に流す電流Id´の半分ずつをコイルaと
cに、またコイルに流す電流Id´の半分ずつをコイル
acに割り振る。残りも同様である。
For example, comparing FIG. 2 with FIG. 1, FIG.
In FIG. 2, the portions corresponding to 1, 1 , 2 , and 2 are a, a , c , c of the outer peripheral coil and d, d of the inner peripheral coil. In this case, consider a state in which the phases of coils d and d are equivalently shifted,
Assuming that the shifted coils are new coils d ′ and d ′, half of the current Id ′ flowing through the coil d ′ is a coil a ′.
c and half of the current Id 'flowing through the coil d '
Assign to a and c . The rest is the same.

【0097】これは、言葉を換えると、内側ロータ(磁
極数の少ない側のロータ)の1極当たり3相になるように
コイルを6つに区切り(図1、図2の破線参照)、上記で
いえばその区切られた中のコイルaとcの各コイル(ある
いはコイルacの各コイル)に、内側ロータの駆動電流I
d´(あるいはId´)をその区切られたコイルの数である2
で割った電流値(1/2)Id´(あるいは(1/2)Id ´)を流すこ
とである。
In other words, in other words, the coil is divided into six (see broken lines in FIGS. 1 and 2) so that three phases are formed per one pole of the inner rotor (the rotor having the smaller number of magnetic poles). In other words, each of the separated coils a and c (or each of the coils a and c ) has a drive current I of the inner rotor.
d '(or Id' ) is the number of coils separated by 2
To flow the current value (1/2) Id ' (or (1/2) Id ' ) divided by.

【0098】このようにすることで、別の電流設定とし
て I1=Ia+(1/2)Id´ I2=Ic+(1/2)Id´ I3=Ib+(1/2)If´ I4=Ia+(1/2)If´ I5=Ic+(1/2)Ie´ I6=Ib+(1/2)Ie´ I7=Ia+(1/2)Id´ I8=Ic+(1/2)Id´ I9=Ib+(1/2)If´ I10=Ia+(1/2)If´ I11=Ic+(1/2)Ie´ I12=Ib+(1/2)Ie´ が得られる。ただし、コイルe´、f´もコイルe、fを等
価的にずらしたものである。
In this way, as another current setting, I 1 = Ia + (1/2) Id'I 2 = Ic + (1/2) Id'I 3 = Ib + (1/2) If'I 4 = Ia + (1/2) If ' I 5 = Ic + (1/2) Ie' I 6 = Ib + (1/2) Ie 'I 7 = Ia + (1/2) Id' I 8 = Ic + (1/2 ) Id ' I 9 = Ib + (1/2) If' I 10 = Ia + (1/2) If 'I 11 = Ic + (1/2) Ie' I 12 = Ib + (1/2) Ie ' . However, the coils e ′ and f ′ are also equivalently shifted from the coils e and f.

【0099】さらに考えると、 I1=Ia+Ii I2Ic+Iii I3=Ib+Iiii I4Ia+Iiv I5=Ic+Iv I6Ib+Ivi I7=Ia+Ivii I8Ic+Iviii I9=Ib+Iix I10Ia+Ix I11=Ic+Ixi I12Ib+Ixii でもかまわない。つまり、これらI1〜I12の式の右辺第
2項の電流Ii〜Ixiiは図13に示したように12相交流と
なるわけで、この12相交流で内側回転磁界を形成するよ
うにすればよいのである。
[0099] Further consider, I 1 = Ia + I i I 2 = Ic + I ii I 3 = Ib + I iii I 4 = Ia + I iv I 5 = Ic + I v I 6 = Ib + I vi I 7 = Ia + I vii I 8 = Ic + I viii I 9 = Ib + I ix I 10 = Ia + I x I 11 = Ic + I xi I 12 = Ib + I xii may even. In other words, the currents I i to I xii in the second term on the right side of the equations I 1 to I 12 are 12-phase alternating currents as shown in FIG. 13, so that the 12-phase alternating currents form an inner rotating magnetic field. You just have to do it.

【0100】〈2-6〉12相交流で内側回転磁界を与える
場合 〈2-6-1〉12相交流で内側回転磁界を作ることを考える
と、このときの磁束密度Bc2は次のようになる。
<2-6> When an inner rotating magnetic field is applied by 12-phase alternating current <2-6-1> Considering that an inner rotating magnetic field is created by 12-phase alternating current, the magnetic flux density Bc 2 at this time is as follows. become.

【0101】 Bc2=μn(Ici(t)sin(θ)+Icii(t)sin(θ-2π/12) +Iciii(t)sin(θ-4π/12) +Iciv(t)sin(θ-6π/12) +Icv(t)sin(θ-8π/12) +Icvi(t)sin(θ-10π/12) +Icvii(t)sin(θ-12π/12) +Icviii(t)sin(θ-14π/12) +Icix(t)sin(θ-16π/12) +Icx(t)sin(θ-18π/12) +Icxi(t)sin(θ-20π/12) +Icxii(t)sin(θ-22π/12)) …(32) このとき、全体の磁束密度Bは次のようになる。Bc 2 = μn (Ic i (t) sin (θ) + Ic ii (t) sin (θ-2π / 12) + Ic iii (t) sin (θ-4π / 12) + Ic iv (t ) sin (θ-6π / 12) + Ic v (t) sin (θ-8π / 12) + Ic vi (t) sin (θ-10π / 12) + Ic vii (t) sin (θ-12π / 12 ) + Ic viii (t) sin (θ-14π / 12) + Ic ix (t) sin (θ-16π / 12) + Ic x (t) sin (θ-18π / 12) + Ic xi (t) sin (θ−20π / 12) + Ic xii (t) sin (θ−22π / 12)) (32) At this time, the entire magnetic flux density B is as follows.

【0102】 B=B1+B2+Bc1+Bc2 =μIm1 sin(3ω1t-3θ)+μIm2 sin(ω2t+α-θ) +μn(Ica(t)sin(3θ)+Icb(t)sin(3θ-2π/3) +Icc(t)sin(3θ-4π/3) +μn(Ici(t)sin(θ)+Icii(t)sin(θ-2π/12) +Iciii(t)sin(θ-4π/12) +Iciv(t)sin(θ-6π/12) +Icv(t)sin(θ-8π/12) +Icvi(t)sin(θ-10π/12) +Icvii(t)sin(θ-12π/12) +Icviii(t)sin(θ-14π/12) +Icix(t)sin(θ-16π/12) +Icx(t)sin(θ-18π/12) +Icxi(t)sin(θ-20π/12) +Icxii(t)sin(θ-22π/12)) …(33) このときのf1を計算してみると、 f1=Im1×B(θ=ω1t)+Im1×B(θ=ω1t+π) -Im1×B(θ=ω1t+π/2) -Im1×B(θ=ω1t+3π/2) =μIm1(Im1 sin(2ω1t-2ω1t)+Im1 sin(2ω1t-2ω1t-2π) -Im1 sin(2ω1t−2ω1t-π) -Im1 sin(2ω1t-2ω1t+3π) +Im2 sin(ω2t+α-ω1t) +Im2 sin(ω2t+α-ω1t+π) -Im2 sin(ω2t+α-ω1t+π/2) -Im2 sin(ω2t+α-ω1t+π/2) +n(Ica(t)sin(2ω1t)+Icb(t)sin(2ω1t-2π/3) +Icc(t)sin(2ω1t-4π/3)) +n(Ica(t)sin(2ω1t+2π)+Icb(t)sin(2ω1t+2π-2π/3) +Icc(t)sin(2ω1t+2π-4π/3)) -n(Ica(t)sin(2ω1t+π)+Icb(t)sin(2ω1t+π/3) +Icc(t)sin(2ω1t+2π-π/3)) -n(Ica(t)sin(2ω1t+π)+Icb(t)sin(2ω1t+π/3) +Icc(t)sin(2ω1t+2π-π/3)) +n(Ici(t)(sin(ω1t)+sin(ω1t+π) -sin(ω1t+π/2) -sin(ω1t+3π/2)) +Icii(t)(sin(ω1t-2π/12)+sin(ω1t-2π/12+π) -sin(ω1t-2π/12+π/2) -sin(ω1t-2π/12+3π/2)) +Iciii(t)(sin(ω1t-4π/12)+sin(ω1t-4π/12+π) -sin(ω1t-4π/12+π/2) -sin(ω1t-4π/12+3π/2)) +Iciv(t)(sin(ω1t-6π/12)+sin(ω1t-6π/12+π) -sin(ω1t-6π/12+π/2) -sin(ω1t-6π/12+3π/2)) +Icv(t)(sin(ω1t-8π/12)+sin(ω1t-8π/12+π) -sin(ω1t-8π/12+π/2) -sin(ω1t-8π/12+3π/2)) +Icvi(t)(sin(ω1t-10π/12)+sin(ω1t-10π/12+π) -sin(ω1t-10π/12+π/2) -sin(ω1t-10π/12+3π/2)) +Icvii(t)(sin(ω1t-12π/12)+sin(ω1t-12π/12+π) -sin(ω1t-12π/12+π/2) -sin(ω1t-12π/12+3π/2)) +Icviii(t)(sin(ω1t-14π/12)+sin(ω1t-14π/12+π) -sin(ω1t-14π/12+π/2) -sin(ω1t-14π/12+3π/2)) +Icix(t)(sin(ω1t-16π/12)+sin(ω1t-16π/12+π) -sin(ω1t-16π/12+π/2) -sin(ω1t-16π/12+3π/2)) +Icx(t)(sin(ω1t-18π/12)+sin(ω1t-18π/12+π) -sin(ω1t-18π/12+π/2) -sin(ω1t-18π/12+3π/2)) +Icxi(t)(sin(ω1t-20π/12)+sin(ω1t-20π/12+π) -sin(ω1t-20π/12+π/2) -sin(ω1t-20π/12+3π/2)) +Icxii(t)(sin(ω1t-22π/12)+sin(ω1t-22π/12+π) -sin(ω1t-22π/12+π/2) -sin(ω1t-22π/12+3π/2)) =4μn Im1(Ica(t)sin(2ω1t)+Icb(t)sin(2ω1t-2π/3) +Icc(t)sin(2ω1t-4π/3)) …(34) となり、3相交流で内側回転磁界を作ったときの(26)式
と変わりない。
B = B 1 + B 2 + Bc 1 + Bc 2 = μIm 1 sin (3ω 1 t-3θ) + μIm 2 sin (ω 2 t + α-θ) + μn (Ica (t) sin (3θ ) + Icb (t) sin ( 3θ-2π / 3) + Icc (t) sin (3θ-4π / 3) + μn (Ic i (t) sin (θ) + Ic ii (t) sin (θ-2π / 12) + Ic iii (t) sin (θ-4π / 12) + Ic iv (t) sin (θ-6π / 12) + Ic v (t) sin (θ-8π / 12) + Ic vi (t ) sin (θ-10π / 12 ) + Ic vii (t) sin (θ-12π / 12) + Ic viii (t) sin (θ-14π / 12) + Ic ix (t) sin (θ-16π / 12 ) + Ic x (t) sin (θ-18π / 12) + Ic xi (t) sin (θ-20π / 12) + Ic xii (t) sin (θ-22π / 12))… (33) When the f 1 will be calculated, f 1 = Im 1 × B (θ = ω 1 t) + Im 1 × B (θ = ω 1 t + π) -Im 1 × B (θ = ω 1 t + π / 2) -Im 1 × B (θ = ω 1 t + 3π / 2) = μIm 1 (Im 1 sin (2ω 1 t-2ω 1 t) + Im 1 sin (2ω 1 t-2ω 1 t-2π ) -Im 1 sin (2ω 1 t−2ω 1 t-π) -Im 1 sin (2ω 1 t-2ω 1 t + 3π) + Im 2 sin (ω 2 t + α-ω 1 t) + Im 2 sin (ω 2 t + α-ω 1 t + π) -Im 2 sin (ω 2 t + α-ω 1 t + π / 2) -Im 2 sin (ω 2 t + α-ω 1 t + π / 2 ) + n (Ica (t) sin (2ω 1 t) + Icb (t) sin (2ω 1 t-2π / 3) + Icc (t) sin (2ω 1 t-4π / 3)) + n (Ica ( t) sin (2ω 1 t + 2π) + Icb (t) sin (2ω 1 t + 2π-2π / 3) + Icc (t) sin (2ω 1 t + 2π-4π / 3)) -n (Ica (t) sin (2ω 1 t + π) + Icb (t) sin (2ω 1 t + π / 3) + Icc (t) sin (2ω 1 t + 2π-π / 3)) -n (Ica (t) sin (2ω 1 t + π) + Icb (t) sin (2ω 1 t + π / 3) + Icc (t) sin (2ω 1 t + 2π-π / 3)) + n (Ic i (t) (sin (ω 1 t) + sin (ω 1 t + π) -sin (ω 1 t + π / 2) -sin (ω 1 t + 3π / 2)) + Ic ii (t) (sin (ω 1 t-2π / 12) + sin (ω 1 t-2π / 12 + π)- sin (ω 1 t-2π / 12 + π / 2) -sin (ω 1 t-2π / 12 + 3π / 2)) + Ic iii (t) (sin (ω 1 t-4π / 12) + sin ( ω 1 t-4π / 12 + π) -sin (ω 1 t-4π / 12 + π / 2) -sin (ω 1 t-4π / 12 + 3π / 2)) + Ic iv (t) (sin ( ω 1 t-6π / 12) + sin (ω 1 t-6π / 12 + π) -sin (ω 1 t-6π / 12 + π / 2) -sin (ω 1 t-6π / 12 + 3π / 2 )) + Ic v (t) (sin (ω 1 t-8π / 12) + sin (ω 1 t-8π / 12 + π) -sin (ω 1 t-8π / 12 + π / 2) -sin ( ω 1 t-8π / 12 + 3π / 2)) + Ic vi (t) (sin (ω 1 t-10π / 12) + sin (ω 1 t-10π / 12 + π) -sin (ω 1 t- 10π / 12 + π / 2) -sin (ω 1 t-10π / 12 + 3π / 2)) + Ic vii (t) (sin (ω 1 t-12π / 12) + sin (ω 1 t-12π / 12 + π) -sin (ω 1 t-12π / 12 + π / 2) -sin (ω 1 t-12π / 12 + 3π / 2)) + Ic viii (t) (sin (ω 1 t-14π / 12) + sin (ω 1 t-14π / 12 + π) -sin (ω 1 t-14π / 12 + π / 2) -sin ( ω 1 t-14π / 12 + 3π / 2)) + Ic ix (t) (sin (ω 1 t-16π / 12) + sin (ω 1 t-16π / 12 + π) -sin (ω 1 t- 16π / 12 + π / 2) -sin (ω 1 t-16π / 12 + 3π / 2)) + Ic x (t) (sin (ω 1 t-18π / 12) + sin (ω 1 t-18π / 12 + π) -sin (ω 1 t-18π / 12 + π / 2) -sin (ω 1 t-18π / 12 + 3π / 2)) + Ic xi (t) (sin (ω 1 t-20π / 12) + sin (ω 1 t-20π / 12 + π) -sin (ω 1 t-20π / 12 + π / 2) -sin (ω 1 t-20π / 12 + 3π / 2)) + Ic xii ( t) (sin (ω 1 t-22π / 12) + sin (ω 1 t-22π / 12 + π) -sin (ω 1 t-22π / 12 + π / 2) -sin (ω 1 t-22π / 12 + 3π / 2)) = 4μn Im 1 (Ica (t) sin (2ω 1 t) + Icb (t) sin (2ω 1 t-2π / 3) + Icc (t) sin (2ω 1 t-4π / 3))… (34), which is the same as equation (26) when an inner rotating magnetic field is created by three-phase alternating current.

