Nothing Special   »   [go: up one dir, main page]

JPH1126148A - Electromagnetic heating coil - Google Patents

Electromagnetic heating coil

Info

Publication number
JPH1126148A
JPH1126148A JP17726897A JP17726897A JPH1126148A JP H1126148 A JPH1126148 A JP H1126148A JP 17726897 A JP17726897 A JP 17726897A JP 17726897 A JP17726897 A JP 17726897A JP H1126148 A JPH1126148 A JP H1126148A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
winding
electromagnetic heating
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17726897A
Other languages
Japanese (ja)
Inventor
Akio Murata
明夫 村田
Masaaki Yoshii
正明 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP17726897A priority Critical patent/JPH1126148A/en
Publication of JPH1126148A publication Critical patent/JPH1126148A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformize the magnetic field strength on the inside of a coil, increase treating amount, and enhance productivity by gradually increasing the radius of each winding part adjacent in the central direction based on the radius of the winding part at both ends of the coil comprising a plurality of winding parts. SOLUTION: High frequency voltage is applied to a solenoid coil comprising a plurality of winding parts Tt1-Tt7 to generate magnetic field, and a heating treatment material loaded in the magnetic field is induction-heated. In the electromagnetic heating coil L1, the diameters of the winding parts T2, T3 adjacent in the central direction are gradually increased based on the diameter D1 of the winding part Tt1 at the upper end part in the direction of coil axis, and the central diameter D2 of the central winding part Tc4 is made largest. Similarly, the diameters of adjacent winding parts T6, T5 are gradually increased based on the diameter of a winding part Tt7 at the lower end. Each winding part is preferable to be wound so as to form a spherical body part. The magnetic field strength within the coil is uniformized, and uniform heating in the axis direction and in the diameter direction is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁加熱コイルに
関し、とりわけコイル内部の磁界強度が均一である高周
波加熱用コイルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic heating coil, and more particularly to a high-frequency heating coil having a uniform magnetic field intensity inside the coil.

【0002】[0002]

【従来の技術】部分品の電磁波による加熱処理の例とし
て、高周波加熱方式が広く実施されている。このような
部分品として、たとえばCRTに組み込まれる電子銃の
電子源となるカソードがあり、被加熱処理物体であるカ
ソードが電磁加熱コイルである高周波コイル(RFコイ
ル)内部に挿置されて、高周波コイルに加熱用の高周波
が印加され、この高周波によって高周波コイル内部に発
生する電磁界により被処理対象であるカソードに生じる
誘導電流に基づき、この誘導電流を熱に転換させてカソ
ード自体の温度を上昇させ、よってカソードを熱処理す
る構成が広く採用されている。
2. Description of the Related Art A high-frequency heating method is widely used as an example of a heat treatment of a component using an electromagnetic wave. As such a component, for example, there is a cathode serving as an electron source of an electron gun incorporated in a CRT, and a cathode serving as an object to be heated is inserted inside a high-frequency coil (RF coil) serving as an electromagnetic heating coil, and A high frequency for heating is applied to the coil, and the high frequency converts an induced current into heat based on an induced current generated in the cathode to be processed by an electromagnetic field generated inside the high frequency coil, thereby increasing the temperature of the cathode itself. Therefore, a configuration in which the cathode is heat-treated is widely used.

【0003】図7は、このような従来の電磁加熱コイル
の構成例を示す正面図である。同図に示されるように、
従来の電磁加熱コイルL60は同一半径の七巻の巻き部
T1〜T7が連なってソレノイドに構成され、この電磁
加熱コイルL60に高周波電流を長すことにより、ソレ
ノイド内部に電磁界を形成し、ソレノイド内部に載置し
た被加熱処理物体であるカソードを加熱する構成となっ
ている。
FIG. 7 is a front view showing a configuration example of such a conventional electromagnetic heating coil. As shown in the figure,
The conventional electromagnetic heating coil L60 is formed of a solenoid in which seven winding portions T1 to T7 of the same radius are connected to each other, and an electromagnetic field is formed inside the solenoid by extending a high-frequency current to the electromagnetic heating coil L60. The structure is such that the cathode, which is the object to be heated, placed inside is heated.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記のよう
に電磁加熱コイルは、同一半径を有する巻き数が数ター
ンのものが用いられているが、このような構造の電磁加
熱コイルの特性として、コイル軸方向長さが有限である
ので、コイル内部の軸方向の磁界強度分布が一様になら
ないという問題があった。
By the way, as described above, the electromagnetic heating coil having the same radius and the number of turns of several turns is used. The characteristic of the electromagnetic heating coil having such a structure is as follows. Since the length in the coil axial direction is finite, there is a problem that the magnetic field intensity distribution in the axial direction inside the coil is not uniform.

【0005】すなわち、軸方向中央部の磁界は、対応す
る巻き部T4により発生する磁界に加えて、軸方向前後
に隣接する巻き部T3、T5が発生させる磁界や、さら
にそれらに隣接する巻き部T2、T6などが発生させる
磁界が加わり、これら複数の磁界の合成による合成磁界
となることから、軸方向中央部の磁界強度が大になるも
のである。
That is, in addition to the magnetic field generated by the corresponding winding portion T4, the magnetic field at the central portion in the axial direction includes the magnetic fields generated by the winding portions T3 and T5 adjacent in the axial direction and the winding portions adjacent thereto. A magnetic field generated by T2, T6, and the like is applied, and a combined magnetic field is generated by combining these plurality of magnetic fields, so that the magnetic field strength at the central portion in the axial direction increases.

【0006】一方、電磁加熱コイルL60の端部側にお
いては、軸方向前後に隣接する巻き部が少ないか、ある
いは隣接する巻き部が存在しない。たとえば巻き部T1
(あるいはT7)は最端部に位置しているので、図中で
軸方向上方(あるいは軸方向下方)に隣接する巻き部が
存在しない。
On the other hand, on the end side of the electromagnetic heating coil L60, there are few winding portions adjacent in the front and rear direction in the axial direction, or there are no adjacent winding portions. For example, winding part T1
(Or T7) is located at the extreme end, so that there is no winding adjacent to the upper part in the axial direction (or the lower part in the axial direction) in the figure.

【0007】このため、この電磁加熱コイルL60の端
部側における合成磁界の強度は前記の軸方向中央部の磁
界強度に比して弱くなる。この結果、電磁加熱コイル内
部における磁界強度は、軸方向中央部を最大とし、コイ
ル両端部に向かい減少する、不均一な磁界強度分布を有
するようになる。
Therefore, the intensity of the combined magnetic field at the end of the electromagnetic heating coil L60 is weaker than the intensity of the magnetic field at the central portion in the axial direction. As a result, the magnetic field intensity inside the electromagnetic heating coil has a non-uniform magnetic field intensity distribution that is maximized at the axial center and decreases toward both ends of the coil.