【0103】一方、f2を計算してみると、次のようにな
る。
On the other hand, when f 2 is calculated, it is as follows.

【0104】 f2=Im2×B(θ=ω2t+α)-Im2×B(θ=ω2t+π+α) =μIm2(Im1 sin(2ω1t-2ω2t-2α)-Im1 sin(2ω1t-2ω2t-2α-2π) +Im2 sin(2ω2t+2α-2ω2t-2α)-Im2 sin(2ω2t+2α-2ω2t-2α-2π) +n(Ica(t)sin(2ω2t+2α)+Icb(t)sin(2ω2t+2α-2π/3) +Icc(t)sin(2ω2t+2α-4π/3) -n(Ica(t)sin(2ω2t+2π+2α)+Icb(t)sin(2ω2t+2π+2α-2π/3) +Icc(t)sin(2ω2t+2π+2α-4π/3) +n(Ici(t)(sin(ω2t+α)-sin(ω2t+π+α)) +Icii(t)(sin(ω2t+α-2π/12)-sin(ω2t+π+α-2π/12)) +Iciii(t)(sin(ω2t+α-4π/12)-sin(ω2t+π+α-4π/12)) +Iciv(t)(sin(ω2t+α-6π/12)-sin(ω2t+π+α-6π/12)) +Icv(t)(sin(ω2t+α-8π/12)-sin(ω2t+π+α-8π/12)) +Icvi(t)(sin(ω2t+α-10π/12)-sin(ω2t+π+α-10π/12)) +Icvii(t)(sin(ω2t+α-12π/12)-sin(ω2t+π+α-12π/12)) +Icviii(t)(sin(ω2t+α-14π/12)-sin(ω2t+π+α-14π/12)) +Icix(t)(sin(ω2t+α-16π/12)-sin(ω2t+π+α-16π/12)) +Icx(t)(sin(ω2t+α-18π/12)-sin(ω2t+π+α-18π/12)) +Icxi(t)(sin(ω2t+α-20π/12)-sin(ω2t+π+α-20π/12)) +Icxii(t)(sin(ω2t+α-22π/12)-sin(ω2t+π+α-22π/12))) =2μIm2 n (Ici(t)sin(ω2t+α) +Icii(t)sin(ω2t+α-2π/12) +Iciii(t)sin(ω2t+α-4π/12) +Iciv(t)sin(ω2t+α-6π/12) +Icv(t)sin(ω2t+α-8π/12) +Icvi(t)sin(ω2t+α-10π/12) +Icvii(t)sin(ω2t+α-12π/12) +Icviii(t)sin(ω2t+α-14π/12) +Icix(t)sin(ω2t+α-16π/12) +Icx(t)sin(ω2t+α-18π/12) +Icxi(t)sin(ω2t+α-20π/12) +Icxii(t)sin(ω2t+α-22π/12)) …(35) 〈2-6-2〉内側回転磁界を与える場合 上記の12相交流Ici(t)〜Icxii(t)を Ici(t)=Ic2(t) cos(ω2-γ) …(36a) Icii(t)=Ic2(t) cos(ω2t-γ-2π/12) …(36b) Iciii(t)=Ic2(t) cos(ω2t-γ-4π/12) …(36c) Iciv(t)=Ic2(t) cos(ω2t-γ-6π/12) …(36d) Icv(t)=Ic2(t) cos(ω2t-γ-8π/12) …(36e) Icvi(t)=Ic2(t) cos(ω2t-γ-10π/12) …(36f) Icvii(t)=Ic2(t) cos(ω2t-γ-12π/12) …(36g) Icviii(t)=Ic2(t) cos(ω2t-γ-14π/12) …(36h) Icix(t)=Ic2(t) cos(ω2t-γ-16π/12) …(36i) Icx(t)=Ic2(t) cos(ω2t-γ-18π/12) …(36j) Icxi(t)=Ic2(t) cos(ω2t-γ-20π/12) …(36k) Icxii(t)=Ic2(t) cos(ω2t-γ-22π/12) …(36l) とおく。F 2 = Im 2 × B (θ = ω 2 t + α) −Im 2 × B (θ = ω 2 t + π + α) = μIm 2 (Im 1 sin (2ω 1 t−2ω 2 t) -2α) -Im 1 sin (2ω 1 t-2ω 2 t-2α-2π) + Im 2 sin (2ω 2 t + 2α-2ω 2 t-2α) -Im 2 sin (2ω 2 t + 2α-2ω 2 t-2α-2π) + n (Ica (t) sin (2ω 2 t + 2α) + Icb (t) sin (2ω 2 t + 2α-2π / 3) + Icc (t) sin (2ω 2 t + 2α -4π / 3) -n (Ica (t) sin (2ω 2 t + 2π + 2α) + Icb (t) sin (2ω 2 t + 2π + 2α-2π / 3) + Icc (t) sin (2ω 2 t + 2π + 2α-4π / 3) + n (Ic i (t) (sin (ω 2 t + α) -sin (ω 2 t + π + α)) + Ic ii (t) (sin (ω 2 t + α-2π / 12) -sin (ω 2 t + π + α-2π / 12)) + Ic iii (t) (sin (ω 2 t + α-4π / 12) -sin (ω 2 t + π + α-4π / 12)) + Ic iv (t) (sin (ω 2 t + α-6π / 12) -sin (ω 2 t + π + α-6π / 12)) + Ic v (t) (sin (ω 2 t + α-8π / 12) -sin (ω 2 t + π + α-8π / 12)) + Ic vi (t) (sin (ω 2 t + α-10π / 12) -sin (ω 2 t + π + α-10π / 12)) + Ic vii (t) (sin (ω 2 t + α-12π / 12) -sin (ω 2 t + π + α-12π / 12)) + Ic viii (t) (sin (ω 2 t + α-14π / 12) -sin (ω 2 t + π + α-14π / 12)) + Ic ix (t) (sin (ω 2 t + α-16π / 12) -sin (ω 2 t + π + α-16π / 12)) + Ic x (t) (sin (ω 2 t + α-18π / 12) -sin (ω 2 t + π + α-18π / 12)) + I c xi (t) (sin (ω 2 t + α-20π / 12) -sin (ω 2 t + π + α-20π / 12)) + Ic xii (t) (sin (ω 2 t + α-22π / 12) -sin (ω 2 t + π + α-22π / 12))) = 2μIm 2 n (Ic i (t) sin (ω 2 t + α) + Ic ii (t) sin (ω 2 t + α-2π / 12) + Ic iii (t) sin (ω 2 t + α-4π / 12) + Ic iv (t) sin (ω 2 t + α-6π / 12) + Ic v (t) sin ( ω 2 t + α-8π / 12) + Ic vi (t) sin (ω 2 t + α-10π / 12) + Ic vii (t) sin (ω 2 t + α-12π / 12) + Ic viii ( t) sin (ω 2 t + α-14π / 12) + Ic ix (t) sin (ω 2 t + α-16π / 12) + Ic x (t) sin (ω 2 t + α-18π / 12) + Ic xi (t) sin (ω 2 t + α-20π / 12) + Ic xii (t) sin (ω 2 t + α-22π / 12))… (35) <2-6-2> Inner rotation 12-phase AC when the providing a magnetic field Ic i (t) ~Ic xii the (t) Ic i (t) = Ic 2 (t) cos (ω 2 -γ) ... (36a) Ic ii (t) = Ic 2 (t) cos (ω 2 t-γ-2π / 12)… (36b) Ic iii (t) = Ic 2 (t) cos (ω 2 t-γ-4π / 12)… (36c) Ic iv ( t) = Ic 2 (t) cos (ω 2 t-γ-6π / 12)… (36d) Ic v (t) = Ic 2 (t) cos (ω 2 t-γ-8π / 12)… (36e ) Ic vi (t) = Ic 2 (t) cos (ω 2 t-γ-10π / 12)… (36f) Ic vii (t) = Ic 2 (t) cos (ω 2 t-γ-12π / 12 )… (36g) Ic viii (t) = Ic 2 (t) cos (ω 2 t-γ-14π / 12)… (36h) Ic ix (t) = Ic 2 (t) cos (ω 2 t-γ-16π / 12)… (36i) Ic x (t ) = Ic 2 (t) cos (ω 2 t-γ-18π / 12)… (36j) Ic xi (t) = Ic 2 (t) cos (ω 2 t-γ-20π / 12)… (36k) Ic xii (t) = Ic 2 (t) cos (ω 2 t-γ-22π / 12) (36l).

【0105】(36a)式〜(36l)式を(35)式に代入して、f2
を計算する。
By substituting the equations (36a) to (36l) into the equation (35), f 2
Is calculated.

【0106】 f2=2μIm2 n Ic2(t)(cos(ω2t-γ)sin(ω2t+α) +cos(ω2t-γ-2π/12)sin(ω2t+α-2π/12) +cos(ω2t-γ-4π/12)sin(ω2t+α-4π/12) +cos(ω2t-γ-6π/12)sin(ω2t+α-6π/12) +cos(ω2t-γ-8π/12)sin(ω2t+α-8π/12) +cos(ω2t-γ-10π/12)sin(ω2t+α-10π/12) +cos(ω2t-γ-12π/12)sin(ω2t+α-12π/12) +cos(ω2t-γ-14π/12)sin(ω2t+α-14π/12) +cos(ω2t-γ-16π/12)sin(ω2t+α-16π/12) +cos(ω2t-γ-18π/12)sin(ω2t+α-18π/12) +cos(ω2t-γ-20π/12)sin(ω2t+α-20π/12) +cos(ω2t-γ-22π/12)sin(ω2t+α-22π/12)) ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて f2=2μIm2 n Ic2(t)(1/2(sin(ω2t-γ+ω2t+α) -sin(ω2t-γ-ω2t-α)) +1/2(sin(ω2t-γ-2π/12+ω2t+α-2π/12) -sin(ω2t-γ-2π/12-ω2t-α+2π/12)) +1/2(sin(ω2t-γ-4π/12+ω2t+α-4π/12) -sin(ω2t-γ-4π/12-ω2t-α+4π/12)) +1/2(sin(ω2t-γ-6π/12+ω2t+α-6π/12) -sin(ω2t-γ-6π/12-ω2t-α+6π/12)) +1/2(sin(ω2t-γ-8π/12+ω2t+α-8π/12) -sin(ω2t-γ-8π/12-ω2t-α+8π/12)) +1/2(sin(ω2t-γ-10π/12+ω2t+α-10π/12) -sin(ω2t-γ-10π/12-ω2t-α+10π/12)) +1/2(sin(ω2t-γ-12π/12+ω2t+α-12π/12) -sin(ω2t-γ-12π/12-ω2t-α+12π/12)) +1/2(sin(ω2t-γ-14π/12+ω2t+α-14π/12) -sin(ω2t-γ-14π/12-ω2t-α+14π/12)) +1/2(sin(ω2t-γ-16π/12+ω2t+α-16π/12) -sin(ω2t-γ-16π/12-ω2t-α+16π/12)) +1/2(sin(ω2t-γ-18π/12+ω2t+α-18π/12) -sin(ω2t-γ-18π/12-ω2t-α+18π/12)) +1/2(sin(ω2t-γ-20π/12+ω2t+α-20π/12) -sin(ω2t-γ-20π/12-ω2t-α+20π/12)) +1/2(sin(ω2t-γ-22π/12+ω2t+α-22π/12) -sin(ω2t-γ-22π/12-ω2t-α+22π/12)) =2μIm2 n Ic2(t)(1/2(sin(2ω2t-γ+α)+sin(γ+α)) +1/2(sin(2ω2t-γ+α-4π/12)+sin(γ+α)) +1/2(sin(2ω2t-γ+α-8π/12)+sin(γ+α)) +1/2(sin(2ω2t-γ+α-12π/12)+sin(γ+α)) +1/2(sin(2ω2t-γ+α-16π/12)+sin(γ+α)) +1/2(sin(2ω2t-γ+α-20π/12)+sin(γ+α)) +1/2(sin(2ω2t-γ+
α-24π/12)+sin(γ+α)) +1/2(sin(2ω2t-γ+α-28π/12)+sin(γ+α)) +1/2(sin(2ω2t-γ+α-32π/12)+sin(γ+α)) +1/2(sin(2ω2t-γ+α-36π/12)+sin(γ+α)) +1/2(sin(2ω2t-γ+α-40π/12)+sin(γ+α)) +1/2(sin(2ω2t-γ+α-44π/12)+sin(γ+α)) =μIm2 n Ic2(t)(sin(2ω2t-γ+α) +sin(2ω2t-γ+α-4π/12) +sin(2ω2t-γ+α-8π/12) +sin(2ω2t-γ+α-12π/12) +sin(2ω2t-γ+α-16π/12) +sin(2ω2t-γ+α-20π/12) +sin(2ω2t-γ+α-24π/12) +sin(2ω2t-γ+α-28π/12) +sin(2ω2t-γ+α-32π/12) +sin(2ω2t-γ+α-36π/12) +sin(2ω2t-γ+α-40π/12) +sin(2ω2t-γ+α-44π/12) +12sin(γ+α)) =μIm2 n Ic2(t)(sin(2ω2t-γ+α) +sin(2ω2t-γ+α-π/3) +sin(2ω2t-γ+α-2π/3) -sin(2ω2t-γ+α) -sin(2ω2t-γ+α-π/3) -sin(2ω2t-γ+α-2π/3) +sin(2ω2t-γ+α) +sin(2ω2t-γ+α-π/3) +sin(2ω2t-γ+α-2π/3) -sin(2ω2t-γ+α) -sin(2ω2t-γ+α-π/3) -sin(2ω2t-γ+α-2π/3) +12sin(γ+α)) =12μIm2 n Ic2(t)sin(γ+α) …(37) 〈2-6-3〉まとめ 内側回転磁界を12相交流で与えた場合に得られるこの(3
7)式を、内側回転磁界を3相交流で与えた場合に得られ
る上記の(31)式と比較すると、(37)式のほうが(31)式よ
りも固定項(最後の項)が4倍となっている。つまり、
内側磁石の駆動電流を12相の交流(Ii〜Ixii)とすれ
ば、内側磁石の駆動電流を3相交流とする場合より4倍も
の駆動力が得られるわけである。このことは、逆にいえ
ば、内側磁石に同じ駆動力を発生させるのに、内側駆動
電流は3相時の1/4で済むことを意味している。
F 2 = 2 μIm 2 n Ic 2 (t) (cos (ω 2 t-γ) sin (ω 2 t + α) + cos (ω 2 t-γ-2π / 12) sin (ω 2 t + α-2π / 12) + cos (ω 2 t-γ-4π / 12) sin (ω 2 t + α-4π / 12) + cos (ω 2 t-γ-6π / 12) sin (ω 2 t + α-6π / 12) + cos (ω 2 t-γ-8π / 12) sin (ω 2 t + α-8π / 12) + cos (ω 2 t-γ-10π / 12) sin (ω 2 t + α-10π / 12) + cos (ω 2 t-γ-12π / 12) sin (ω 2 t + α-12π / 12) + cos (ω 2 t-γ-14π / 12) sin (ω 2 t + α-14π / 12) + cos (ω 2 t-γ-16π / 12) sin (ω 2 t + α-16π / 12) + cos (ω 2 t-γ-18π / 12) sin (ω 2 t + α-18π / 12) + cos (ω 2 t-γ-20π / 12) sin (ω 2 t + α-20π / 12) + cos (ω 2 t-γ-22π / 12) sin (ω 2 t + α−22π / 12)) where f 2 = 2 μIm 2 n Ic 2 (t) using the formula cos (a) sin (b) = 1/2 (sin (a + b) −sin (ab)). ) (1/2 (sin (ω 2 t-γ + ω 2 t + α) -sin (ω 2 t-γ-ω 2 t-α)) +1/2 (sin (ω 2 t-γ-2π / 12 + ω 2 t + α-2π / 12) -sin (ω 2 t-γ-2π / 12-ω 2 t-α + 2π / 12)) +1/2 (sin (ω 2 t-γ- 4π / 12 + ω 2 t + α-4π / 12) -sin (ω 2 t-γ-4π / 12-ω 2 t-α + 4π / 12)) +1/2 (sin (ω 2 t-γ -6π / 12 + ω 2 t + α-6π / 12) -sin (ω 2 t-γ-6π / 12-ω 2 t-α + 6π / 12)) +1/2 (sin (ω 2 t- γ-8 π / 12 + ω 2 t + α-8π / 12) -sin (ω 2 t-γ-8π / 12-ω 2 t-α + 8π / 12)) +1/2 (sin (ω 2 t-γ -10π / 12 + ω 2 t + α-10π / 12) -sin (ω 2 t-γ-10π / 12-ω 2 t-α + 10π / 12)) +1/2 (sin (ω 2 t- γ-12π / 12 + ω 2 t + α-12π / 12) -sin (ω 2 t-γ-12π / 12-ω 2 t-α + 12π / 12)) +1/2 (sin (ω 2 t -γ-14π / 12 + ω 2 t + α-14π / 12) -sin (ω 2 t-γ-14π / 12-ω 2 t-α + 14π / 12)) +1/2 (sin (ω 2 t-γ-16π / 12 + ω 2 t + α-16π / 12) -sin (ω 2 t-γ-16π / 12-ω 2 t-α + 16π / 12)) +1/2 (sin (ω 2 t-γ-18π / 12 + ω 2 t + α-18π / 12) -sin (ω 2 t-γ-18π / 12-ω 2 t-α + 18π / 12)) +1/2 (sin ( ω 2 t-γ-20π / 12 + ω 2 t + α-20π / 12) -sin (ω 2 t-γ-20π / 12-ω 2 t-α + 20π / 12)) +1/2 (sin (ω 2 t-γ-22π / 12 + ω 2 t + α-22π / 12) -sin (ω 2 t-γ-22π / 12-ω 2 t-α + 22π / 12)) = 2μIm 2 n Ic 2 (t) (1/2 (sin (2ω 2 t-γ + α) + sin (γ + α)) +1/2 (sin (2ω 2 t-γ + α-4π / 12) + sin (γ + α)) +1/2 (sin (2ω 2 t-γ + α-8π / 12) + sin (γ + α)) +1/2 (sin (2ω 2 t-γ + α-12π / 12) + sin (γ + α)) +1/2 (sin (2ω 2 t-γ + α-16π / 12) + sin (γ + α)) +1/2 (sin (2ω 2 t-γ + α- 20π / 12) + sin (γ + α)) +1/2 (sin (2ω 2 t- γ +
α-24π / 12) + sin (γ + α)) +1/2 (sin (2ω 2 t-γ + α-28π / 12) + sin (γ + α)) +1/2 (sin (2ω 2 t-γ + α-32π / 12) + sin (γ + α)) +1/2 (sin (2ω 2 t-γ + α-36π / 12) + sin (γ + α)) +1/2 ( sin (2ω 2 t-γ + α-40π / 12) + sin (γ + α)) +1/2 (sin (2ω 2 t-γ + α-44π / 12) + sin (γ + α)) = μIm 2 n Ic 2 (t) (sin (2ω 2 t-γ + α) + sin (2ω 2 t-γ + α-4π / 12) + sin (2ω 2 t-γ + α-8π / 12) + sin (2ω 2 t-γ + α-12π / 12) + sin (2ω 2 t-γ + α-16π / 12) + sin (2ω 2 t-γ + α-20π / 12) + sin (2ω 2 t -γ + α-24π / 12) + sin (2ω 2 t-γ + α-28π / 12) + sin (2ω 2 t-γ + α-32π / 12) + sin (2ω 2 t-γ + α- 36π / 12) + sin (2ω 2 t-γ + α-40π / 12) + sin (2ω 2 t-γ + α-44π / 12) + 12sin (γ + α)) = μIm 2 n Ic 2 (t ) (sin (2ω 2 t-γ + α) + sin (2ω 2 t-γ + α-π / 3) + sin (2ω 2 t-γ + α-2π / 3) -sin (2ω 2 t-γ + α) -sin (2ω 2 t-γ + α-π / 3) -sin (2ω 2 t-γ + α-2π / 3) + sin (2ω 2 t-γ + α) + sin (2ω 2 t -γ + α-π / 3) + sin (2ω 2 t-γ + α-2π / 3) -sin (2ω 2 t-γ + α) -sin (2ω 2 t-γ + α-π / 3) -sin (2ω 2 t-γ + α-2π / 3) + 12sin (γ + α)) = 12μIm 2 n Ic 2 (t) sin (γ + α)… (37) <2-6-3> Inside rotation The obtained when given field in 12-phase AC (3
Comparing equation (7) with equation (31) obtained when the inner rotating magnetic field is given by three-phase alternating current, equation (37) has a fixed term (last term) of 4 compared to equation (31). Doubled. That is,
If the driving current of the inner magnet is 12-phase alternating current (Ii to Ixii), four times as much driving force can be obtained as when the driving current of the inner magnet is 3 phase alternating current. Conversely, this means that generating the same driving force on the inner magnet requires only one-fourth of the inner driving current in three phases.

【0107】〈3〉N(3(2p)-2p)基本形 〈3-1〉図14を参照して磁極数比が3:1(たとえば外
側磁石の磁極数が6、内側磁石の磁極数が2)である場合
を考える。
<3> N (3 (2p) -2p) basic type <3-1> Referring to FIG. 14, the magnetic pole ratio is 3: 1 (for example, the number of magnetic poles of the outer magnet is 6, and the number of magnetic poles of the inner magnet is 6). 2) Consider the case.

【0108】この場合の外側と内側の各磁石に発生する
磁束密度B1、B2は次のようになる。
The magnetic flux densities B 1 and B 2 generated in the outer and inner magnets in this case are as follows.

【0109】 B1=Bm1 sin(3ω1t-3θ)=μIm1 sin(3ω1t-3θ) …(41) B2=Bm2 sin(ω2t+α-θ)=μIm2 sin(ω2t+α-θ) …(42) ステータコイルの作る回転磁場も分けて計算するため、
外側と内側の各磁石用のステータコイルによる磁束密度
Bc1、Bc2を、 Bc1=μn(Ica(t)sin(3θ)+Icb(t)sin(3θ-2π/3) +Icc(t)sin(3θ-4π/3)) …(43) Bc2=μn(Icd(t)sin(θ)+Ice(t)sin(θ-2π/3) +Icf(t)sin(θ-4π/3)) …(44) とする。
B 1 = Bm 1 sin (3ω 1 t−3θ) = μIm 1 sin (3ω 1 t−3θ) (41) B 2 = Bm 2 sin (ω 2 t + α−θ) = μIm 2 sin (ω 2 t + α-θ)… (42) Since the rotating magnetic field generated by the stator coil is also calculated separately,
Magnetic flux density due to stator coils for outer and inner magnets
Bc1, the Bc2, Bc 1 = μn (Ica (t) sin (3θ) + Icb (t) sin (3θ-2π / 3) + Icc (t) sin (3θ-4π / 3)) ... (43) Bc 2 = μn (Icd (t) sin (θ) + Ice (t) sin (θ-2π / 3) + Icf (t) sin (θ-4π / 3)) (44)

【0110】上記の磁束密度B1、B 2、Bc1、Bc2の変化
を図15に示す。
FIG. 15 shows changes in the magnetic flux densities B 1 , B 2 , Bc 1 , and Bc 2 .

【0111】全体の磁束密度Bは次のようになる。The total magnetic flux density B is as follows.

【0112】 B=B1+B2+Bc1+Bc2 =μIm1 sin(3ω1t-3θ)+μIm2 sin(ω2t+α-θ) +μn(Ica(t)sin(3θ)+Icb(t)sin(3θ-2π/3) +Icc(t)sin(3θ-4π/3)) +μn(Icd(t)sin(θ)+Ice(t)sin(θ-2π/3) +Icf(t)sin(θ-4π/3)) …(45) 外側磁石m1に作用するトルクτ1は、直径を中心として
線対称で発生するから、f1を半周分の力とすると、 τ1=2f1×r1(r1は半径) である。半周に3つの等価直流電流が流れるので、これ
ら3つの電流に働く力の和がf1となる。
B = B 1 + B 2 + Bc 1 + Bc 2 = μIm 1 sin (3ω 1 t-3θ) + μIm 2 sin (ω 2 t + α-θ) + μn (Ica (t) sin (3θ ) + Icb (t) sin (3θ-2π / 3) + Icc (t) sin (3θ-4π / 3)) + μn (Icd (t) sin (θ) + Ice (t) sin (θ-2π / 3) + Icf (t) sin (θ-4π / 3)) (45) Since the torque τ 1 acting on the outer magnet m 1 is generated in line symmetry with respect to the diameter, a force corresponding to half the circumference of f 1 Then, τ 1 = 2f 1 × r 1 (r 1 is a radius). Since the three equivalent direct current to half flows, the sum of the forces acting on the three current is f 1.