【0008】図8は、こうした軸方向の磁界強度の変化
を示す実測値を図示したものであり、横軸はこの電磁加
熱コイルL60を円筒座標で表示した際の軸に直交する
面内での角度φ、縦軸はノルマライズされた磁界強度で
あり、またパラメータは各巻き部の内側位置として表示
されている。なお縦軸は、この電磁加熱コイルL60内
部で最も強い磁界が発生するポイントP60(中央の巻
き部T4の最外周:図7参照)の磁界強度を1.00と
して正規化されている。
FIG. 8 is a graph showing actual measured values showing such changes in the magnetic field strength in the axial direction. The horizontal axis represents the electromagnetic heating coil L60 in a plane orthogonal to the axis when the coil L60 is displayed in cylindrical coordinates. The angle φ and the vertical axis are the normalized magnetic field strength, and the parameters are displayed as the positions inside each winding part. Note that the vertical axis is normalized with the magnetic field intensity at the point P60 (the outermost periphery of the central winding portion T4: see FIG. 7) at which the strongest magnetic field is generated inside the electromagnetic heating coil L60 as 1.00.

【0009】図7で、中央の巻き部T4の軸から所定距
離にあるポイントP61の磁界強度は、図8のグラフG
61で示され、0.935〜0.915の範囲内の値と
なっている。一方、隣接する巻き部T5の軸から前記と
同じ所定距離にあるポイントP62の磁界強度は、図8
のグラフG62で示され、0.89〜0.855の範囲
内の値となっており、このようにポイントP62におい
ては、前記ポイントP61の磁界強度よりも数%の減少
が生じている。すなわち、コイル中央部を最大とし、コ
イル両端部に向かい減少する、コイル長手方向に不均一
な磁界強度分布が観測される。
In FIG. 7, the magnetic field intensity at a point P61 at a predetermined distance from the axis of the central winding portion T4 is shown by a graph G in FIG.
61, and is a value within the range of 0.935 to 0.915. On the other hand, the magnetic field strength at the point P62 located at the same predetermined distance from the axis of the adjacent winding part T5 is as shown in FIG.
The value is in the range of 0.89 to 0.855, and at the point P62, the magnetic field intensity at the point P61 is reduced by several percent. That is, a non-uniform magnetic field intensity distribution in the longitudinal direction of the coil is observed, which is maximized at the center of the coil and decreases toward both ends of the coil.

【0010】前記のような不均一な磁界強度分布の結
果、高周波加熱における温度にも不均一性が生じて、被
加熱処理物体の均一な加熱処理がなされないという不都
合が生じることになる。
As a result of the non-uniform magnetic field intensity distribution as described above, non-uniformity also occurs in the temperature in high-frequency heating, which causes a problem that uniform heating of the object to be heated is not performed.

【0011】さらに、前記のコイル長手方向に不均一な
磁界強度分布の発生に加え、電磁加熱コイルL60の内
部におけるラジアル方向(半径方向)の磁界分布につい
ても、中心部における磁界強度よりも外周部における磁
界強度が強くなるという特性があった。
Further, in addition to the generation of the non-uniform magnetic field strength distribution in the longitudinal direction of the coil, the magnetic field distribution in the radial direction (radial direction) inside the electromagnetic heating coil L60 is also larger at the outer peripheral portion than at the central portion. There was a characteristic that the magnetic field strength at the time was increased.

【0012】図9は、このような半径方向に不均一な磁
界強度分布をシミュレーションにより求めたもので、軸
と直交する面上の磁界H60の強度分布が、模式的に示
されている。図10は、この半径方向の磁界強度分布を
説明する断面模式図である。同図によれば、磁界強度分
布61は、中心位置での磁界強度がhc60であり、中
心から距離riの位置、すなわち外周側での磁界強度h
p60は中心位置での磁界強度hc60よりも強い。し
かも分布は急峻であり、よって磁界強度の比R60は、 R60=hp60/hc60 で1よりも大きく、またその値も大きい。
FIG. 9 shows such a non-uniform magnetic field intensity distribution in the radial direction obtained by simulation. The intensity distribution of the magnetic field H60 on a plane perpendicular to the axis is schematically shown. FIG. 10 is a schematic sectional view illustrating the magnetic field strength distribution in the radial direction. According to the figure, the magnetic field strength distribution 61 is such that the magnetic field strength at the center position is hc60, and the magnetic field strength hc at a position at a distance ri from the center, that is, on the outer peripheral side.
p60 is stronger than the magnetic field strength hc60 at the center position. In addition, the distribution is steep, so that the ratio R60 of the magnetic field strengths is larger than 1 in R60 = hp60 / hc60, and the value is also large.

【0013】前記の結果、被加熱処理物体が電磁加熱コ
イルL60内部に載置される位置によって、不均一な熱
処理が施されることになるため、従来技術にあっては被
加熱処理物体を装荷する領域に制限を設けていた。以
下、このような装荷領域の制限を説明する。
As a result, uneven heat treatment is performed depending on the position where the object to be heated is placed inside the electromagnetic heating coil L60. Therefore, in the prior art, the object to be heated is loaded. There is a limit on the area to be used. Hereinafter, such a limitation of the loading area will be described.

【0014】図11は、従来の電磁加熱コイルL70の
構成を示す模式斜視図であり、ソレノイド状の七巻の巻
き部が等しいピッチで連設されている。すなわち、ピッ
チp70〜p75は等しい値で構成されている。図12
は電磁加熱コイルL70の断面を示すものであり、半径
r70のコイルの内側に、治具71と、この治具71に
嵌挿された複数本のカソードCtdが配置されている。
FIG. 11 is a schematic perspective view showing the configuration of a conventional electromagnetic heating coil L70, in which seven windings of a solenoid shape are continuously connected at the same pitch. That is, the pitches p70 to p75 have the same value. FIG.
Shows a cross section of the electromagnetic heating coil L70. A jig 71 and a plurality of cathodes Ctd inserted into the jig 71 are arranged inside the coil having a radius r70.

【0015】治具71は円板形状であり、治具71上の
中心から距離dt70の円周に沿って離散的に設けられ
た凹部に、カソードCtdが把持されている。したがっ
てカソードCtdは円周上に一列に配置されているに過
ぎない。さらにカソードCtdの全長は、電磁加熱コイ
ルL70の全長よりも十分短く、よってカソードCtd
の加熱に寄与する電磁加熱コイルL70の部分は中央部
に限られる構成となっている。
The jig 71 has a disk shape, and the cathode Ctd is held in a concave portion provided discretely along the circumference of a distance dt70 from the center of the jig 71. Therefore, the cathodes Ctd are merely arranged in a line on the circumference. Further, the total length of the cathode Ctd is sufficiently shorter than the total length of the electromagnetic heating coil L70, and
The portion of the electromagnetic heating coil L70 that contributes to the heating of the above is limited to the central portion.

【0016】前記の構成において、電磁加熱コイルL7
0の中央部だけが利用されるのは、この領域の磁界強度
が端部の磁界強度に比してより均一であるからであり、
すなわちコイル長手方向の磁界強度分布が一様でないゆ
えに、コイル長手方向の利用可能領域が制限されるため
である。
In the above configuration, the electromagnetic heating coil L7
Only the center of zero is used because the field strength in this region is more uniform than the field strength at the edges,
That is, since the magnetic field intensity distribution in the longitudinal direction of the coil is not uniform, the usable area in the longitudinal direction of the coil is limited.

【0017】また、カソードCtdが円周上に一列だけ
配置され、その半径方向に多列に配置されないのは、コ
イル半径方向の磁界強度分布が一様でないゆえに、コイ
ル半径方向の利用可能領域が制限されるためである。
The reason why the cathodes Ctd are arranged in only one line on the circumference and are not arranged in multiple lines in the radial direction is that the available area in the coil radial direction is not large because the magnetic field intensity distribution in the coil radial direction is not uniform. Because it is restricted.