【0113】 f1=Im1×B(θ=ω1t)+Im1×B(θ=ω1t+3π/2) -Im1×B(θ=ω1t+π/3) =μIm1(Im1 sin(3ω1t-3ω1t)+Im1 sin(3ω1t-3ω1t-2π) -Im1 sin(3ω1t-3ω1t-π) +Im2 sin(ω2t+α-ω1t)+Im2 sin(ω2t+α-ω1t-2π/3) -Im2 sin(ω2t+α-ω1t-π/3) +n(Ica(t)sin(3ω1t)+Icb(t)sin(3ω1t-2π/3) +Icc(t)sin(3ω1t-4π/3)) +n(Ica(t)sin(3ω1t+2π)+Icb(t)sin(3ω1t+2π-2π/3) +Icc(t)sin(3ω1t+2π-4π/3)) -n(Ica(t)sin(3ω1t+π)+Icb(t)sin(3ω1t+π-2π/3) +Icc(t)sin(3ω1t+π-4π/3)) +n(Icd(t)sin(ω1t)+Ice(t)sin(ω1t-2π/3) +Icf(t)sin(ω1t-4π/3)) +n(Icd(t)sin(ω1t+2π/3)+Ice(t)sin(ω1t+2π/3-2π/3) +Icf(t)sin(ω1t+2π/3-4π/3)) -n(Icd(t)sin(ω1t+π/3)+Ice(t)sin(ω1t+π/3-2π/3) +Icf(t)sin(ω1t+π/3-4π/3)) =μIm1(n(Ica(t)sin(3ω1t)+Icb(t)sin(3ω1t-2π/3) +Icc(t)sin(3ω1t-4π/3)) +n(Ica(t)sin(3ω1t)+Icb(t)sin(3ω1t-2π/3) +Icc(t)sin(3ω1t-4π/3)) +n(Ica(t)sin(3ω1t)+Icb(t)sin(3ω1t-2π/3) +Icc(t)sin(3ω1t-4π/3)) +n(Icd(t)sin(ω1t)+Ice(t)sin(ω1t-2π/3) +Icf(t)sin(ω1t-4π/3)) +n(Icd(t)sin(ω1t+2π/3)+Ice(t)sin(ω1t) +Icf(t)sin(ω1t-2π/3)) +n(Icd(t)sin(ω1t+4π/3)+Ice(t)sin(ω1t+2π/3) +Icf(t)sin(ω1t))) =μn Im1(3(Ica(t)sin(3ω1t)+Icb(t)sin(3ω1t-2π/3) +Icc(t)sin(3ω1t-4π/3)) +Icd(t)sin(ω1t)+Icd(t)sin(ω1t+2π/3) +Icd(t)sin(ω1t+4π/3) +Ice(t)sin(ω1t)+Ice(t)sin(ω1t+2π/3) +Ice(t)sin(ω1t+4π/3) +Icf(t)sin(ω1t)+Icf(t)sin(ω1t+2π/3) +Icf(t)sin(ω1t+4π/3)) =3μIm1 n(Ica(t)sin(3ω1t)+Icb(t)sin(3ω1t-2π/3) +Icc(t)sin(3ω1t-4π/3)) …(46) (46)式によれば、外側磁石を正弦波で近似した場合、コ
イルa、b、cの励磁電流によって外側磁石に作用するト
ルクをコントロールできることを示している。また、コ
イルd、e、fの励磁電流の影響を受けないことも示して
いる。
F 1 = Im 1 × B (θ = ω 1 t) + Im 1 × B (θ = ω 1 t + 3π / 2) -Im 1 × B (θ = ω 1 t + π / 3) = μIm 1 (Im 1 sin (3ω 1 t-3ω 1 t) + Im 1 sin (3ω 1 t-3ω 1 t-2π) -Im 1 sin (3ω 1 t-3ω 1 t-π) + Im 2 sin ( ω 2 t + α-ω 1 t) + Im 2 sin (ω 2 t + α-ω 1 t-2π / 3) -Im 2 sin (ω 2 t + α-ω 1 t-π / 3) + n (Ica (t) sin (3ω 1 t) + Icb (t) sin (3ω 1 t-2π / 3) + Icc (t) sin (3ω 1 t-4π / 3)) + n (Ica (t) sin (3ω 1 t + 2π) + Icb (t) sin (3ω 1 t + 2π-2π / 3) + Icc (t) sin (3ω 1 t + 2π-4π / 3)) -n (Ica (t) sin (3ω 1 t + π) + Icb (t) sin (3ω 1 t + π-2π / 3) + Icc (t) sin (3ω 1 t + π-4π / 3)) + n (Icd (t) sin (ω 1 t) + Ice (t) sin (ω 1 t-2π / 3) + Icf (t) sin (ω 1 t-4π / 3)) + n (Icd (t) sin (ω 1 t + 2π / 3) + Ice (t) sin (ω 1 t + 2π / 3-2π / 3) + Icf (t) sin (ω 1 t + 2π / 3-4π / 3)) -n (Icd (t) sin (ω 1 t + π / 3) + Ice (t) sin (ω 1 t + π / 3-2π / 3) + Icf (t) sin (ω 1 t + π / 3-4π / 3)) = μIm 1 (n (Ica (t) sin (3ω 1 t) + Icb (t) sin (3ω 1 t-2π / 3) + Icc (t) sin (3ω 1 t-4π / 3)) + n (Ica ( t) sin (3ω 1 t) + Icb (t) sin (3ω 1 t-2π / 3) + Icc (t) sin (3ω 1 t-4π / 3)) + n (Ica (t) sin (3ω 1 t) + Icb (t) sin (3ω 1 t-2π / 3) + Icc (t) si n (3ω 1 t-4π / 3)) + n (Icd (t) sin (ω 1 t) + Ice (t) sin (ω 1 t-2π / 3) + Icf (t) sin (ω 1 t- 4π / 3)) + n (Icd (t) sin (ω 1 t + 2π / 3) + Ice (t) sin (ω 1 t) + Icf (t) sin (ω 1 t-2π / 3)) + n (Icd (t) sin (ω 1 t + 4π / 3) + Ice (t) sin (ω 1 t + 2π / 3) + Icf (t) sin (ω 1 t))) = μn Im 1 (3 (Ica (t) sin (3ω 1 t) + Icb (t) sin (3ω 1 t-2π / 3) + Icc (t) sin (3ω 1 t-4π / 3)) + Icd (t) sin (ω 1 t) + Icd (t) sin (ω 1 t + 2π / 3) + Icd (t) sin (ω 1 t + 4π / 3) + Ice (t) sin (ω 1 t) + Ice (t) sin (ω 1 t + 2π / 3) + Ice (t) sin (ω 1 t + 4π / 3) + Icf (t) sin (ω 1 t) + Icf (t) sin (ω 1 t + 2π / 3) + Icf (t) sin (ω 1 t + 4π / 3)) = 3μIm 1 n (Ica (t) sin (3ω 1 t) + Icb (t) sin (3ω 1 t-2π / 3) + Icc (t) sin (3ω 1 t-4π / 3))… (46) According to equation (46), when the outer magnet is approximated by a sine wave, the torque acting on the outer magnet is controlled by the exciting current of coils a, b, and c. Indicates that you can do it. It also shows that it is not affected by the exciting current of the coils d, e, and f.

【0114】次に、内側磁石m2に作用するトルクτ2
直径を中心として線対称で発生するから、f2を半周分の
力とすると、τ2=2f2×r2である。半周に1つの等価直
流電流が流れるので、この1つの等価直流電流に働く力
がf2となる。
Next, since the torque τ 2 acting on the inner magnet m 2 is also generated in line symmetry with respect to the diameter, τ 2 = 2f 2 × r 2 when f 2 is a force corresponding to a half turn. Since one equivalent DC current flows through the half, the force acting on the one equivalent DC current is f 2.

【0115】 f2=Im2×B(θ=ω2t+α) =μIm2(Im1 sin(3ω1t-3ω2t-3α)+μIm2 sin(ω2t+α-ω2t-α) +n(Ica(t)sin(3ω2t+3α)+Icb(t)sin(3ω2t+3α-2π/3) +Icc(t)sin(3ω2t+3α-4π/3) +n(Icd(t)sin(ω2t+α)+Ice(t)sin(ω2t+α-2π/3) +Icf(t)sin(ω2t+α-4π/3)) =μIm2(Im1 sin(3(ω1−ω2)t-3α) +n(Ica(t)sin(3ω2t+3α)+Icb(t)sin(3ω2t+3α-2π/3) +Icc(t)sin(3ω2t+3α-4π/3) +n(Icd(t)sin(ω2t+α)+Ice(t)sin(ω2t+α-2π/3) +Icf(t)sin(ω2t+α-4π/3)) …(47) (47)式をみると、内側磁石の回転に対して、計算してい
る磁場以外の影響(相対位相角度で2π/3、4π/3)がある
ことがわかる。この影響をわかりやすくするためピーク
の時刻tのときの各外側磁石の位置をφ1=ωt+π/6、φ
2=ωt+5π/6、φ3=ωt+9π/6とする。
F 2 = Im 2 × B (θ = ω 2 t + α) = μIm 2 (Im 1 sin (3ω 1 t-3ω 2 t-3α) + μIm 2 sin (ω 2 t + α-ω 2 t-α) + n (Ica (t) sin (3ω 2 t + 3α) + Icb (t) sin (3ω 2 t + 3α-2π / 3) + Icc (t) sin (3ω 2 t + 3α-4π / 3) + n (Icd (t) sin (ω 2 t + α) + Ice (t) sin (ω 2 t + α-2π / 3) + Icf (t) sin (ω 2 t + α-4π / 3)) = μIm 2 (Im 1 sin (3 (ω 1 −ω 2 ) t-3α) + n (Ica (t) sin (3ω 2 t + 3α) + Icb (t) sin (3ω 2 t + 3α -2π / 3) + Icc (t) sin (3ω 2 t + 3α-4π / 3) + n (Icd (t) sin (ω 2 t + α) + Ice (t) sin (ω 2 t + α-2π / 3) + Icf (t) sin (ω 2 t + α-4π / 3))… (47) Looking at equation (47), the influence of the magnetic field other than the calculated magnetic field on the rotation of the inner magnet ( It can be seen that there are 2π / 3 and 4π / 3) in relative phase angles.In order to make this effect easier to understand, the position of each outer magnet at the peak time t is φ1 = ωt + π / 6, φ
2 = ωt + 5π / 6, φ3 = ωt + 9π / 6.

【0116】それぞれの影響を考えて、回転角度θの磁
界は、 B1=Bm1 (cos(ω1t+π/6-θ)+cos(ω1t+5π/6-θ)+cos(ω1t+9π/6-θ)) =μIm1(cos(ω1t+π/6-θ)+cos(ω1t+5π/6-θ)+cos(ω1t+9π/6-θ)) =0 これは120度ごとの交差角度のある磁極は内側コイル上
では打ち消しあってしまうことを示している。つまり、
外側磁石の磁極数は内側磁石に影響を与えない。同様に
して外側コイルの作る磁場も合計で0となる。したがっ
て、このときの駆動力f2は次のようになる。
Considering each effect, the magnetic field at the rotation angle θ is B 1 = Bm 1 (cos (ω 1 t + π / 6-θ) + cos (ω 1 t + 5π / 6-θ) + cos (ω 1 t + 9π / 6-θ)) = μIm 1 (cos (ω 1 t + π / 6-θ) + cos (ω 1 t + 5π / 6-θ) + cos (ω 1 t + 9π / 6-θ)) = 0 This indicates that the magnetic poles having a crossing angle of every 120 degrees cancel each other out on the inner coil. That is,
The number of poles of the outer magnet does not affect the inner magnet. Similarly, the magnetic field generated by the outer coil becomes zero in total. Therefore, the driving force f 2 at this time is as follows.

【0117】 f2=μIm2(n(Icd(t)sin(ω2t+α)+Ice(t)sin(ω2t+α-2π/3) +Icf(t)sin(ω2t+α-4π/3)) …(48) 〈3-2〉外側回転磁界と内側回転磁界をともに与える場
合 上記の3相交流Ica(t)、Icb(t)、Icc(t)と同じく3相交流
Icd(t)、Ice(t)、Icf(t)を Ica(t)=Ic1 cos(3ω1t-3β) …(49a) Icb(t)=Ic1 cos(3ω1t-3β-2π/3) …(49b) Icc(t)=Ic1 cos(3ω1t-3β-4π/3) …(49c) Icd(t)=Ic2(t) cos(ω2t-γ) …(50a) Ice(t)=Ic2(t) cos(ω2t-γ-2π/3) …(50b) Icf(t)=Ic2(t) cos(ω2t-γ-4π/3) …(50c) とする。
F 2 = μIm 2 (n (Icd (t) sin (ω 2 t + α) + Ice (t) sin (ω 2 t + α-2π / 3) + Icf (t) sin (ω 2 t + α-4π / 3))… (48) <3-2> When both outer and inner rotating magnetic fields are given: 3 Phase exchange
Icd (t), Ice (t) and Icf (t) are expressed as Ica (t) = Ic 1 cos (3ω 1 t-3β)… (49a) Icb (t) = Ic 1 cos (3ω 1 t-3β-2π / 3)… (49b) Icc (t) = Ic 1 cos (3ω 1 t-3β-4π / 3)… (49c) Icd (t) = Ic 2 (t) cos (ω 2 t-γ)… ( 50a) Ice (t) = Ic 2 (t) cos (ω 2 t-γ-2π / 3)… (50b) Icf (t) = Ic 2 (t) cos (ω 2 t-γ-4π / 3) ... (50c)

【0118】ただし、(50a)式〜(50c)式では振幅変調を
可能とするため、時間の関数であるIc2(t)とおいてい
る。
However, in equations (50a) to (50c), Ic 2 (t), which is a function of time, is set to enable amplitude modulation.

【0119】(49a)式〜(49c)式を(46)式に、(49a)式〜
(49c)および式(50a)式〜(50c)式を(47)式に代入して、f
1、f2を計算する。
Formulas (49a) to (49c) are replaced by formulas (46) and (49a) to
(49c) and Equations (50a) to (50c) are substituted into Equation (47) to obtain f
1, to calculate the f 2.

【0120】 f1=3μIm1 n Ic1(cos(3ω1t-3β)sin(3ω1t) +cos(3ω1t-3β-2π/3)sin(3ω1t-2π/3) +cos(3ω1t-3β-4π/3)sin(3ω1t-4π/3)) ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて f1=3μIm1 n Ic1(1/2(sin(3ω1t-3β+3ω1t)-sin(3ω1t-3β-3ω1t)) +1/2(sin(3ω1t-3β-2π/3+3ω1t-2π/3) -sin(3ω1t-3β-2π/3-3ω1t+2π/3)) +1/2(sin(3ω1t-3β-4π/3+3ω1t-4π/3) -sin(3ω1t-3β-4π/3-3ω1t+4π/3))) =3/2μIm1 n Ic1(sin(6ω1t-3β)+sin(3β) +sin(6ω1t-3β-4π/3)+sin(3β) +sin(6ω1t-3β-8π/3)+sin(3β)) =3/2μIm1 n Ic1(sin(6ω1t-3β)+sin(6ω1t-3β-4π/3) +sin(6ω1t-3β-8π/3) +3sin(3β)) =9/2μIm1 n Ic1 sin(3β) …(51) f2=μIm2(Im1 sin(3(ω12)t-3α) +n Ic1(cos(3ω1t-3β)sin(3ω2t+3α) +cos(3ω1t-3β-2π/3)sin(3ω2t+3α-2π/3) +cos(3ω1t-3β-4π/3)sin(3ω2t+3α-4π/3)) +n Ic2(t)(cos(ω2t-γ)sin(ω2t+α) +cos(ω2t-γ-2π/3)sin(ω2t+α-2π/3) +cos(ω2t-γ-4π/3)sin(ω2t+α-4π/3)) ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて f2=μIm2(Im1 sin(3(ω12)t-3α) +n Ic1(1/2(sin(3ω1t-3β+3ω2t+3α) -sin(3ω1t-3β-3ω2t-3α)) +1/2(sin(3ω1t-3β-2π/3+3ω2t+3α-2π/3) -sin(3ω1t-3β-2π/3-3ω2t-3α+2π/3)) +1/2(sin(3ω1t-3β-4π/3+3ω2t+3α-4π/3) -sin(3ω1t-3β-4π/3-3ω2t-3α+4π/3))) +n Ic2(t)(1/2(sin(ω2t-γ+ω2t+α) -sin(ω1t-γ-ω2t-α)) +1/2(sin(ω2t-γ-2π/3+ω2t+α-2π/3) -sin(ω2t-γ-2π/3-ω2t-α+2π/3)) +1/2(sin(ω2t-γ-4π/3+ω2t+α-4π/3) -sin(ω2t-γ-4π/3-ω2t-α+4π/3)))) =μIm2(Im1 sin(3(ω12)t-3α) +1/2 n Ic1(sin(3ω1t+3ω2t-3β+3α) +sin(3ω1t+3ω2t-3β+3α-4π/3) +sin(3ω1t+3ω2t-3β+3α-8π/3) -3sin(3ω1t-3β+3ω2t-3α)) +1/2 n Ic2(t)(sin(2ω2t-γ+α) +sin(2ω2t-γ+α-4π/3) +sin(2ω2t-γ+α-8π/3)+3sin(γ+α))) =μIm2(Im1 sin(3(ω12)t-3α) +1/2 n Ic1(sin(3ω1t+3ω2t-3β+3α) +sin(3ω1t+3ω2t-3β+3α-2π/3) +sin(3ω1t+3ω2t-3β+3α-4π/3) -3sin(3ω1t-3β-3ω2t-3α)) +1/2 n Ic2(t)(sin(2ω2t-γ+α) +sin(2ω2t-γ+α-2π/3) +sin(2ω2t-γ+α-4π/3) +3sin(γ+α))) =μIm2(Im1 sin(3(ω12)t-3α) -3/2 n Ic1 sin(3ω1t-3β-3ω2t-3α) +3/2 n Ic2(t)sin(γ+α)) …(52) ここで、f2については、(48)式のところでみたように、
外側磁石および外側コイルの作る磁界の影響がない場合
は、 f2=3/2 n Ic2(t)sin(γ+α)) …(53) となり、一定トルクで駆動できる。
F 1 = 3 μIm 1 n Ic 1 (cos (3ω 1 t-3β) sin (3ω 1 t) + cos (3ω 1 t-3β-2π / 3) sin (3ω 1 t-2π / 3) + cos (3ω 1 t-3β-4π / 3) sin (3ω 1 t-4π / 3)) where cos (a) sin (b) = 1/2 (sin (a + b) -sin (ab) F 1 = 3μIm 1 n Ic 1 (1/2 (sin (3ω 1 t-3β + 3ω 1 t) -sin (3ω 1 t-3β-3ω 1 t)) +1/2 ( sin (3ω 1 t-3β-2π / 3 + 3ω 1 t-2π / 3) -sin (3ω 1 t-3β-2π / 3-3ω 1 t + 2π / 3)) +1/2 (sin (3ω 1 t-3β-4π / 3 + 3ω 1 t-4π / 3) -sin (3ω 1 t-3β-4π / 3-3ω 1 t + 4π / 3))) = 3 / 2μIm 1 n Ic 1 (sin (6ω 1 t-3β) + sin (3β) + sin (6ω 1 t-3β-4π / 3) + sin (3β) + sin (6ω 1 t-3β-8π / 3) + sin (3β)) = 3 / 2μIm 1 n Ic 1 (sin (6ω 1 t-3β) + sin (6ω 1 t-3β-4π / 3) + sin (6ω 1 t-3β-8π / 3) + 3sin (3β)) = 9 / 2μIm 1 n Ic 1 sin (3β)… (51) f 2 = μIm 2 (Im 1 sin (3 (ω 12 ) t-3α) + n Ic 1 (cos (3ω 1 t-3β) sin (3ω 2 t + 3α) + cos (3ω 1 t-3β-2π / 3) sin (3ω 2 t + 3α-2π / 3) + cos (3ω 1 t-3β-4π / 3) sin (3ω 2 t + 3α-4π / 3)) + n Ic 2 (t) (cos (ω 2 t-γ) sin (ω 2 t + α) + cos (ω 2 t-γ-2π / 3) sin (ω 2 t + α-2π / 3) + cos (ω 2 t-γ-4π / 3) s in (ω 2 t + α-4π / 3)) where f 2 = μIm using the formula of cos (a) sin (b) = 1/2 (sin (a + b) -sin (ab)). 2 (Im 1 sin (3 (ω 12 ) t-3α) + n Ic 1 (1/2 (sin (3ω 1 t-3β + 3ω 2 t + 3α) -sin (3ω 1 t-3β- 3ω 2 t-3α)) +1/2 (sin (3ω 1 t-3β-2π / 3 + 3ω 2 t + 3α-2π / 3) -sin (3ω 1 t-3β-2π / 3-3ω 2 t -3α + 2π / 3)) +1/2 (sin (3ω 1 t-3β-4π / 3 + 3ω 2 t + 3α-4π / 3) -sin (3ω 1 t-3β-4π / 3-3ω 2 t-3α + 4π / 3))) + n Ic 2 (t) (1/2 (sin (ω 2 t-γ + ω 2 t + α) -sin (ω 1 t-γ-ω 2 t-α )) +1/2 (sin (ω 2 t-γ-2π / 3 + ω 2 t + α-2π / 3) -sin (ω 2 t-γ-2π / 3-ω 2 t-α + 2π / 3)) +1/2 (sin (ω 2 t-γ-4π / 3 + ω 2 t + α-4π / 3) -sin (ω 2 t-γ-4π / 3-ω 2 t-α + 4π / 3)))) = μIm 2 (Im 1 sin (3 (ω 12 ) t-3α) +1/2 n Ic 1 (sin (3ω 1 t + 3ω 2 t-3β + 3α) + sin (3ω 1 t + 3ω 2 t-3β + 3α-4π / 3) + sin (3ω 1 t + 3ω 2 t-3β + 3α-8π / 3) -3sin (3ω 1 t-3β + 3ω 2 t-3α )) +1/2 n Ic 2 (t) (sin (2ω 2 t-γ + α) + sin (2ω 2 t-γ + α-4π / 3) + sin (2ω 2 t-γ + α-8π / 3) + 3sin (γ + α))) = μIm 2 (Im 1 sin (3 (ω 12 ) t-3α) +1/2 n Ic 1 (sin (3ω 1 t + 3ω 2 t- 3β + 3α) + sin (3 1 t + 3ω 2 t-3β + 3α-2π / 3) + sin (3ω 1 t + 3ω 2 t-3β + 3α-4π / 3) -3sin (3ω 1 t-3β-3ω 2 t-3α)) +1/2 n Ic 2 (t) (sin (2ω 2 t-γ + α) + sin (2ω 2 t-γ + α-2π / 3) + sin (2ω 2 t-γ + α-4π / 3 ) + 3sin (γ + α))) = μIm 2 (Im 1 sin (3 (ω 12 ) t-3α) -3/2 n Ic 1 sin (3ω 1 t-3β-3ω 2 t-3α ) +3/2 n Ic 2 (t) sin (γ + α)) (52) where f 2 is, as seen from equation (48),
When there is no influence of the magnetic field generated by the outer magnet and the outer coil, f 2 = 3/2 n Ic 2 (t) sin (γ + α)) (53), and the motor can be driven with a constant torque.

【0121】これに対して、外側磁石や外側コイルの作
る磁界の影響が残る場合は、(52)式において、 Ic2(t)=(2/3C/μIm2-Im1 sin(3(ω12)t-3α) +n Ic1 sin(3ω1t-3β-3ω2t-3α))/(n sin(γ+α)) …(54) ただし、C:定数 とすると、f2=Cとなり一定トルクでの駆動が可能と
なる。つまり、磁極数比が3:1の場合、(52)式によれ
ば、内側磁石の回転に対して外側磁石の影響が若干発生
することを意味している。より正確には位相差(ω1-
ω2)に応じた一定のトルク変動が内側磁石の回転に生じ
る。その様子を図16に示す。矩形波モデルとしたと
き、顕著に外側磁石と内側磁石の磁力干渉の影響が表さ
れる。いま、状態Aを考えると、この状態よりも状態B
のほうが安定するため、Bの状態へ移そうとするトルク
が発生する。このトルクは断続トルクとなり、位相差
12)によって発生するわけである。さらに述べる
と、現実にはコイルの間の距離の影響を受けたり完全な
正弦波が実現できないため、完全に外側磁石の影響を打
ち消すことができない場合があり、その場合の最も極端
な場合がこの(52)式で表される。
On the other hand, when the influence of the magnetic field generated by the outer magnet or the outer coil remains, in equation (52), Ic 2 (t) = (2 / 3C / μIm 2 -Im 1 sin (3 (ω 12 ) t-3α) + n Ic 1 sin (3ω 1 t-3β-3ω 2 t-3α)) / (n sin (γ + α))… (54) where C: constant f 2 = C, and driving with a constant torque becomes possible. That is, when the ratio of the number of magnetic poles is 3: 1 according to the equation (52), it means that the rotation of the inner magnet is slightly affected by the outer magnet. More precisely, the phase difference (ω 1-
ω 2 ), a constant torque fluctuation occurs in the rotation of the inner magnet. This is shown in FIG. When a rectangular wave model is used, the influence of magnetic interference between the outer magnet and the inner magnet is remarkably exhibited. Now, considering state A, state B is better than state B.
Is more stable, a torque is generated to shift to the state B. This torque becomes intermittent torque, and the phase difference
12 ). In addition, since the effect of the distance between the coils and the complete sine wave cannot be realized in reality, it may not be possible to completely cancel the effect of the outer magnet, and the most extreme case in this case is this. It is expressed by equation (52).

【0122】しかしながら、(54)式により振幅変調を行
うことで、その一定トルク変動を打ち消すことが可能と
なり、磁極数比が3:1の場合であっても内側磁石を一定
トルクで駆動できるのである。
However, by performing the amplitude modulation by the equation (54), it is possible to cancel the constant torque fluctuation, and the inner magnet can be driven with the constant torque even when the magnetic pole ratio is 3: 1. is there.

【0123】〈3-3〉まとめ (51)、(52)の各式によれば、外側磁石と内側磁石のそれ
ぞれに同期させてステータコイルに電流を流すとき、両
方の磁石にそれぞれ回転トルクが発生することがわか
る。計算はしなかったが、外側磁石に同期させてステー
タコイルに電流を流したときは外側磁石にのみ、また内
側磁石に同期させてステータコイルに電流を流したとき
は内側磁石にのみ回転トルクが発生することはいうまで
もない。このことから、磁極数比が3:1の組み合わせで
あるときにも、回転電機として働くことが可能であるこ
とが証明された。
<3-3> Conclusion According to the equations (51) and (52), when a current is applied to the stator coil in synchronization with the outer magnet and the inner magnet, the rotational torque is applied to both magnets. It can be seen that this occurs. Although the calculation was not performed, when the current was passed through the stator coil in synchronization with the outer magnet, the rotation torque was applied only to the outer magnet, and when the current was passed through the stator coil in synchronization with the inner magnet, the rotation torque was applied only to the inner magnet. Needless to say. From this, it was proved that even when the ratio of the number of magnetic poles was 3: 1, it was possible to function as a rotating electric machine.

【0124】〈3-4〉電流設定 図14に示した外周側と内周側のコイルとを図17に示
したように共用化することを考える。図14においてコ
イルaとd、コイルaf、コイルaとe、コイルad、コイ
ルaとf、コイルaeをまとめればよいから、図17と対
照させると、図17においてステータコイルに流す複合
電流を、 I1=Ia+Id I10I 1Ia+Id I2Ic I11I 2=Ic I3=Ib I12I 3Ib I4Ia+If I13I 4=Ia+If I5=Ic I14I 5Ic I6Ib I15I 6=Ib I7=Ia+Ie I16Ia+Ie I8Ic I17I 8=Ic I9=Ib I18I 9Ib とすればよいことがわかる。つまり、磁極数比が3:1の
組み合わせでは、9相の電流で代表することができる。
これは、磁極数比が2:1の組み合わせとの対比からいえ
ば、磁極数比が3:1の組み合わせでは18相の交流としな
ければならないのであるが、磁極数比が3:1の組み合わ
せの場合に限り、半周で位相が反転しているため、18相
の半分の9相の交流で代表することができるからであ
る。
<3-4> Current Setting Consider sharing the outer and inner coils shown in FIG. 14 as shown in FIG. In FIG. 14, coils a and d, coils a and f , coils a and e, coils a and d , coils a and f, and coils a and e may be put together. the composite current supplied to, I 1 = Ia + Id I 10 = I 1 = Ia + Id I 2 = Ic I 11 = I 2 = Ic I 3 = Ib I 12 = I 3 = Ib I 4 = Ia + If I 13 = I 4 = Ia + If I 5 = Ic I 14 = I 5 = Ic I 6 = Ib I 15 = I 6 = Ib I 7 = Ia + Ie I 16 = Ia + Ie I 8 = Ic I 17 = I 8 = Ic I 9 = Ib I 18 = I 9 = or it can be seen that if Ib. In other words, a combination having a magnetic pole number ratio of 3: 1 can be represented by a nine-phase current.
This means that in terms of contrast with the combination with a magnetic pole ratio of 2: 1, a combination with a magnetic pole ratio of 3: 1 requires 18-phase alternating current, but a combination with a magnetic pole ratio of 3: 1. Only in the case of, since the phase is inverted in half the circumference, it can be represented by the AC of 9 phases, which is half of the 18 phases.

【0125】ただし、コイル1、4、7、147のコイル
の負担が大きくなるため、残りのコイルも使用して内側
回転磁界を形成させることを考えると、 I1=Ia+Ii I10I 1Ia+I i I2Ic+I vi I11I 2=Ic+Ivi I3=Ib+Iii I12I 3Ib+I ii I4Ia+I vii I13I 4=Ia+Ivii I5=Ic+Iiii I14I 5Ic+I iii I6Ib+I viii I15I 6=Ib+Iviii I7=Ia+Iiv I16I 7Ia+I iv I8Ic+I ix I17I 8=Ic+Iix I9=Ib+Iv I18I 9Ib+I v であればよい。
However, since the load on the coils 1 , 4 , 7, 1 , 4 , and 7 becomes large, considering that the remaining coils are also used to form the inner rotating magnetic field, I 1 = Ia + I i I 10 = I 1 = Ia + I i I 2 = Ic + I vi I 11 = I 2 = Ic + I vi I 3 = Ib + I ii I 12 = I 3 = Ib + I ii I 4 = Ia + I vii I 13 = I 4 = Ia + I vii I 5 = Ic + I iii I 14 = I 5 = Ic + I iii I 6 = Ib + I viii I 15 = I 6 = Ib + I viii I 7 = Ia if + I iv I 16 = I 7 = Ia + I iv I 8 = Ic + I ix I 17 = I 8 = Ic + I ix I 9 = Ib + I v I 18 = I 9 = Ib + I v Good.

【0126】内側回転磁界を形成させるための電流Ii
IixI iI ixの位置関係を図18に示す。
The currents I i to generate the inner rotating magnetic field are
FIG. 18 shows the positional relationship between I ix and I i to I ix .

【0127】〈3-5〉9相交流で内側回転磁界を与える場
合 〈3-5-1〉9相交流で内側回転磁界を作ることを考える
と、このときの磁束密度Bc2は次のようになる。
<3-5> Case of Giving Inner Rotating Magnetic Field with 9-Phase AC <3-5-1> Considering that an inner rotating magnetic field is created with 9-phase AC, the magnetic flux density Bc 2 at this time is as follows. become.