【0018】このように、不均一な磁界強度分布に起因
する不均一な熱処理を回避するために、従来では被加熱
処理物体を電磁加熱コイル内の比較的磁界強度分布が均
一である領域のみに限定して装荷するから、結果として
被加熱処理物体の装荷量が制限されていた。このため、
処理量(スループット)が減少して生産性が低下すると
いう問題があった。
As described above, in order to avoid a non-uniform heat treatment due to a non-uniform magnetic field intensity distribution, conventionally, the object to be heated is limited only to a region in the electromagnetic heating coil where the magnetic field intensity distribution is relatively uniform. Since the loading is limited, as a result, the loading amount of the object to be heated is limited. For this reason,
There is a problem that the throughput (throughput) is reduced and the productivity is reduced.

【0019】本発明は、前記のような従来技術の問題点
を解決するためなされたものであり、電磁加熱コイル内
部の磁界強度分布を均一化することで装荷量を増大させ
るとともに、均一な熱処理の実施を可能にし、よって処
理量を増加して生産性向上を図れる電磁加熱コイルを提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art. The present invention has been made to increase the loading amount by making the magnetic field intensity distribution inside the electromagnetic heating coil uniform, and to achieve uniform heat treatment. It is therefore an object of the present invention to provide an electromagnetic heating coil which enables the implementation of the above-described method, thereby increasing the throughput and improving the productivity.

【0020】[0020]

【課題を解決するための手段】本発明の骨子は、電磁加
熱コイル全長の中心付近の巻き部の半径をコイル端部の
巻き部の半径よりも大にすることにより、あるいは/お
よび中心付近の巻き部のピッチをコイル端部の巻き部の
ピッチよりも大にして中心付近の巻き部の密度を粗にす
ることにより、コイル内部の磁界強度の均一性向上を図
るものである。
The gist of the present invention is that the radius of the winding near the center of the entire length of the electromagnetic heating coil is made larger than the radius of the winding at the end of the coil, and / or the vicinity of the center. The uniformity of the magnetic field strength inside the coil is improved by making the pitch of the winding portion larger than the pitch of the winding portion at the coil end and making the density of the winding portion near the center coarse.

【0021】前記課題を解決するため、本発明の請求項
1に係る電磁加熱コイルは、複数の巻き部を有する電磁
加熱コイルであって、前記コイル軸方向両端部の巻き部
の半径を基準としてそれぞれ中心方向に隣接する各巻き
部の半径を徐々に増加させて構成したことを特徴とす
る。
To solve the above problem, an electromagnetic heating coil according to a first aspect of the present invention is an electromagnetic heating coil having a plurality of winding portions, wherein a radius of winding portions at both ends in the coil axial direction is a reference. It is characterized in that the radius of each winding part adjacent to each other in the center direction is gradually increased.

【0022】前記の構成によれば、半径が増大した巻き
部内側の、軸上に形成される磁界の強度が減少すること
により、該巻き部内側の合成磁界の強度が低下し、よっ
て軸方向の磁界強度が均一化されるとともに、半径方向
の磁界強度差も緩和される。
According to the above configuration, the strength of the magnetic field formed on the shaft inside the winding portion having the increased radius decreases, so that the strength of the combined magnetic field inside the winding portion decreases, and thus the axial direction is reduced. And the difference in the magnetic field strength in the radial direction is reduced.

【0023】本発明の請求項2に係る電磁加熱コイル
は、請求項1記載の構成において、前記複数の巻き部が
球面の少なくとも胴部を形成して巻かれたことを特徴と
する。
According to a second aspect of the present invention, in the electromagnetic heating coil according to the first aspect, the plurality of winding portions are wound so as to form at least a body of a spherical surface.

【0024】前記の構成によれば、巻き部が球面の胴部
を形成することにより、軸方向の磁界強度がさらに均一
化されるとともに、半径方向の磁界強度差の緩和が同時
になされる。
According to the above configuration, since the winding portion forms the spherical body portion, the magnetic field strength in the axial direction is further uniformed, and the difference in the magnetic field strength in the radial direction is simultaneously reduced.

【0025】本発明の請求項3に係る電磁加熱コイル
は、それぞれ同一半径を有する複数の巻き部が円筒状に
連なる電磁加熱コイルであって、軸方向中心に位置する
巻き部の、隣接する巻き部とのピッチを、コイル端部に
おける巻き部の、隣接する巻き部とのピッチよりも大に
構成したことを特徴とする。
An electromagnetic heating coil according to a third aspect of the present invention is an electromagnetic heating coil in which a plurality of winding portions each having the same radius are connected in a cylindrical shape, and the adjacent winding portions of the winding portion located at the center in the axial direction. The pitch between the winding portions at the ends of the coil is larger than the pitch between adjacent winding portions.

【0026】前記の構成によれば、ピッチが大である巻
き部の内側の磁界強度が減少することにより、軸方向の
磁界強度分布が平坦化される。
According to the above configuration, the magnetic field intensity inside the winding portion having a large pitch is reduced, so that the axial magnetic field intensity distribution is flattened.

【0027】本発明の請求項4に係る電磁加熱コイル
は、複数の巻き部を有する電磁加熱コイルの前記巻き部
の半径を、前記コイル軸方向両端部から発してそれぞれ
中心に向かい、前記半径を徐々に増加させて構成し、か
つ、前記コイル軸方向中心に対応する巻き部の、隣接す
る巻き部とのピッチを、コイル端部における巻き部の、
隣接する巻き部とのピッチよりも大に構成したことを特
徴とする。
In the electromagnetic heating coil according to a fourth aspect of the present invention, the radius of the winding portion of the electromagnetic heating coil having a plurality of winding portions is emitted from both ends in the axial direction of the coil toward the center, and the radius is reduced. It is configured to be gradually increased, and the pitch of the winding portion corresponding to the coil axial direction center, the pitch between adjacent winding portions, the winding portion at the coil end,
The pitch is larger than the pitch between adjacent winding portions.

【0028】前記の構成によれば、中心側にある巻き部
の半径の増大により、コイル軸方向の磁界強度分布が平
坦化され、ならびにコイル半径方向の磁界強度差が緩和
される。さらに、中心側にある巻き部のピッチ増によ
り、コイル軸方向の磁界強度の均一化がなされる。
According to the above configuration, the magnetic field strength distribution in the coil axis direction is flattened and the magnetic field strength difference in the coil radial direction is reduced by increasing the radius of the winding portion on the center side. Further, by increasing the pitch of the winding portion on the center side, the magnetic field strength in the coil axis direction is made uniform.

【0029】本発明の請求項5に係る電磁加熱コイル
は、請求項4記載の構成において、前記複数の巻き部が
球面の少なくとも胴部を形成して巻かれたことを特徴と
する。
According to a fifth aspect of the present invention, there is provided an electromagnetic heating coil according to the fourth aspect, wherein the plurality of winding portions are wound while forming at least a body portion of a spherical surface.

【0030】前記の構成によれば、中心側にある巻き部
の半径の増大による磁界強度の減少効果と、中心側にあ
る巻き部のピッチ増による磁界強度の減少効果とが相俟
って、軸方向の磁界強度分布のさらなる平坦化と、半径
方向の磁界強度のさらなる均一化がなされる。
According to the above configuration, the effect of reducing the magnetic field strength by increasing the radius of the winding portion on the center side and the effect of reducing the magnetic field intensity by increasing the pitch of the winding portion on the center side are combined. A further flattening of the axial field strength distribution and a further homogenization of the radial field strength are achieved.