【0128】 Bc2=μn(Ici(t)sin(θ)+Icii(t)sin(θ-2π/9) +Iciii(t)sin(θ-4π/9) +Iciv(t)sin(θ-6π/9) +Icv(t)sin(θ-8π/9) +Icvi(t)sin(θ-10π/9) +Icvii(t)sin(θ-12π/9) +Icviii(t)sin(θ-14π/9) +Icix(t)sin(θ-16π/9) …(55) したがって、全体の磁束密度Bは次のようになる。Bc 2 = μn (Ic i (t) sin (θ) + Ic ii (t) sin (θ-2π / 9) + Ic iii (t) sin (θ-4π / 9) + Ic iv (t ) sin (θ-6π / 9) + Ic v (t) sin (θ-8π / 9) + Ic vi (t) sin (θ-10π / 9) + Ic vii (t) sin (θ-12π / 9 ) + Ic viii (t) sin (θ−14π / 9) + Ic ix (t) sin (θ−16π / 9) (55) Therefore, the total magnetic flux density B is as follows.

【0129】 B=B1+B2+Bc1+Bc2 =μIm1 sin(3ω1t-3θ)+μIm2 sin(ω2t+α-θ) +μn(Ica(t)sin(3θ)+Icb(t)sin(3θ-2π/3) +Icc(t)sin(3θ-4π/3) +μn(Ici(t)sin(θ)+Icii(t)sin(θ-2π/9) +Iciii(t)sin(θ-4π/9) +Iciv(t)sin(θ-6π/9) +Icv(t)sin(θ-8π/9) +Icvi(t)sin(θ-10π/9) +Icvii(t)sin(θ-12π/9) +Icviii(t)sin(θ-14π/9) +Icix(t)sin(θ-16π/9) …(56) このときのf1を計算してみると、 f1=Im1×B(θ=ω1t)+Im1×B(θ=ω1t+2π/3)-Im1×B(θ=ω1t+π/3) =μIm1(Im1(sin(3ω1t-3ω1t)+sin(3ω1t−3ω1t+2π) -sin(3ω1t−3ω1t+π)) +Im2(sin(ω2t+α-ω1t)+sin(ω2t+α-ω1t-2π/3) -sin(ω2t+α-ω1t+π/3) +n(Ica(t)(sin(3ω1t)+sin(3ω1t+2π) -sin(3ω1t+π)) +Icb(t)(sin(3ω1t-2π/3)+sin(3ω1t+2π-2π/3) -sin(3ω1t+π-2π/3)) +Icc(t)(sin(3ω1t-4π/3)+sin(3ω1t+2π-4π/3) -sin(3ω1t+π-4π/3))) +n(Ici(t)(sin(ω1t)+sin(ω1t+2π/3) +sin(ω1t+π/3)) +Icii(t)(sin(ω1t-2π/9)+sin(ω1t-2π/9+2π/3)) +sin(ω1t-2π/9+π/3)) +Iciii(t)(sin(ω1t-4π/9)+sin(ω1t-4π/9+2π/3)) +sin(ω1t-4π/9+π/3)) +Iciv(t)(sin(ω1t-6π/9)+sin(ω1t-6π/9+2π/3) +sin(ω1t-6π/9+π/3)) +Icv(t)(sin(ω1t-8π/9)+sin(ω1t-8π/9+2π/3)) +sin(ω1t-8π/9+π/3)) +Icvi(t)(sin(ω1t-10π/9)+sin(ω1t-10π/9+2π/3)) +sin(ω1t-10π/9+π/3)) +Icvii(t)(sin(ω1t-12π/9)+sin(ω1t-12π/9+2π/3) +sin(ω1t-12π/9+π/3)) +Icviii(t)(sin(ω1t-14π/9)+sin(ω1t-14π/9+2π/3) +sin(ω1t-14π/9+π/3)) +Icix(t)(sin(ω1t-16π/9)+sin(ω1t-16π/9+2π/3)) +sin(ω1t-16π/9+π/3))) =μIm1( Im1(sin(3ω1t-3ω1t)+sin(3ω1t−3ω1t+2π)-sin(3ω1t−3ω1t+π)) (=0) +Im2(sin(ω2t+α-ω1t)+sin(ω2t+α-ω1t-2π/3)-sin(ω2t+α-ω1t+π/3) (=0) +n(Ica(t)(sin(3ω1t)+sin(3ω1t+2π)-sin(3ω1t+π)) +Icb(t)(sin(3ω1t-2π/3)+sin(3ω1t+2π-2π/3)-sin(3ω1t+π-2π/3)) +Icc(t)(sin(3ω1t-4π/3)+sin(3ω1t+2π-4π/3)-sin(3ω1t+π-4π/3))) +n(Ici(t)(sin(ω1t)+sin(ω1t+2π/3)+sin(ω1t+π/3)) (=0) +Icii(t)(sin(ω1t-2π/9)+sin(ω1t-2π/9+2π/3))+sin(ω1t-2π/9+π/3)) (=0) +Iciii(t)(sin(ω1t-4π/9)+sin(ω1t-4π/9+2π/3))+sin(ω1t-4π/9+π/3)) (=0) +Iciv(t)(sin(ω1t-6π/9)+sin(ω1t-6π/9+2π/3)+sin(ω1t-6π/9+π/3)) (=0) +Icv(t)(sin(ω1t-8π/9)+sin(ω1t-8π/9+2π/3))+sin(ω1t-8π/9+π/3)) (=0) +Icvi(t)(sin(ω1t-10π/9)+sin(ω1t-10π/9+2π/3)) +sin(ω1t-10π/9+π/3)) (=0) +Icvii(t)(sin(ω1t-12π/9)+sin(ω1t-12π/9+2π/3) +sin(ω1t-12π/9+π/3)) (=0) +Icviii(t)(sin(ω1t-14π/9)+sin(ω1t-14π/9+2π/3) +sin(ω1t-14π/9+π/3)) (=0) +Icix(t)(sin(ω1t-16π/9)+sin(ω1t-16π/9+2π/3)) +sin(ω1t-16π/9+π/3))) (=0) =3μn Im1(Ica(t)sin(3ω1t)+Icb(t)sin(3ω1t-2π/3) +Icc(t)sin(3ω1t-4π/3)) …(57) となり、内側回転磁界を3相交流で与えた場合に得られ
る上記(46)式と変わりない。
B = B 1 + B 2 + Bc 1 + Bc 2 = μIm 1 sin (3ω 1 t-3θ) + μIm 2 sin (ω 2 t + α-θ) + μn (Ica (t) sin (3θ ) + Icb (t) sin ( 3θ-2π / 3) + Icc (t) sin (3θ-4π / 3) + μn (Ic i (t) sin (θ) + Ic ii (t) sin (θ-2π / 9) + Ic iii (t) sin (θ-4π / 9) + Ic iv (t) sin (θ-6π / 9) + Ic v (t) sin (θ-8π / 9) + Ic vi (t ) sin (θ-10π / 9) + Ic vii (t) sin (θ-12π / 9) + Ic viii (t) sin (θ-14π / 9) + Ic ix (t) sin (θ-16π / 9 )… (56) Calculating f 1 at this time, f 1 = Im 1 × B (θ = ω 1 t) + Im 1 × B (θ = ω 1 t + 2π / 3) -Im 1 × B (θ = ω 1 t + π / 3) = μIm 1 (Im 1 (sin (3ω 1 t-3ω 1 t) + sin (3ω 1 t−3ω 1 t + 2π) -sin (3ω 1 t− 3ω 1 t + π)) + Im 2 (sin (ω 2 t + α-ω 1 t) + sin (ω 2 t + α-ω 1 t-2π / 3) -sin (ω 2 t + α-ω 1 t + π / 3) + n (Ica (t) (sin (3ω 1 t) + sin (3ω 1 t + 2π) -sin (3ω 1 t + π)) + Icb (t) (sin (3ω 1 t-2π / 3) + sin (3ω 1 t + 2π-2π / 3) -sin (3ω 1 t + π-2π / 3)) + Icc (t) (sin (3ω 1 t-4π / 3) + sin (3ω 1 t + 2π-4π / 3) -sin (3ω 1 t + π-4π / 3))) + n (Ic i (t) (sin (ω 1 t) + sin (ω 1 t + 2π / 3) + sin (ω 1 t + π / 3)) + Ic ii (t) (sin (ω 1 t-2π / 9) + sin ( 1 t-2π / 9 + 2π / 3)) + sin (ω 1 t-2π / 9 + π / 3)) + Ic iii (t) (sin (ω 1 t-4π / 9) + sin (ω 1 t-4π / 9 + 2π / 3)) + sin (ω 1 t-4π / 9 + π / 3)) + Ic iv (t) (sin (ω 1 t-6π / 9) + sin (ω 1 t -6π / 9 + 2π / 3) + sin (ω 1 t-6π / 9 + π / 3)) + Ic v (t) (sin (ω 1 t-8π / 9) + sin (ω 1 t-8π / 9 + 2π / 3)) + sin (ω 1 t-8π / 9 + π / 3)) + Ic vi (t) (sin (ω 1 t-10π / 9) + sin (ω 1 t-10π / 9 + 2π / 3)) + sin (ω 1 t-10π / 9 + π / 3)) + Ic vii (t) (sin (ω 1 t-12π / 9) + sin (ω 1 t-12π / 9 + 2π / 3) + sin (ω 1 t-12π / 9 + π / 3)) + Ic viii (t) (sin (ω 1 t-14π / 9) + sin (ω 1 t-14π / 9 + 2π / 3) + sin (ω 1 t-14π / 9 + π / 3)) + Ic ix (t) (sin (ω 1 t-16π / 9) + sin (ω 1 t-16π / 9 + 2π / 3 )) + sin (ω 1 t-16π / 9 + π / 3))) = μIm 1 (Im 1 (sin (3ω 1 t-3ω 1 t) + sin (3ω 1 t−3ω 1 t + 2π)- sin (3ω 1 t−3ω 1 t + π)) (= 0) + Im 2 (sin (ω 2 t + α-ω 1 t) + sin (ω 2 t + α-ω 1 t-2π / 3) -sin (ω 2 t + α-ω 1 t + π / 3) (= 0) + n (Ica (t) (sin (3ω 1 t) + sin (3ω 1 t + 2π) -sin (3ω 1 t + π)) + Icb (t) (sin (3ω 1 t-2π / 3) + sin (3ω 1 t + 2π-2π / 3) -sin (3ω 1 t + π-2π / 3)) + Icc ( t) (sin (3ω 1 t-4π / 3) + sin (3ω 1 t + 2π-4π / 3) -sin (3ω 1 t + π-4π / 3))) + n (Ic i (t) (sin (ω 1 t) + sin (ω 1 t + 2π / 3) + sin (ω 1 t + π / 3)) (= 0) + Ic ii (t) (sin (ω 1 t-2π / 9) + sin (ω 1 t-2π / 9 + 2π / 3)) + sin (ω 1 t-2π / 9 + π / 3)) (= 0) + Ic iii (t) (sin (ω 1 t-4π / 9) + sin (ω 1 t-4π / 9 + 2π / 3)) + sin (ω 1 t-4π / 9 + π / 3)) ( = 0) + Ic iv (t) (sin (ω 1 t-6π / 9) + sin (ω 1 t-6π / 9 + 2π / 3) + sin (ω 1 t-6π / 9 + π / 3) ) (= 0) + Ic v (t) (sin (ω 1 t-8π / 9) + sin (ω 1 t-8π / 9 + 2π / 3)) + sin (ω 1 t-8π / 9 + π / 3)) (= 0) + Ic vi (t) (sin (ω 1 t-10π / 9) + sin (ω 1 t-10π / 9 + 2π / 3)) + sin (ω 1 t-10π / 9 + π / 3)) (= 0) + Ic vii (t) (sin (ω 1 t-12π / 9) + sin (ω 1 t-12π / 9 + 2π / 3) + sin (ω 1 t- 12π / 9 + π / 3)) (= 0) + Ic viii (t) (sin (ω 1 t-14π / 9) + sin (ω 1 t-14π / 9 + 2π / 3) + sin (ω 1 t-14π / 9 + π / 3)) (= 0) + Ic ix (t) (sin (ω 1 t-16π / 9) + sin (ω 1 t-16π / 9 + 2π / 3)) + sin (ω 1 t-16π / 9 + π / 3))) (= 0) = 3μn Im 1 (Ica (t) sin (3ω 1 t) + Icb (t) sin (3ω 1 t-2π / 3) + Icc (t) sin (3ω 1 t-4π / 3)) (57), which is the same as the above equation (46) obtained when the inner rotating magnetic field is given by three-phase alternating current.

【0130】一方、f2を計算してみると、次のようにな
る。
On the other hand, when f 2 is calculated, it is as follows.