【0031】[0031]

【発明の実施の形態】以下、この発明の実施の形態を説
明する。なお、以下の実施形態は本発明の好適な一例で
あり、技術的に好ましい種々の限定が付されているが、
この発明の範囲は、以下の説明において特にこの発明を
限定する旨の記載がない限り、これらの形態に限られる
ものではない。
Embodiments of the present invention will be described below. Note that the following embodiments are preferred examples of the present invention, and various technically preferred limitations have been added.
The scope of the present invention is not limited to these embodiments unless otherwise specified in the following description.

【0032】図1は、本発明に係る電磁加熱コイルの第
1実施形態の正面図である。図2は、図1に示された電
磁加熱コイル内の径方向の磁界強度分布の説明図であ
る。以下、本発明の第1実施形態に係る電磁加熱コイル
の構成を説明する。
FIG. 1 is a front view of a first embodiment of the electromagnetic heating coil according to the present invention. FIG. 2 is an explanatory diagram of a radial magnetic field intensity distribution in the electromagnetic heating coil shown in FIG. Hereinafter, the configuration of the electromagnetic heating coil according to the first embodiment of the present invention will be described.

【0033】両図において、電磁加熱コイルL1は、七
巻の巻き部Tt1〜Tt7を有する電磁加熱コイルであ
り、コイル軸方向上端部の巻き部Tt1の径D1を基準
として、中心方向に隣接する各巻き部T2、T3の径を
順に徐々に増加させ、かつ、中心に位置する巻き部Tc
4の径(中心径)D2を巻き部T3の半径よりも大に構
成する。
In both figures, the electromagnetic heating coil L1 is an electromagnetic heating coil having seven winding portions Tt1 to Tt7, and is adjacent to the center direction with reference to the diameter D1 of the winding portion Tt1 at the upper end in the coil axial direction. The diameter of each winding part T2, T3 is gradually increased, and the winding part Tc located at the center is gradually increased.
4 (center diameter) D2 is configured to be larger than the radius of the winding portion T3.

【0034】同様に、コイル軸方向下端部の巻き部Tt
7の径を基準として、中心方向に隣接する各巻き部T
6、T5の径を順に徐々に増加させ、しかも前記の、中
心に位置する巻き部Tc4の径が、巻き部T5の径より
も大になるよう構成する。すなわち、コイル軸方向両端
部の巻き部Tt1、Tt7の径を基準としてそれぞれ中
心方向に隣接する各巻き部の径を徐々に増加させて構成
する。
Similarly, the winding portion Tt at the lower end in the coil axial direction
7, each winding part T adjacent in the center direction.
6, the diameter of T5 is gradually increased in order, and the diameter of the winding part Tc4 located at the center is larger than the diameter of the winding part T5. That is, the diameter of each winding part adjacent in the center direction is gradually increased based on the diameter of the winding parts Tt1 and Tt7 at both ends in the coil axial direction.

【0035】図1のように構成された電磁加熱コイルL
1は、巻き部の径がコイル長手方向中心側にある巻き部
の径まで徐々に増大することによって、各巻き部が発生
させる磁界強度の減少効果が得られ、これにより電磁加
熱コイルL4内のコイル長手方向磁界強度分布を均一化
できる。
An electromagnetic heating coil L configured as shown in FIG.
1 is that, by gradually increasing the diameter of the winding portion to the diameter of the winding portion located on the center side in the longitudinal direction of the coil, the effect of reducing the magnetic field intensity generated by each winding portion is obtained. The magnetic field strength distribution in the coil longitudinal direction can be made uniform.

【0036】ところで、巻き部の径を増加させた場合、
径方向の磁界強度比を低減させ、この比を1に近付ける
ことができる。図2は、この径方向の磁界強度分布を説
明するもので、中心に位置する巻き部Tc4の径方向の
磁界強度分布の模式図である。以下、図2に基づき、こ
の原理を説明する。
By the way, when the diameter of the winding portion is increased,
The radial magnetic field strength ratio can be reduced and this ratio can be made closer to one. FIG. 2 explains this radial magnetic field strength distribution, and is a schematic diagram of the radial magnetic field strength distribution of the winding part Tc4 located at the center. Hereinafter, this principle will be described with reference to FIG.

【0037】同図によれば、磁界強度分布11は、中心
位置での磁界強度がhc1であり、また巻き部Tc4の
内周半径をD2’とすると、中心から距離D2’の位置
では、前記中心位置での磁界強度hc1よりも強い磁界
強度hp1となる。しかしながら、中心から距離riの
位置における磁界強度hm1は、この磁界強度hp1よ
りも弱い磁界強度となる。
According to the figure, when the magnetic field intensity at the center position is hc1 and the inner peripheral radius of the winding portion Tc4 is D2 ', the magnetic field intensity distribution 11 is at the distance D2' from the center. The magnetic field strength hp1 becomes stronger than the magnetic field strength hc1 at the center position. However, the magnetic field strength hm1 at the position at the distance ri from the center is a magnetic field strength weaker than the magnetic field strength hp1.

【0038】したがって、巻き部の径を増加させた場
合、中心位置での磁界強度hc1からの磁界強度の増加
は緩やかであり、よって中心から距離riの位置におけ
る磁界強度hm1の、中心位置での磁界強度hc1から
の増加は微小になる。この効果は、前述した図10従来
技術の構成における、中心から距離riの位置における
磁界強度hp60との対比において明らかである。(図
10参照)
Therefore, when the diameter of the winding portion is increased, the increase in the magnetic field strength from the magnetic field strength hc1 at the center position is gradual, so that the magnetic field strength hm1 at the distance ri from the center at the center position is small. The increase from the magnetic field strength hc1 becomes very small. This effect is evident in comparison with the magnetic field strength hp60 at the position of the distance ri from the center in the configuration of the prior art in FIG. 10 described above. (See Fig. 10)

【0039】これにより、磁界強度の比R1は、 R1=hm1/hc1 で、1にさらに近い値となって、径方向の磁界強度比の
低減効果が得られ、これにより径方向磁界強度分布差の
緩和が効果的になされる。
As a result, the ratio R1 of the magnetic field strength becomes R1 = hm1 / hc1, which is a value closer to 1, and the effect of reducing the magnetic field strength ratio in the radial direction is obtained. Is effectively alleviated.

【0040】前記の結果、電磁加熱コイルL1内の加熱
処理可能な領域を、軸方向のみならず径方向へも拡張す
ることが可能になる。この加熱処理可能領域の著しい拡
大によって、被加熱処理物体の装荷量を著しく増大で
き、スループットを大幅に向上させることが可能にな
る。
As a result, the area in the electromagnetic heating coil L1 where heat treatment can be performed can be expanded not only in the axial direction but also in the radial direction. Due to the remarkable expansion of the heat-processable area, the amount of the object to be heated can be significantly increased, and the throughput can be greatly improved.

【0041】図3は、本発明に係る電磁加熱コイルの第
2実施形態の、被加熱処理物体が装荷された状態の正面
断面図である。同図に示されるように、電磁加熱コイル
L2は、複数巻の巻き部Tt2〜Tt2’を有する電磁
加熱コイルであり、各巻き部はコイル軸方向上下両端部
の巻き部Tt2、Tt2’の径を基準として、中心方向
に隣接する各巻き部の径を順に徐々に増加させ、中心に
位置する巻き部Tc2の径を最大に構成している。
FIG. 3 is a front sectional view of a second embodiment of the electromagnetic heating coil according to the present invention, in a state where an object to be heated is loaded. As shown in the drawing, the electromagnetic heating coil L2 is an electromagnetic heating coil having a plurality of winding portions Tt2 to Tt2 ', and each winding portion has a diameter of winding portions Tt2 and Tt2' at both upper and lower ends in the coil axis direction. , The diameter of each winding portion adjacent in the center direction is gradually increased, so that the diameter of the winding portion Tc2 located at the center is maximized.

【0042】この電磁加熱コイルL2内には、軸方向に
二段重ねとなった治具5および6と、この治具5、6に
嵌挿された複数本のカソードCtd2〜Ctd5が配置
されている。
In the electromagnetic heating coil L2, jigs 5 and 6 stacked in two stages in the axial direction and a plurality of cathodes Ctd2 to Ctd5 fitted to the jigs 5 and 6 are arranged. I have.

【0043】治具5、6はいずれも円板形状の同一構成
であり、たとえば治具5につき説明すると、中心から所
定の複数の半径にある複数の同心円の円周に沿って離散
的に設けられた複数列で構成された各凹部に、カソード
Ctd2とCtd3が複数列を構成するよう把持されて
いる。
Each of the jigs 5 and 6 has the same disk-shaped configuration. For example, when the jig 5 is described, it is provided discretely along the circumference of a plurality of concentric circles having a plurality of predetermined radii from the center. The cathodes Ctd2 and Ctd3 are gripped by the recesses formed of the plurality of rows so as to form the plurality of rows.

【0044】すなわち、この構成では、複数本のカソー
ドCtd3は小さい側の円周上に一列に配置され、さら
にその外側の大きい円周上には、複数本のカソードCt
d2が一列に配置されていて、結局、カソードは二列に
配置されている。また、カソードCtd5とカソードC
td4についても同様である。これは、前記説明のよう
に、電磁加熱コイルL2内のラジアル方向の磁界強度差
を緩和する構成により、加熱処理領域が半径方向に拡張
されたことを利用するものであり、よって装荷量が増加
する。
That is, in this configuration, the plurality of cathodes Ctd3 are arranged in a row on the circumference of the smaller side, and the plurality of cathodes Ctd3 are further arranged on the outer circumference of the larger side.
d2 are arranged in a single row, and consequently the cathodes are arranged in two rows. Further, the cathode Ctd5 and the cathode C
The same applies to td4. This utilizes the fact that, as described above, the configuration in which the magnetic field intensity difference in the radial direction in the electromagnetic heating coil L2 is reduced, the heat treatment region is expanded in the radial direction, and thus the amount of loading increases. I do.

【0045】さらに、前記説明のように、電磁加熱コイ
ルL2内の軸方向の磁界強度差を緩和する構成により、
加熱処理領域が軸方向に拡張されたことを利用して、カ
ソードCtdを二段重ねで装荷するものであり、よって
装荷量が増加する。
Further, as described above, the configuration for reducing the axial magnetic field strength difference in the electromagnetic heating coil L2,
Utilizing the fact that the heat treatment region is expanded in the axial direction, the cathodes Ctd are loaded in a two-tiered manner, so that the loading amount increases.

【0046】このように、電磁加熱コイルL2は、コイ
ル長手方向ならびに径方向の利用可能領域の増大によ
り、コイル内の空間を有効に使用できて、生産性が向上
するとともに、より均一な磁界強度分布によるより均一
な加熱を行うことができ、品質管理にも効果的となる。
As described above, the electromagnetic heating coil L2 can effectively use the space in the coil by increasing the available area in the coil longitudinal direction and the radial direction, thereby improving the productivity and improving the uniform magnetic field strength. It is possible to perform more uniform heating by distribution, which is effective for quality control.

【0047】図4は、本発明に係る電磁加熱コイルの第
3実施形態の正面図である。同図に示されるように、第
4実施形態の電磁加熱コイルL3は、複数の巻き部Tt
31〜Tt37を有して、コイル軸方向上端部の巻き部
Tt31と隣接する巻き部T32間のピッチp31を基
準として、中心方向に隣接する巻き部T32〜T33間
のピッチp32、巻き部T33〜Tc34間のピッチp
33を順に徐々に増加させて構成する。
FIG. 4 is a front view of a third embodiment of the electromagnetic heating coil according to the present invention. As shown in the figure, the electromagnetic heating coil L3 of the fourth embodiment includes a plurality of winding portions Tt.
A pitch p32 between the winding portions T32 to T33 adjacent in the center direction and a winding portion T33 to the center direction with reference to a pitch p31 between the winding portion Tt31 at the upper end of the coil axis direction and the adjacent winding portion T32. Pitch p between Tc34
33 is gradually increased.

【0048】また同様に、コイル軸方向下端部の巻き部
Tt37と隣接する巻き部T36間のピッチp36を基
準として、中心方向に隣接する巻き部T36〜T35間
のピッチp35、巻き部T35〜Tc34間のピッチp
34を順に徐々に増加させて構成する。すなわち、 p31<p32<p33 であり、かつ、 p36<p35<p34 であるよう構成する。
Similarly, based on the pitch p36 between the winding portion Tt37 at the lower end in the coil axial direction and the adjacent winding portion T36, the pitch p35 between the winding portions T36 to T35 adjacent in the center direction and the winding portions T35 to Tc34. Pitch p between
34 are sequentially increased. That is, the configuration is such that p31 <p32 <p33 and p36 <p35 <p34.

【0049】図4のように構成された電磁加熱コイルL
3は、巻き部間のピッチがコイル長手方向中心側にある
巻き部まで徐々に増大することによって、巻き部の密度
を粗にすることによる磁界強度の減少効果が得られ、こ
れにより電磁加熱コイルL3内のコイル長手方向磁界強
度分布を均一化できる。
An electromagnetic heating coil L configured as shown in FIG.
3 is that the pitch between the winding portions is gradually increased to the winding portion on the center side in the longitudinal direction of the coil, so that the effect of reducing the magnetic field intensity by reducing the density of the winding portion is obtained. The magnetic field strength distribution in the coil longitudinal direction in L3 can be made uniform.

【0050】前記の結果、電磁加熱コイルL3内の加熱
処理可能な領域が拡大され、よって被加熱処理物体の装
荷量を増大できて、スループットを向上させることが可
能になる。
As a result, the area in the electromagnetic heating coil L3 where the heat treatment can be performed is expanded, so that the load of the object to be heated can be increased and the throughput can be improved.

【0051】図5は、本発明に係る電磁加熱コイルの第
4実施形態の正面図である。同図に示されるように、第
4実施形態の電磁加熱コイルL4は、複数の巻き部Tt
41〜Tt47を有して、コイル軸方向上端部の巻き部
Tt41の半径を基準として、中心方向に隣接する各巻
き部T42、T43の半径を順に徐々に増加させ、か
つ、中心に位置する巻き部Tc44の半径を巻き部T4
3の半径よりも大に構成する。
FIG. 5 is a front view of a fourth embodiment of the electromagnetic heating coil according to the present invention. As shown in the figure, the electromagnetic heating coil L4 of the fourth embodiment includes a plurality of winding portions Tt.
41 to Tt47, the radius of each winding part T42, T43 adjacent in the center direction is gradually increased with reference to the radius of the winding part Tt41 at the upper end in the coil axis direction, and the winding positioned at the center is gradually increased. Winding part T4
3 is configured to be larger than the radius.

【0052】同様に、コイル軸方向下端部の巻き部Tt
47の半径を基準として、中心方向に隣接する各巻き部
T46、T45の半径を順に徐々に増加させ、しかも前
記の、中心に位置する巻き部Tc44の半径が、巻き部
T45の半径よりも大に構成する。
Similarly, the winding portion Tt at the lower end in the coil axial direction
The radius of each of the winding portions T46 and T45 adjacent in the center direction is gradually increased based on the radius of the winding portion T47, and the radius of the winding portion Tc44 located at the center is larger than the radius of the winding portion T45. To be configured.

【0053】さらに、コイル軸方向中心に位置する巻き
部Tc44の、隣接する巻き部T43、T45とのピッ
チp43、p44を、コイル端部における巻き部Tt4
1(あるいはTt47)の、隣接する巻き部T42(あ
るいはT46)とのピッチp41(あるいはp46)よ
りも大に構成したものである。
Further, the pitches p43 and p44 of the winding portion Tc44 located at the center in the coil axis direction with the adjacent winding portions T43 and T45 are determined by the winding portion Tt4 at the coil end.
1 (or Tt47) is larger than the pitch p41 (or p46) between adjacent winding portions T42 (or T46).

【0054】しかもこのピッチは、コイル軸方向端部の
巻き部におけるピッチから、コイル軸方向中心に位置す
る巻き部におけるピッチまで、順に徐々に増加させた構
成が好ましい。すなわち、巻き部Tt41〜Tt47に
おける隣接巻き部とのピッチを図示されるようにp41
〜p46として、 p41<p42<p43 であり、かつ、 p46<p45<p44 であるよう構成する。
Further, it is preferable that the pitch is gradually increased in order from the pitch at the winding portion at the end in the coil axis direction to the pitch at the winding portion located at the center in the coil axis direction. That is, the pitch between the adjacent winding portions in the winding portions Tt41 to Tt47 is p41 as shown in the drawing.
It is configured such that p41 <p42 <p43 and that p46 <p45 <p44.

【0055】図5のように構成された電磁加熱コイルL
4は、巻き部の半径をコイル長手方向中心側にある巻き
部の半径まで徐々に増大させることによって、各巻き部
が発生させる磁界強度の減少効果と、半径方向の磁界強
度比の低減効果の両方が得られ、これにより電磁加熱コ
イルL4内のコイル長手方向磁界強度分布を均一化で
き、また半径方向磁界強度分布差を緩和させることがで
きる。
An electromagnetic heating coil L configured as shown in FIG.
4 is to gradually increase the radius of the winding portion to the radius of the winding portion on the center side in the coil longitudinal direction, thereby reducing the magnetic field intensity generated by each winding portion and reducing the magnetic field intensity ratio in the radial direction. Both are obtained, whereby the magnetic field strength distribution in the coil longitudinal direction in the electromagnetic heating coil L4 can be made uniform, and the difference in the magnetic field strength distribution in the radial direction can be reduced.

【0056】さらに前記に加えて、中心側にある巻き部
のピッチ増による磁界強度の減少効果とが相俟って、軸
方向の磁界強度分布の平坦化がさらに効果的になされ
る。
Further, in addition to the above, the flattening of the magnetic field intensity distribution in the axial direction can be more effectively achieved in combination with the effect of decreasing the magnetic field intensity by increasing the pitch of the winding portion on the center side.

【0057】前記の結果、電磁加熱コイルL4内の加熱
処理可能な領域が著しく拡大され、よって被加熱処理物
体の装荷量を著しく増大できて、スループットを大幅に
向上させることが可能になる。
As a result, the area in the electromagnetic heating coil L4 where the heat treatment can be performed is greatly expanded, so that the amount of the object to be heated can be significantly increased, and the throughput can be greatly improved.

【0058】図6は、本発明に係る電磁加熱コイルの第
5実施形態の斜視図である。同図に示されるように、第
5実施形態の電磁加熱コイルL5は、複数の巻き部が仮
想球面Sphを形成するように巻かれ、結果的に仮想球
面Sphの少なくとも胴部Bdを形成するよう巻かれた
ことを特徴としている。
FIG. 6 is a perspective view of a fifth embodiment of the electromagnetic heating coil according to the present invention. As shown in the figure, the electromagnetic heating coil L5 of the fifth embodiment is wound so that a plurality of winding portions form a virtual spherical surface Sph, and as a result, forms at least a body portion Bd of the virtual spherical surface Sph. It is characterized by being wound.

【0059】ここで、巻き数をNターン、仮想球面Sp
hの半径をa、球の中心をOとした場合、z軸方向を向
く中心軸Cz上の任意の位置として、中心Oから距離b
の点をPとし、電磁加熱コイルL5の巻き部の微小部分
(仮想球面上)が点Pに生成させる磁界をΔHとする
と、電磁加熱コイルL5の各巻き部の各部分が点Pに生
成させる磁界の合成磁界Hは、ビオサバール法則に基づ
き、数1に示されるように中心軸Czに沿って積分して
得られる。
Here, the number of turns is N turns, and the virtual spherical surface Sp is
When the radius of h is a and the center of the sphere is O, an arbitrary position on the center axis Cz in the z-axis direction is a distance b from the center O.
Is a point P, and a magnetic field generated by a minute portion (on the virtual spherical surface) of the winding portion of the electromagnetic heating coil L5 at the point P is ΔH, and each portion of each winding portion of the electromagnetic heating coil L5 is generated at the point P. The synthetic magnetic field H of the magnetic field is obtained by integrating along the central axis Cz as shown in Expression 1 based on the Biot-Savart law.

【0060】[0060]

【数1】 (Equation 1)

【0061】このように、中心軸Cz上の任意の位置で
ある点Pに形成される磁界の合成磁界Hは、 H=4πNI/3a となり、半径、ターン数、電流値によって一意に決ま
り、よって位置によらず一定となる。したがって、本実
施形態の電磁加熱コイルL5によれば、加熱処理作業が
可能な領域を軸方向にさらに拡張できることになる。
As described above, the composite magnetic field H of the magnetic field formed at the point P, which is an arbitrary position on the central axis Cz, is H = 4πNI / 3a, and is uniquely determined by the radius, the number of turns, and the current value. It is constant regardless of the position. Therefore, according to the electromagnetic heating coil L5 of the present embodiment, the area where the heat treatment operation can be performed can be further expanded in the axial direction.

【0062】また、図6の構成で、コイル軸方向中心に
位置する巻き部の、隣接する巻き部とのピッチを、コイ
ル端部における巻き部の、隣接する巻き部とのピッチよ
りも大にした構成にすることもできる。
Further, in the configuration shown in FIG. 6, the pitch of the winding portion positioned at the center in the coil axis direction with the adjacent winding portion is made larger than the pitch of the winding portion at the coil end portion with the adjacent winding portion. It is also possible to adopt a configuration that has been adopted.

【0063】[0063]

【発明の効果】以上詳述したように、本発明の請求項1
に係る電磁加熱コイルは、複数の巻き部を有する電磁加
熱コイルの巻き部の半径を、コイル軸方向両端部から発
してそれぞれ中心に向かい、徐々に増加させる構成とす
るものであるから、半径が増大した巻き部内側の、軸上
に形成される磁界の強度が減少し、これにより巻き部内
側の合成磁界強度が低下して軸方向の磁界強度が均一化
されるとともに、半径方向の磁界強度も均一化される。
この結果、被加熱処理物体の装荷領域を拡張でき、よっ
て処理量を増加できるとともに、磁界強度の均一化によ
る熱処理の品質が向上するという効果がある。
As described in detail above, claim 1 of the present invention
The electromagnetic heating coil according to the present invention has a configuration in which the radius of the winding portion of the electromagnetic heating coil having a plurality of winding portions is emitted from both ends in the coil axial direction toward the center and gradually increases, so that the radius is increased. The intensity of the magnetic field formed on the axis inside the increased winding portion decreases, thereby reducing the combined magnetic field intensity inside the winding portion to equalize the magnetic field intensity in the axial direction and the magnetic field intensity in the radial direction. Is also uniformed.
As a result, the loading area of the object to be heated can be expanded, so that the processing amount can be increased, and the quality of the heat treatment can be improved by making the magnetic field intensity uniform.

【0064】本発明の請求項2に係る電磁加熱コイル
は、請求項1記載の構成において、前記複数の巻き部が
球面の少なくとも胴部を形成して巻かれた構成とするも
のであるから、軸方向の磁界強度のさらなる均一化を実
現することができる。
According to a second aspect of the present invention, in the electromagnetic heating coil according to the first aspect, the plurality of winding portions are formed by forming at least a body portion of a spherical surface and wound. Further uniformity of the axial magnetic field strength can be realized.

【0065】本発明の請求項3に係る電磁加熱コイル
は、複数の巻き部が円筒形を形成するもので、コイル長
手(軸)方向中心位置にある巻き部の、隣接する巻き部
とのピッチを、コイル端部における巻き部の、隣接する
巻き部とのピッチよりも大に構成するものであるから、
コイル長手(軸)方向の磁界強度を均一化でき、装荷領
域をコイル長手(軸)方向に拡張できる。
In the electromagnetic heating coil according to the third aspect of the present invention, the plurality of winding portions form a cylindrical shape, and the pitch between the winding portion located at the center position in the coil longitudinal (axial) direction and the adjacent winding portion. Is configured to be larger than the pitch between the winding part at the coil end and the adjacent winding part.
The magnetic field strength in the coil longitudinal (axial) direction can be made uniform, and the loading area can be expanded in the coil longitudinal (axial) direction.

【0066】本発明の請求項4に係る電磁加熱コイル
は、複数の巻き部の半径を、コイル軸方向両端部から発
してそれぞれ中心に向かい、半径を徐々に増加させて構
成し、かつコイル軸方向中心に対応する巻き部の、隣接
する巻き部とのピッチを、コイル端部における巻き部
の、隣接する巻き部とのピッチよりも大に構成するもの
である。
An electromagnetic heating coil according to a fourth aspect of the present invention is configured such that the radius of each of the plurality of winding portions is emitted from both ends in the axial direction of the coil toward the center, and the radius is gradually increased. The pitch of the winding portion corresponding to the center in the direction is set to be larger than the pitch of the winding portion at the coil end to the adjacent winding portion.

【0067】したがって中心側にある巻き部の半径の増
大による磁界強度の減少に起因するコイル長手(軸)方
向の磁界強度分布の平坦化効果と、半径方向の磁界強度
差の緩和の効果を実現できる。しかも、中心側にある巻
き部のピッチ増による磁界強度の減少効果と相俟って、
コイル長手(軸)方向の磁界強度分布の平坦化をさらに
効果的に実現することができる。
Accordingly, the effect of flattening the magnetic field intensity distribution in the longitudinal direction of the coil (axial) due to the decrease in the magnetic field intensity due to the increase in the radius of the winding portion on the center side and the effect of reducing the difference in the magnetic field intensity in the radial direction are realized. it can. Moreover, coupled with the effect of decreasing the magnetic field intensity by increasing the pitch of the winding portion on the center side,
Flattening of the magnetic field intensity distribution in the coil longitudinal (axial) direction can be realized more effectively.

【0068】本発明の請求項5に係る電磁加熱コイル
は、請求項4記載の構成において、複数の巻き部が球面
の少なくとも胴部を形成して巻かれた構成とするから、
軸方向の磁界強度のさらなる均一化を実現することがで
きる。
According to a fifth aspect of the present invention, in the electromagnetic heating coil according to the fourth aspect, the plurality of winding portions are wound by forming at least a body portion of a spherical surface.
Further uniformity of the axial magnetic field strength can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電磁加熱コイルの第1実施形態の
正面図である。
FIG. 1 is a front view of a first embodiment of an electromagnetic heating coil according to the present invention.

【図2】図1に示される電磁加熱コイル内の径方向の磁
界強度分布の説明図である。
FIG. 2 is an explanatory diagram of a radial magnetic field strength distribution in the electromagnetic heating coil shown in FIG.

【図3】本発明に係る電磁加熱コイルの第2実施形態
の、被加熱処理物体が装荷された状態の正面断面図であ
る。
FIG. 3 is a front sectional view of a second embodiment of the electromagnetic heating coil according to the present invention, in a state where an object to be heated is loaded.

【図4】本発明に係る電磁加熱コイルの第3実施形態の
正面図である。
FIG. 4 is a front view of a third embodiment of the electromagnetic heating coil according to the present invention.

【図5】本発明に係る電磁加熱コイルの第4実施形態の
正面図である。
FIG. 5 is a front view of a fourth embodiment of the electromagnetic heating coil according to the present invention.

【図6】本発明に係る電磁加熱コイルの第5実施形態の
斜視図である。
FIG. 6 is a perspective view of a fifth embodiment of the electromagnetic heating coil according to the present invention.

【図7】従来の電磁加熱コイルの構成例を示す正面図で
ある。
FIG. 7 is a front view showing a configuration example of a conventional electromagnetic heating coil.

【図8】図7に示された電磁加熱コイルの軸方向の磁界
強度変化を示す図である。
8 is a diagram showing a change in magnetic field strength in the axial direction of the electromagnetic heating coil shown in FIG. 7;

【図9】従来の電磁加熱コイルの軸に直交面上の磁界強
度分布のシミュレーション結果を示す模式図である。
FIG. 9 is a schematic diagram showing a simulation result of a magnetic field intensity distribution on a plane orthogonal to an axis of a conventional electromagnetic heating coil.

【図10】図9に示された半径方向の磁界強度分布を説
明する断面模式図である。
10 is a schematic cross-sectional view illustrating a magnetic field strength distribution in a radial direction shown in FIG.

【図11】従来の電磁加熱コイルの他の構成例を示す模
式斜視図である。
FIG. 11 is a schematic perspective view showing another configuration example of a conventional electromagnetic heating coil.

【図12】被加熱処理物体が装荷された図11の電磁加
熱コイルの断面図である。
FIG. 12 is a sectional view of the electromagnetic heating coil of FIG. 11 loaded with an object to be heated;

【符号の説明】[Explanation of symbols]

L1……電磁加熱コイル、D1……端部径、D2……中
心径、Tt1……端部巻き部、T2……巻き部、T3…
…巻き部、Tc4……中心巻き部、T5……巻き部、T
6……巻き部、Tt7……端部巻き部
L1 ... electromagnetic heating coil, D1 ... end diameter, D2 ... center diameter, Tt1 ... end winding part, T2 ... winding part, T3 ...
... winding part, Tc4 ... center winding part, T5 ... winding part, T
6 ... winding part, Tt7 ... end winding part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の巻き部を有する電磁加熱コイルで
あって、 前記コイル軸方向両端部の巻き部の半径を基準としてそ
れぞれ中心方向に隣接する各巻き部の半径を徐々に増加
させて構成したことを特徴とする電磁加熱コイル。
1. An electromagnetic heating coil having a plurality of winding portions, wherein a radius of each winding portion adjacent in the center direction is gradually increased with reference to a radius of a winding portion at both ends in the coil axial direction. An electromagnetic heating coil characterized in that:
【請求項2】 前記複数の巻き部が球面の少なくとも胴
部を形成して巻かれたことを特徴とする請求項1記載の
電磁加熱コイル。
2. The electromagnetic heating coil according to claim 1, wherein the plurality of winding portions are wound while forming at least a body portion of a spherical surface.
【請求項3】 それぞれ同一半径を有する複数の巻き部
が円筒状に連なる電磁加熱コイルであって、 軸方向中心に位置する巻き部の、隣接する巻き部とのピ
ッチを、コイル端部における巻き部の、隣接する巻き部
とのピッチよりも大に構成したことを特徴とする電磁加
熱コイル。
3. An electromagnetic heating coil in which a plurality of winding portions each having the same radius are connected in a cylindrical shape, wherein the pitch of the winding portion located at the center in the axial direction with the adjacent winding portion is determined by the winding at the coil end. An electromagnetic heating coil characterized in that the pitch is larger than the pitch between adjacent winding portions.
【請求項4】 複数の巻き部を有する電磁加熱コイルで
あって、 前記コイル軸方向両端部の巻き部の半径を基準としてそ
れぞれ中心方向に隣接する各巻き部の半径を徐々に増加
させて構成し、 かつ、前記コイル軸方向中心に位置する巻き部の、隣接
する巻き部とのピッチを、コイル端部における巻き部
の、隣接する巻き部とのピッチよりも大に構成したこと
を特徴とする電磁加熱コイル。
4. An electromagnetic heating coil having a plurality of windings, wherein the radius of each winding adjacent in the center direction is gradually increased based on the radius of the winding at both ends in the coil axial direction. And, the pitch of the winding portion located at the center of the coil axial direction with the adjacent winding portion is configured to be larger than the pitch of the winding portion at the coil end portion with the adjacent winding portion. Electromagnetic heating coil.
【請求項5】 前記複数の巻き部が球面の少なくとも胴
部を形成して巻かれたことを特徴とする請求項4記載の
電磁加熱コイル。
5. The electromagnetic heating coil according to claim 4, wherein the plurality of winding portions are wound while forming at least a body portion of a spherical surface.
JP17726897A 1997-07-02 1997-07-02 Electromagnetic heating coil Pending JPH1126148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17726897A JPH1126148A (en) 1997-07-02 1997-07-02 Electromagnetic heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17726897A JPH1126148A (en) 1997-07-02 1997-07-02 Electromagnetic heating coil

Publications (1)

Publication Number Publication Date
JPH1126148A true JPH1126148A (en) 1999-01-29

Family

ID=16028092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17726897A Pending JPH1126148A (en) 1997-07-02 1997-07-02 Electromagnetic heating coil

Country Status (1)

Country Link
JP (1) JPH1126148A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036110A (en) * 2005-07-29 2007-02-08 Toyota Motor Corp Soldering device and manufacturing method for soldered device
JP2012109075A (en) * 2010-11-16 2012-06-07 Mitsubishi Electric Corp High-frequency induction heating method and apparatus thereof
CN102641959A (en) * 2012-05-08 2012-08-22 哈尔滨工业大学 Rapid uniform heating method for metal tube
WO2013065818A1 (en) * 2011-11-04 2013-05-10 Ntn株式会社 High-frequency heat treatment coil, outer-side joint member for constant-velocity universal joint, and constant-velocity universal joint
JP2021524234A (en) * 2018-05-17 2021-09-13 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator with improved inductor coil
CN113597037A (en) * 2021-07-30 2021-11-02 重庆长安新能源汽车科技有限公司 High-uniformity heating device for motor hot jacket

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036110A (en) * 2005-07-29 2007-02-08 Toyota Motor Corp Soldering device and manufacturing method for soldered device
JP2012109075A (en) * 2010-11-16 2012-06-07 Mitsubishi Electric Corp High-frequency induction heating method and apparatus thereof
WO2013065818A1 (en) * 2011-11-04 2013-05-10 Ntn株式会社 High-frequency heat treatment coil, outer-side joint member for constant-velocity universal joint, and constant-velocity universal joint
US9445461B2 (en) 2011-11-04 2016-09-13 Ntn Corporation Method of producing a high-frequency heat treatment coil
CN102641959A (en) * 2012-05-08 2012-08-22 哈尔滨工业大学 Rapid uniform heating method for metal tube
JP2021524234A (en) * 2018-05-17 2021-09-13 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator with improved inductor coil
CN113597037A (en) * 2021-07-30 2021-11-02 重庆长安新能源汽车科技有限公司 High-uniformity heating device for motor hot jacket
CN113597037B (en) * 2021-07-30 2023-05-23 重庆长安新能源汽车科技有限公司 High homogeneity heating device of motor hot jacket

Similar Documents

Publication Publication Date Title
JPH1126148A (en) Electromagnetic heating coil
JPH0318324B2 (en)
EP3396686A1 (en) Superconducting magnet device
JP2004509429A5 (en)
US7001472B2 (en) Method of selectively annealing a needle
JPH02158038A (en) Saddle type deflection coil
US5302927A (en) Saddle coil deflection winding, apparatus and method of making thereof
JP4098076B2 (en) Induction heating device for cylindrical objects
JP2000068043A (en) Induction heating coil of tapered body
EP0520445B1 (en) Heater coil for electron tube
US7365540B2 (en) Hybrid magnet configuration
JP2570044B2 (en) Superconducting magnet assembly for MRI and MRI diagnostic device
JP2000294165A (en) Deflection yoke and core for deflection yoke
CN104103485B (en) Inductance coupled plasma device
JPS6347127B2 (en)
US6765381B2 (en) Extended maxwell pair gradient coils
KR20190016897A (en) Inductor and inductor arrangement
JPS63177503A (en) Manufacture of superconducting coil
JPH04348008A (en) Multipolar magnetic dielectic roll and its manufacture
CN117747237A (en) Uniform magnetic field generating device and uniform magnetic field generating method
JPH07161461A (en) Induction heating coil
JPH0887920A (en) Superconducting stranded conductor
JP2022158004A (en) magnetic resonance imaging system
JPH0479133A (en) Deflection yoke
JPH01201419A (en) Heat treating method in magnetic field for toroidal core