【0131】 f2=Im2×B(θ=ω2t+α) =μIm2(Im1 sin(3ω1t-3ω2t-3α)+Im2 sin(ω2t+α-ω2t-α) +n(Ica(t)sin(3ω2t+3α)+Icb(t)sin(3ω2t+3α-2π/3) +Icc(t)sin(3ω2t+3α-4π/3) +n(Ici(t)sin(ω2t+α) +Icii(t)sin(ω2t+α-2π/9) +Iciii(t)sin(ω2t+α-4π/9) +Iciv(t)sin(ω2t+α-6π/9) +Icv(t)sin(ω2t+α-8π/9) +Icvi(t)sin(ω2t+α-10π/9) +Icvii(t)sin(ω2t+α-12π/9) +Icviii(t)sin(ω2t+α-14π/9) +Icix(t)sin(ω2t+α-16π/9))) =μIm2(Im1 sin(3ω1t-3ω2t-3α) +n(Ica(t)sin(3ω2t+3α)+Icb(t)sin(3ω2t+3α-2π/3) +Icc(t)sin(3ω2t+3α-4π/3) +n(Ici(t)sin(ω2t+α) +Icii(t)sin(ω2t+α-2π/9) +Iciii(t)sin(ω2t+α-4π/9) +Iciv(t)sin(ω2t+α-6π/9) +Icv(t)sin(ω2t+α-8π/9) +Icvi(t)sin(ω2t+α-10π/9) +Icvii(t)sin(ω2t+α-12π/9) +Icviii(t)sin(ω2t+α-14π/9) +Icix(t)sin(ω2t+α-16π/9))) …(58) 〈3-5-2〉外側回転磁界と内側回転磁界をともに与える
場合 上記の3相交流Ica(t)、Icb(t)、Icc(t)は Ica(t)=Ic1 cos(3ω1t-3β) …(59a) Icb(t)=Ic1 cos(3ω1t-3β-2π/3) …(59b) Icc(t)=Ic1 cos(3ω1t-3β-4π/3) …(59c) であり、上記の9相交流Ici(t)〜Icix(t)を Ici(t)=Ic2(t) cos(ω2t-γ) …(60a) Icii(t)=Ic2(t) cos(ω2t-γ-2π/9) …(60b) Iciii(t)=Ic2(t) cos(ω2t-γ-4π/9) …(60c) Iciv(t)=Ic2(t) cos(ω2t-γ-6π/9) …(60d) Icv(t)=Ic2(t) cos(ω2t-γ-8π/9) …(60e) Icvi(t)=Ic2(t) cos(ω2t-γ-10π/9) …(60f) Icvii(t)=Ic2(t) cos(ω2t-γ-12π/9) …(60g) Icviii(t)=Ic2(t) cos(ω2t-γ-14π/9) …(60h) Icix(t)=Ic2(t) cos(ω2t-γ-16π/9) …(60i) とおく。
F 2 = Im 2 × B (θ = ω 2 t + α) = μIm 2 (Im 1 sin (3ω 1 t-3ω 2 t-3α) + Im 2 sin (ω 2 t + α-ω 2 t -α) + n (Ica (t) sin (3ω 2 t + 3α) + Icb (t) sin (3ω 2 t + 3α-2π / 3) + Icc (t) sin (3ω 2 t + 3α-4π / 3) + n (Ic i (t) sin (ω 2 t + α) + Ic ii (t) sin (ω 2 t + α-2π / 9) + Ic iii (t) sin (ω 2 t + α- 4π / 9) + Ic iv (t) sin (ω 2 t + α-6π / 9) + Ic v (t) sin (ω 2 t + α-8π / 9) + Ic vi (t) sin (ω 2 t + α-10π / 9) + Ic vii (t) sin (ω 2 t + α-12π / 9) + Ic viii (t) sin (ω 2 t + α-14π / 9) + Ic ix (t) sin (ω 2 t + α-16π / 9))) = μIm 2 (Im 1 sin (3ω 1 t-3ω 2 t-3α) + n (Ica (t) sin (3ω 2 t + 3α) + Icb ( t) sin (3ω 2 t + 3α-2π / 3) + Icc (t) sin (3ω 2 t + 3α-4π / 3) + n (Ic i (t) sin (ω 2 t + α) + Ic ii (t) sin (ω 2 t + α-2π / 9) + Ic iii (t) sin (ω 2 t + α-4π / 9) + Ic iv (t) sin (ω 2 t + α-6π / 9 ) + Ic v (t) sin (ω 2 t + α-8π / 9) + Ic vi (t) sin (ω 2 t + α-10π / 9) + Ic vii (t) sin (ω 2 t + α -12π / 9) + Ic viii (t) sin (ω 2 t + α-14π / 9) + Ic ix (t) sin (ω 2 t + α-16π / 9)))… (58) <3- 5-2> When both outer rotating magnetic field and inner rotating magnetic field are given Phase exchange Ica (t), Icb (t), Icc (t) is Ica (t) = Ic 1 cos (3ω 1 t-3β)… (59a) Icb (t) = Ic 1 cos (3ω 1 t-3β -2π / 3) ... (59b) is Icc (t) = Ic 1 cos (3ω 1 t-3β-4π / 3) ... (59c), 9 -phase AC of the Ic i (t) ~Ic ix ( t Ic i (t) = Ic 2 (t) cos (ω 2 t-γ)… (60a) Ic ii (t) = Ic 2 (t) cos (ω 2 t-γ−2π / 9)… ( 60b) Ic iii (t) = Ic 2 (t) cos (ω 2 t-γ-4π / 9)… (60c) Ic iv (t) = Ic 2 (t) cos (ω 2 t-γ-6π / 9)… (60d) Ic v (t) = Ic 2 (t) cos (ω 2 t-γ-8π / 9)… (60e) Ic vi (t) = Ic 2 (t) cos (ω 2 t- γ-10π / 9)… (60f) Ic vii (t) = Ic 2 (t) cos (ω 2 t-γ-12π / 9)… (60g) Ic viii (t) = Ic 2 (t) cos ( ω 2 t−γ−14π / 9) (60h) Ic ix (t) = Ic 2 (t) cos (ω 2 t−γ−16π / 9) (60i)

【0132】(59a)式〜(59c)および式(60a)式〜(60i)式
を(58)式に代入して、f2を計算する。
[0132] (59a) to Expression and (59c) and formula (60a) formula - (60i) Equation (58) are substituted into equation to calculate the f 2.

【0133】 f2=μIm2(Im1 sin(3ω1t-3ω2t-3α) +n(Ic1 cos(3ω1t-3β)sin(3ω2t-3α) +Ic1 cos(3ω1t-3β-2π/3)sin(3ω2t+3α-2π/3) +Ic1 cos(3ω1t-3β-4π/3)sin(3ω2t+3α-4π/3) +n(Ic2(t) cos(ω2t-γ)sin(ω1t+α) +Ic2(t) cos(ω2t-γ-2π/9)sin(ω1t+α-2π/9) +Ic2(t) cos(ω2t-γ-4π/9)sin(ω1t+α-4π/9) +Ic2(t) cos(ω2t-γ-6π/9)sin(ω1t+α-6π/9) +Ic2(t) cos(ω2t-γ-8π/9)sin(ω1t+α-8π/9) +Ic2(t) cos(ω2t-γ-10π/9)sin(ω1t+α-10π/9) +Ic2(t) cos(ω2t-γ-12π/9)sin(ω1t+α-12π/9) +Ic2(t) cos(ω2t-γ-14π/9)sin(ω1t+α-14π/9) +Ic2(t) cos(ω2t-γ-16π/9)sin(ω1t+α-16π/9))) ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて f2=μIm2(Im1 sin(3ω1t-3ω2t-3α) +n Ic1(1/2(sin(3ω1t-3β+3ω2t+3α) -sin(3ω1t-3β-3ω2t-3α) +1/2(sin(3ω1t-3β-2π/3+3ω2t+3α-2π/3) -sin(3ω1t-3β-2π/3-3ω2t-3α+2π/3)) +1/2(sin(3ω1t-3β-4π/3+3ω2t+3α-4π/3) -sin(3ω1t-3β-4π/3-3ω2t-3α+4π/3))) +n Ic2(t)(1/2(sin(ω2t-γ+ω2t+α) -sin(ω2t-γ-ω2t-α)) +1/2(sin(ω2t-γ-2π/9+ω2t+α) -sin(ω2t-γ-2π/9-ω2t-α)) +1/2(sin(ω2t-γ-4π/9+ω2t+α) -sin(ω2t-γ-4π/9-ω2t-α)) +1/2(sin(ω2t-γ-8π/9+ω2t+α) -sin(ω2t-γ-6π/9-ω2t-α)) +1/2(sin(ω2t-γ-10π/9+ω2t+α) -sin(ω2t-γ-8π/9-ω2t-α)) +1/2(sin(ω2t-γ-12π/9+ω2t+α) -sin(ω2t-γ-10π/9-ω2t-α)) +1/2(sin(ω2t-γ-14π/9+ω2t+α) -sin(ω2t-γ-12π/9-ω2t-α)) +1/2(sin(ω2t-γ-16π/9+ω2t+α) -sin(ω2t-γ-14π/9-ω2t-α))) =μIm2(Im1 sin(3ω1t-3ω2t-3α) +1/2n Ic1(sin(3ω1t+3ω2t-3β+3α) -sin(3ω1t-3ω2t-3α-3β) +sin(3ω1t+3ω2t-3β+3α-4π/3) -sin(3ω1t-3ω2t-3α-3β) +sin(3ω1t+3ω2t-3β+3α-2π/3) -sin(3ω1t-3ω2t-3α-3β)) +n Ic2(t)(1/2(sin(ω2t-γ+ω2t+α)+sin(γ+α)) +1/2(sin(ω2t-γ+ω2t+α-4π/9)+sin(γ+α)) +1/2(sin(ω2t-γ+ω2t+α-8π/9)+sin(γ+α)) +1/2(sin(ω2t-γ+ω2t+α-12π/9)+sin(γ+α)) +1/2(sin(ω2t-γ+ω2t+α-16π/9)+sin(γ+α)) +1/2(sin(ω2t-γ+ω2t+α-2π/9)+sin(γ+α)) +1/2(sin(ω2t-γ+ω2t+α-6π/9)+sin(γ+α)) +1/2(sin(ω2t-γ+ω2t+α-10π/9)+sin(γ+α)) +1/2(sin(ω2t-γ+ω2t+α-14π/9)+sin(γ+α)))) =μIm2(Im1 sin(3ω1t-3ω2t-3α) -3/2 n Ic1 sin(3ω1t+3ω2t-3α-3β) +9/2n Ic2(t)sin(γ+α)) …(61) 〈3-5-3〉まとめ (61)式右辺の第1項、第2項は、(48)式のところでみたよ
うに、他相の分を考慮すると打ち消されることになるの
は、3相交流の場合と同じである。
F 2 = μIm 2 (Im 1 sin (3ω 1 t-3ω 2 t-3α) + n (Ic 1 cos (3ω 1 t-3β) sin (3ω 2 t-3α) + Ic 1 cos (3ω 1 t-3β-2π / 3) sin (3ω 2 t + 3α-2π / 3) + Ic 1 cos (3ω 1 t-3β-4π / 3) sin (3ω 2 t + 3α-4π / 3) + n (Ic 2 (t) cos (ω 2 t-γ) sin (ω 1 t + α) + Ic 2 (t) cos (ω 2 t-γ-2π / 9) sin (ω 1 t + α-2π / 9) + Ic 2 (t) cos (ω 2 t-γ-4π / 9) sin (ω 1 t + α-4π / 9) + Ic 2 (t) cos (ω 2 t-γ-6π / 9) sin (ω 1 t + α-6π / 9) + Ic 2 (t) cos (ω 2 t-γ-8π / 9) sin (ω 1 t + α-8π / 9) + Ic 2 (t) cos ( ω 2 t-γ-10π / 9) sin (ω 1 t + α-10π / 9) + Ic 2 (t) cos (ω 2 t-γ-12π / 9) sin (ω 1 t + α-12π / 9) + Ic 2 (t) cos (ω 2 t-γ-14π / 9) sin (ω 1 t + α-14π / 9) + Ic 2 (t) cos (ω 2 t-γ-16π / 9) sin (ω 1 t + α-16π / 9))) Here, using the formula of cos (a) sin (b) = 1/2 (sin (a + b) -sin (ab)), f 2 = μIm 2 (Im 1 sin (3ω 1 t-3ω 2 t-3α) + n Ic 1 (1/2 (sin (3ω 1 t-3β + 3ω 2 t + 3α) -sin (3ω 1 t-3β-3ω 2 t-3α) +1/2 (sin (3ω 1 t-3β-2π / 3 + 3ω 2 t + 3α-2π / 3) -sin (3ω 1 t-3β-2π / 3-3ω 2 t-3α + 2π / 3)) +1/2 (sin (3ω 1 t-3β-4π / 3 + 3ω 2 t + 3α-4π / 3) -sin (3ω 1 t -3β-4π / 3-3ω 2 t-3α + 4π / 3))) + n Ic 2 (t) (1/2 (sin (ω 2 t-γ + ω 2 t + α) -sin (ω 2 t-γ-ω 2 t-α)) +1/2 (sin (ω 2 t-γ-2π / 9 + ω 2 t + α) -sin (ω 2 t-γ-2π / 9-ω 2 t -α)) +1/2 (sin (ω 2 t-γ-4π / 9 + ω 2 t + α) -sin (ω 2 t-γ-4π / 9-ω 2 t-α)) + 1 / 2 (sin (ω 2 t-γ-8π / 9 + ω 2 t + α) -sin (ω 2 t-γ-6π / 9-ω 2 t-α)) +1/2 (sin (ω 2 t -γ-10π / 9 + ω 2 t + α) -sin (ω 2 t-γ-8π / 9-ω 2 t-α)) +1/2 (sin (ω 2 t-γ-12π / 9 + ω 2 t + α) -sin (ω 2 t-γ-10π / 9-ω 2 t-α)) +1/2 (sin (ω 2 t-γ-14π / 9 + ω 2 t + α)- sin (ω 2 t-γ-12π / 9-ω 2 t-α)) +1/2 (sin (ω 2 t-γ-16π / 9 + ω 2 t + α) -sin (ω 2 t-γ -14π / 9-ω 2 t-α))) = μIm 2 (Im 1 sin (3ω 1 t-3ω 2 t-3α) + 1 / 2n Ic 1 (sin (3ω 1 t + 3ω 2 t-3β + 3α) -sin (3ω 1 t-3ω 2 t-3α-3β) + sin (3ω 1 t + 3ω 2 t-3β + 3α-4π / 3) -sin (3ω 1 t-3ω 2 t-3α-3β ) + sin (3ω 1 t + 3ω 2 t-3β + 3α-2π / 3) -sin (3ω 1 t-3ω 2 t-3α-3β)) + n Ic 2 (t) (1/2 (sin ( ω 2 t-γ + ω 2 t + α) + sin (γ + α)) +1/2 (sin (ω 2 t-γ + ω 2 t + α-4π / 9) + sin (γ + α) ) +1/2 (sin (ω 2 t-γ + ω 2 t + α-8π / 9) + sin (γ + α)) +1/2 (sin (ω 2 t -γ + ω 2 t + α-12π / 9) + sin (γ + α)) +1/2 (sin (ω 2 t-γ + ω 2 t + α-16π / 9) + sin (γ + α )) +1/2 (sin (ω 2 t-γ + ω 2 t + α-2π / 9) + sin (γ + α)) +1/2 (sin (ω 2 t-γ + ω 2 t + α-6π / 9) + sin (γ + α)) +1/2 (sin (ω 2 t-γ + ω 2 t + α-10π / 9) + sin (γ + α)) +1/2 ( sin (ω 2 t-γ + ω 2 t + α-14π / 9) + sin (γ + α)))) = μIm 2 (Im 1 sin (3ω 1 t-3ω 2 t-3α) -3/2 n Ic 1 sin (3ω 1 t + 3ω 2 t-3α-3β) + 9 / 2n Ic 2 (t) sin (γ + α))… (61) <3-5-3> Summary (61) right side The first and second terms are canceled out in consideration of other phases, as seen from equation (48), as in the case of three-phase alternating current.

【0134】一方、内側回転磁界を9相交流で与えた場
合に得られるこの(61)式を、内側回転磁界を3相交流で
与えた場合に得られる上記の(52)式と比較すると、(61)
式のほうが(52)式よりも固定項(最後の項)が3倍とな
っている。つまり、内側磁石の駆動電流を9相の交流(I
i〜Iix)とすれば、内側磁石の駆動電流を3相交流とす
る場合より3倍もの電磁力(駆動トルク)が得られるわ
けである。このことは、逆にいえば、内側磁石に同じ駆
動トルクを発生させるのに、駆動電流は1/3でよいこと
を意味している。
On the other hand, when this equation (61) obtained when the inner rotating magnetic field is given by the nine-phase alternating current is compared with the above equation (52) obtained when the inner rotating magnetic field is given by the three-phase alternating current, (61)
In the equation, the fixed term (last term) is three times that of the equation (52). That is, the drive current of the inner magnet is changed to 9-phase alternating current (I
If i to Iix ), an electromagnetic force (drive torque) that is three times that of the case where the drive current of the inner magnet is a three-phase alternating current can be obtained. Conversely, this means that the drive current may be よ い to generate the same drive torque for the inner magnet.

【0135】これで、理論的な解析を終える。This completes the theoretical analysis.

【0136】次に、図19〜図25に第3から第8まで
の各実施形態を示す。これらも前述の4つの実施形態と
同様に、ステータの内と外にロータ3、4を配置したもの
である。ただし、図19、図20は磁極数比が2:1、図
21は磁極数比が2:3、図22は磁極数比が4:3、図2
3、図24は磁極数比が2:1の組み合わせのものであ
る。まとめると、磁極数比が偶数:奇数または奇数:偶
数の組み合わせでありさえすれば、外側磁石の磁極数が
内側磁石の磁極数より多い場合に限らず、外側磁石の磁
極数が内側磁石の磁極数より少ない場合でもかまわな
い。また、ロータは第1から第4までの各実施形態で説
明した一周分を展開して複数個を連結し、円筒状に構成
しても、展開する前のものと同様に扱うことができる。
Next, FIGS. 19 to 25 show third to eighth embodiments. These also have the rotors 3 and 4 arranged inside and outside the stator similarly to the above-described four embodiments. 19 and 20, the magnetic pole ratio is 2: 1, FIG. 21 is magnetic pole ratio 2: 3, FIG. 22 is magnetic pole ratio 4: 3, and FIG.
3. FIG. 24 shows a combination in which the ratio of the number of magnetic poles is 2: 1. In summary, as long as the ratio of the number of magnetic poles is a combination of even: odd or odd: even, the number of magnetic poles of the outer magnet is not limited to the number of magnetic poles of the inner magnet. It may be less than the number. In addition, even if the rotor is expanded for one round as described in each of the first to fourth embodiments and a plurality of rotors are connected to form a cylindrical shape, the rotor can be handled in the same manner as before the expansion.

【0137】また、ステータと2つのロータの並び方は
基本的にどんな並び方でもかまわない。たとえば、図2
5は、ステータ41の内側に中間ロータ42と内ロータ43の
2つのロータを配置したものである。この場合、中間ロ
ータ42を外枠44と同じに鉄枠で覆ったのでは、ステータ
41に発生する磁束が内ロータ43まで届かなくなるので、
中間ロータ42を鉄枠で覆うことはしない。図示しない
が、ステータの外側に2つのロータを配置したときも同
様である。
The arrangement of the stator and the two rotors may be basically any arrangement. For example, FIG.
5 is a structure in which the intermediate rotor 42 and the inner rotor 43
It has two rotors. In this case, if the intermediate rotor 42 is covered with an iron frame in the same manner as the outer frame 44,
Since the magnetic flux generated in 41 does not reach the inner rotor 43,
The intermediate rotor 42 is not covered with the iron frame. Although not shown, the same applies when two rotors are arranged outside the stator.

【0138】実施形態では、2つのロータを永久磁石で
構成する場合で説明したが、各ロータを電磁石で構成す
ることができることはいうまでもない。
In the embodiment, the case where the two rotors are constituted by permanent magnets has been described. However, it goes without saying that each rotor can be constituted by electromagnets.

【0139】モータ駆動電流回路はPWM信号を用いる
場合に限らず、PAM信号その他の信号を用いる場合で
もかまわない。
The motor drive current circuit is not limited to the case using a PWM signal, but may be a case using a PAM signal or other signals.

【0140】実施形態では、電機の構造がラジアルギャ
ップ型(径方向にロータとステータの空隙がある)のも
のについて述べたが、アキシャルギャップ型(軸方向に
ロータとステータの空隙がある)のものについても本発
明を適用できる。
In the above embodiment, the electric machine has a radial gap type (a gap between the rotor and the stator in the radial direction), but an axial gap type (a gap between the rotor and the stator in the axial direction). The present invention can also be applied to

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態の回転電機本体の概略断面図。FIG. 1 is a schematic sectional view of a rotary electric machine main body according to a first embodiment.

【図2】ステータ2の内周側と外周側に専用コイルを配
置した回転電機本体の概略断面図。
FIG. 2 is a schematic cross-sectional view of a rotating electric machine main body in which dedicated coils are arranged on an inner peripheral side and an outer peripheral side of a stator 2.

【図3】制御システム図。FIG. 3 is a control system diagram.

【図4】インバータの回路図。FIG. 4 is a circuit diagram of an inverter.

【図5】第2実施形態の回転電機本体の概略断面図。FIG. 5 is a schematic sectional view of a rotating electric machine main body according to a second embodiment.

【図6】比較のため示す磁極数比が3:1の組み合わせの
場合の回転電機本体の概略断面図。
FIG. 6 is a schematic cross-sectional view of a rotating electrical machine main body in a case of a combination having a magnetic pole ratio of 3: 1 shown for comparison.

【図7】比較のため示す磁極数比が3:1の組み合わせの
場合の回転電機本体の概略断面図。
FIG. 7 is a schematic cross-sectional view of a rotating electrical machine main body in a case of a combination having a magnetic pole ratio of 3: 1 shown for comparison.

【図8】N(2p-2p)基本形を考えるのに参照するモデル
図。
FIG. 8 is a model diagram referred to when considering an N (2p-2p) basic form.

【図9】磁束密度の変化を示すモデル図。FIG. 9 is a model diagram showing a change in magnetic flux density.

【図10】N(2(2p)-2p)基本形を考えるのに参照するモ
デル図。
FIG. 10 is a model diagram referred to when considering the basic form of N (2 (2p) -2p).

【図11】磁束密度の変化を示すモデル図。FIG. 11 is a model diagram showing a change in magnetic flux density.

【図12】N(2(2p)-2p)基本形を考えるのに参照するモ
デル図。
FIG. 12 is a model diagram referred to when considering the basic form of N (2 (2p) -2p).

【図13】12相交流の分布を示す波形図。FIG. 13 is a waveform chart showing a distribution of 12-phase alternating current.

【図14】N(3(2p)-2p)基本形を考えるのに参照するモ
デル図。
FIG. 14 is a model diagram referred to when considering the basic form of N (3 (2p) -2p).

【図15】磁束密度の変化を示すモデル図。FIG. 15 is a model diagram showing a change in magnetic flux density.

【図16】外側磁石と内側磁石の磁力干渉の説明図。FIG. 16 is an explanatory diagram of magnetic interference between an outer magnet and an inner magnet.

【図17】N(3(2p)-2p)基本形を考えるのに参照するモ
デル図。
FIG. 17 is a model diagram referred to when considering an N (3 (2p) -2p) basic form.

【図18】9相交流の分布を示す波形図。FIG. 18 is a waveform diagram showing a distribution of 9-phase alternating current.

【図19】第3実施形態の回転電機本体の概略断面図。FIG. 19 is a schematic sectional view of a rotating electric machine main body according to a third embodiment.

【図20】第4実施形態の回転電機本体の概略断面図。FIG. 20 is a schematic sectional view of a rotary electric machine main body according to a fourth embodiment;

【図21】第5実施形態の回転電機本体の概略断面図。FIG. 21 is a schematic sectional view of a rotary electric machine main body according to a fifth embodiment.

【図22】第6実施形態の回転電機本体の概略断面図。FIG. 22 is a schematic sectional view of a rotary electric machine main body according to a sixth embodiment;

【図23】第7実施形態の回転電機本体の概略断面図。FIG. 23 is a schematic sectional view of a rotary electric machine main body according to a seventh embodiment.

【図24】第8実施形態の回転電機本体の概略断面図。FIG. 24 is a schematic sectional view of a rotating electric machine main body according to an eighth embodiment.

【図25】第9実施形態の回転電機本体の概略断面図。FIG. 25 is a schematic sectional view of a rotary electric machine main body according to a ninth embodiment;

【符号の説明】[Explanation of symbols]

2 ステータ 3 外側ロータ 4 内側ロータ 6 コイル 2 Stator 3 Outer rotor 4 Inner rotor 6 Coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】2つのロータと1つのステータを三層構造か
つ同一の軸上に構成するとともに、前記ステータに単一
のコイルを形成し、この単一のコイルに前記ロータの数
と同数の回転磁場が発生するように複合電流を流すよう
にした回転電機において、 前記2つのロータの磁極数の比はK:L(Kは偶数、Lは奇
数)の組み合わせであることを特徴とする回転電機。
1. A three-layer structure comprising two rotors and one stator on the same axis, a single coil formed on the stator, and the single coil having the same number as the number of rotors. In a rotating electric machine in which a composite current is caused to flow so as to generate a rotating magnetic field, the ratio of the number of magnetic poles of the two rotors is a combination of K: L (K is an even number and L is an odd number). Electric machine.
【請求項2】前記複合電流のうち磁極数の少ない側のロ
ータ駆動電流が2K×3相の交流であることを特徴とする
請求項1に記載の回転電機。
2. The rotating electric machine according to claim 1, wherein the rotor drive current on the side of the composite current having the smaller number of magnetic poles is a 2K × 3 phase alternating current.
【請求項3】磁極数の少ない側のロータの1極当たり3相
になるように前記コイルを区切り、その区切られた中の
各コイルに、磁極数の少ない側のロータ駆動電流をその
区切られたコイルの数で割った電流値を流すことを特徴
とする請求項1に記載の回転電機。
3. The method according to claim 1, wherein the coil is divided into three phases per pole of a rotor having a smaller number of magnetic poles, and a rotor drive current having a smaller number of magnetic poles is divided into each of the divided coils. 2. The rotating electric machine according to claim 1, wherein a current value divided by the number of coils is applied.
JP07747898A 1998-03-25 1998-03-25 Rotating electric machine Expired - Fee Related JP3480302B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP07747898A JP3480302B2 (en) 1998-03-25 1998-03-25 Rotating electric machine
DE69912504T DE69912504T2 (en) 1998-03-25 1999-03-24 Motor / generator
EP99105953A EP0945963B1 (en) 1998-03-25 1999-03-24 Motor/generator
US09/275,785 US6049152A (en) 1998-03-25 1999-03-25 Motor/generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07747898A JP3480302B2 (en) 1998-03-25 1998-03-25 Rotating electric machine

Publications (2)

Publication Number Publication Date
JPH11275828A true JPH11275828A (en) 1999-10-08
JP3480302B2 JP3480302B2 (en) 2003-12-15

Family

ID=13635103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07747898A Expired - Fee Related JP3480302B2 (en) 1998-03-25 1998-03-25 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP3480302B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136715A (en) * 1999-11-05 2001-05-18 Nissan Motor Co Ltd Dynamo-electric machine
JP2001145209A (en) * 1999-11-18 2001-05-25 Denso Corp Vehicle dynamoelectric machine
JP2001157487A (en) * 1999-11-26 2001-06-08 Nissan Motor Co Ltd Controller for electric rotating machine
US6879125B2 (en) * 2002-04-01 2005-04-12 Nissan Motor Co., Ltd. Control apparatus and method for at least one electrical rotating machine using compound current
JP2006109654A (en) * 2004-10-07 2006-04-20 Nsk Ltd Motor system
JP2009535012A (en) * 2006-04-24 2009-09-24 マグノマティックス リミテッド Electric machine
US7768170B2 (en) 2004-01-16 2010-08-03 Toyota Jidosha Kabushiki Kaisha Rotary electric machine
WO2016047271A1 (en) * 2014-09-25 2016-03-31 株式会社豊田自動織機 Vehicle control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820090B2 (en) 2015-07-21 2021-01-27 三星電子株式会社Samsung Electronics Co.,Ltd. Washing machine and its motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136715A (en) * 1999-11-05 2001-05-18 Nissan Motor Co Ltd Dynamo-electric machine
JP2001145209A (en) * 1999-11-18 2001-05-25 Denso Corp Vehicle dynamoelectric machine
JP2001157487A (en) * 1999-11-26 2001-06-08 Nissan Motor Co Ltd Controller for electric rotating machine
US6879125B2 (en) * 2002-04-01 2005-04-12 Nissan Motor Co., Ltd. Control apparatus and method for at least one electrical rotating machine using compound current
US7768170B2 (en) 2004-01-16 2010-08-03 Toyota Jidosha Kabushiki Kaisha Rotary electric machine
JP2006109654A (en) * 2004-10-07 2006-04-20 Nsk Ltd Motor system
JP2009535012A (en) * 2006-04-24 2009-09-24 マグノマティックス リミテッド Electric machine
WO2016047271A1 (en) * 2014-09-25 2016-03-31 株式会社豊田自動織機 Vehicle control system

Also Published As

Publication number Publication date
JP3480302B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
JP3480300B2 (en) Rotating electric machine
JP3480301B2 (en) Rotating electric machine
EP0945963B1 (en) Motor/generator
US6075302A (en) Brushless heteropolar inductor machine
JP4828666B2 (en) Synchronous motor and synchronous motor drive system
US6201331B1 (en) Motor/generator
TW201203799A (en) Transverse and/or commutated flux systems configured to provide reduced flux leakage, hysteresis loss reduction, and phase matching
JP3480302B2 (en) Rotating electric machine
US20210167645A1 (en) Reluctance motor
US20090302787A1 (en) Induction and switched reluctance motor
US5864197A (en) Synchronous machine
JP3480315B2 (en) Rotating electric machine
JP3480358B2 (en) Rotating electric machine
JP3498612B2 (en) Rotating electric machine
Liu et al. A quasi-sinusoidal concentrated winding used in an integrated magnetic-field-modulated brushless compound-structure machine
JP5299416B2 (en) Multi-rotor motor
JP3480359B2 (en) Rotating electric machine
JP3410520B2 (en) Three-phase claw-pole permanent magnet type rotary electric machine with annular coil system
JP3637837B2 (en) Control device for rotating electrical machine
RU2112309C1 (en) Motor-transducer set
JPH11356099A (en) Controller of rotating machine
JP2013027152A (en) Magnetic flux converter
JPWO2021084889A5 (en)
JP4034388B2 (en) Multiphase hybrid stepping motor
JPH09261931A (en) Rotating-electric machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees