Nothing Special   »   [go: up one dir, main page]

JPH11269539A - Manufacture of austenitic stainless steel sheet excellent in descaling property - Google Patents

Manufacture of austenitic stainless steel sheet excellent in descaling property

Info

Publication number
JPH11269539A
JPH11269539A JP7430598A JP7430598A JPH11269539A JP H11269539 A JPH11269539 A JP H11269539A JP 7430598 A JP7430598 A JP 7430598A JP 7430598 A JP7430598 A JP 7430598A JP H11269539 A JPH11269539 A JP H11269539A
Authority
JP
Japan
Prior art keywords
annealing
scale
stainless steel
austenitic stainless
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7430598A
Other languages
Japanese (ja)
Inventor
Hideya Furusawa
英哉 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7430598A priority Critical patent/JPH11269539A/en
Publication of JPH11269539A publication Critical patent/JPH11269539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a descaling technique capable of always completing descaling independently of fluctuations in pickling conditions by controlling annealing conditions in the continuous annealing and pickling stage of an austenitic stainless steel sheet. SOLUTION: At the time of continuously annealing an austenitic stainless steel sheet, the thickness of the scale formed at the time of annealing is estimated on the basis of annealing conditions and the annealing conditions are modified so that a scale thickness capable of facilitating scale removal at pickling is obtained. At the time of this modification, it is preferable, for example, that the scale thickness capable of facilitating scale removal at pickling is set at <=0.157 μm or >=0.25 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オーステナイト系
ステンレス鋼板の製造方法に係り、特に、焼鈍中に生成
された酸化スケールの厚さに応じて焼鈍条件を制御する
ことで連続焼鈍酸洗工程における脱スケール性を向上さ
せたオーステナイト系ステンレス鋼板の製造方法に関す
る。
The present invention relates to a method for producing an austenitic stainless steel sheet, and more particularly to a method for producing austenitic stainless steel sheet in a continuous annealing pickling process by controlling annealing conditions in accordance with the thickness of oxide scale generated during annealing. The present invention relates to a method for producing an austenitic stainless steel sheet with improved descaling properties.

【0002】[0002]

【従来の技術】従来、連続焼鈍酸洗設備における鋼帯の
酸洗脱スケール方法として、例えば特開昭58−147
569号公報に、酸濃度を分析して酸を補給したり酸の
消費量に応じて酸を補給する方法が開示されている。ま
た、特開昭54−069527号公報には、周期的に溶
存金属量を測定することにより適正酸洗能力を保持する
方法が開示されている。特開平03−028386号公
報には、酸洗液中のトータル鉄濃度と2価,3価の鉄イ
オン濃度比を制御することにより酸洗能力を大きくする
方法が、特開平5−331699号公報にはpH制御を
行う方法が開示されている。
2. Description of the Related Art Conventionally, as a method for descaling steel strip in a continuous annealing pickling facility, for example, Japanese Unexamined Patent Publication No.
No. 569 discloses a method of replenishing an acid by analyzing the acid concentration or replenishing the acid according to the consumption of the acid. Also, Japanese Patent Application Laid-Open No. 54-069527 discloses a method of maintaining an appropriate pickling ability by periodically measuring the amount of dissolved metal. Japanese Patent Application Laid-Open No. Hei 03-28386 discloses a method of increasing the pickling capacity by controlling the ratio of the total iron concentration in the pickling solution to the concentration of divalent and trivalent iron ions. Discloses a method for controlling pH.

【0003】[0003]

【発明が解決しようとする課題】上記各従来例のよう
に、鋼帯の酸洗脱スケール時の酸の条件を最適条件に維
持する方法では、酸濃度の測定や予測が必要であり、そ
の結果に基づいて酸を補給しなけらばならない。しかし
ながら、酸濃度の測定,予測はバッチ処理で行われるた
めにリアルタイムの制御になっておらず、次の測定まで
の間に必然的に有効酸濃度が減少し、かつ溶解金属イオ
ン濃度が増加するため、酸能力が低下する。したがって
酸補給寸前の条件下では、脱スケール不良が発生する場
合がある。
In the method of maintaining the acid condition at the time of pickling and descaling the steel strip to the optimum condition as in each of the above conventional examples, it is necessary to measure or predict the acid concentration. Acid must be replenished based on the results. However, since the measurement and prediction of the acid concentration are performed in a batch process, the control is not performed in real time, and the effective acid concentration necessarily decreases and the dissolved metal ion concentration increases until the next measurement. Therefore, the acid capacity decreases. Therefore, under the condition immediately before acid replenishment, descaling failure may occur.

【0004】本発明は、このような従来の脱スケール技
術の問題点を解決するためになされたものであり、オー
ステナイト系ステンレス鋼板の連続焼鈍酸洗工程におけ
る焼鈍条件を制御することにより、酸洗条件の変動に依
らずに常に脱スケールが完了できる脱スケール技術を提
供することを目的とする。
The present invention has been made in order to solve the problems of the conventional descaling technique, and controls the annealing conditions in the continuous annealing and pickling process of an austenitic stainless steel sheet to thereby achieve pickling. It is an object of the present invention to provide a descaling technique that can always complete descaling regardless of changes in conditions.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る本発明は、オーステナイト系ステ
ンレス鋼板を連続焼鈍するにあたり、焼鈍条件をもとに
焼鈍時に生成するスケールの厚みを推定し、酸洗でスケ
ールを除去しやすいスケール厚みとなるように焼鈍条件
を修正することを特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention according to claim 1 provides a method for continuously annealing an austenitic stainless steel sheet, the thickness of a scale formed during annealing based on annealing conditions. And annealing conditions are corrected so that the scale thickness is easily removed by pickling.

【0006】また、請求項2に係る発明は、上記請求項
1に係る発明であるオーステナイト系ステンレス鋼板の
製造方法において、前記連続焼鈍の焼鈍条件を修正する
にあたり、酸洗でスケールを除去しやすいスケール厚み
を0.15μm以下または0.25μm以上に設定す
る。
According to a second aspect of the present invention, in the method for manufacturing an austenitic stainless steel sheet according to the first aspect of the present invention, in correcting the annealing conditions of the continuous annealing, scale is easily removed by pickling. The scale thickness is set to 0.15 μm or less or 0.25 μm or more.

【0007】そして、請求項3に係る発明は、上記請求
項1又は請求項2に係る発明であるオーステナイト系ス
テンレス鋼板の製造方法において、前記焼鈍条件とし
て、焼鈍炉の均熱温度および均熱時間を用いる。
According to a third aspect of the present invention, in the method for manufacturing an austenitic stainless steel sheet according to the first or second aspect, the annealing conditions include a soaking temperature and a soaking time of an annealing furnace. Is used.

【0008】ここに、均熱温度は焼鈍炉出側の鋼帯の温
度(最高到達温度)、均熱時間は鋼帯の温度が再結晶開
始温度(均熱開始温度)に到達してから焼鈍炉を出るま
での時間とする。
Here, the soaking temperature is the temperature of the steel strip on the exit side of the annealing furnace (maximum temperature reached), and the soaking time is the annealing time after the temperature of the steel strip reaches the recrystallization start temperature (soaking temperature). It is time to leave the furnace.

【0009】[0009]

【発明の実施の形態】本願発明者は、オーステナイト系
ステンレス鋼板製造の焼鈍酸洗工程における脱スケール
性の改善について鋭意研究を重ねた結果、一定範囲の焼
鈍条件及び酸洗条件の下では、焼鈍時に形成された酸化
スケールの脱スケール性は当該酸化スケールの厚さのみ
に依存することを見出し、本発明をなすに至った。すな
わち、本発明にあっては、酸化スケールの厚さを常に適
正脱スケール領域に維持するように、焼鈍工程における
均熱板温および均熱時間を制御する。これにより、酸洗
の条件が、例えば表1に示す範囲内で変動し次第にその
下限値に近づいても、オーステナイト系ステンレス鋼板
の脱スケールが常に完了する操業を可能にするものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The inventor of the present invention has conducted intensive studies on the improvement of descaling properties in the annealing pickling process for producing an austenitic stainless steel sheet. The inventors have found that the descalability of the oxide scale sometimes formed depends only on the thickness of the oxide scale, and have accomplished the present invention. That is, in the present invention, the soaking plate temperature and the soaking time in the annealing step are controlled so that the thickness of the oxide scale is always maintained in the appropriate descaling region. Thus, even if the pickling conditions gradually change within the range shown in Table 1, for example, and gradually approach the lower limit, the desalting of the austenitic stainless steel sheet can always be completed.

【0010】なお、酸洗槽は3槽構成とし、第1槽が中
性塩電解、第2槽が混酸(フッ酸と硝酸)、第3槽が硝
酸電解である。
The pickling tank is composed of three tanks, the first tank being neutral salt electrolysis, the second tank being mixed acid (hydrofluoric acid and nitric acid), and the third tank being nitric acid electrolysis.

【0011】[0011]

【表1】 [Table 1]

【0012】以下に、その実施形態を説明する。まず、
本願発明者は、多くの実験の結果得られた焼鈍条件と酸
化スケールの厚さとの関係から、酸化スケールの厚さを
焼鈍条件から間接的に推定することを可能にした。その
経緯について述べる。
The embodiment will be described below. First,
The present inventor has made it possible to indirectly estimate the thickness of the oxide scale from the annealing conditions from the relationship between the annealing conditions and the oxide scale thickness obtained as a result of many experiments. The details are described below.

【0013】本発明を適用できるオーステナイト系ステ
ンレス鋼の化学成分の範囲を表2に示す。
Table 2 shows the range of chemical components of the austenitic stainless steel to which the present invention can be applied.

【0014】[0014]

【表2】 [Table 2]

【0015】この範囲の成分組成を有するオーステナイ
ト系ステンレス鋼を、表3に示す焼鈍条件の範囲で、そ
の均熱板温及び均熱時間を種々変化させて焼鈍処理し、
生成した酸化スケールの厚さを測定することにより、焼
鈍条件の変化と酸化スケール厚さとの関係を求めた。但
し、一般に酸化スケールの厚さを直接測定することは困
難である。そこで本発明では、GDS発光分光分析法に
よるSiピークまでのスパッタ時間から間接的にスケー
ル厚さを算出した。
An austenitic stainless steel having a component composition in this range is annealed by varying the soaking plate temperature and soaking time within the range of annealing conditions shown in Table 3.
The relationship between the change in the annealing conditions and the thickness of the oxide scale was determined by measuring the thickness of the formed oxide scale. However, it is generally difficult to directly measure the thickness of the oxide scale. Therefore, in the present invention, the scale thickness is calculated indirectly from the sputtering time up to the Si peak by GDS emission spectroscopy.

【0016】[0016]

【表3】 [Table 3]

【0017】図1に、均熱板温及び均熱時間で記述した
焼鈍条件と前記スパッタ時間との関係を示す。なお、本
発明では、均熱板温は「焼鈍炉出側の鋼帯の温度(最高
到達板温),℃、以下にTssと略記することもあ
る)」と定義する。また、均熱時間は「鋼帯の温度が再
結晶開始温度(均熱開始温度)に到達してから焼鈍炉を
出るまでの時間,sec、以下にtsと略記することも
ある)」と定義する。
FIG. 1 shows the relationship between the annealing conditions described by the soaking plate temperature and the soaking time and the sputtering time. In the present invention, the soaking plate temperature is defined as "temperature of steel strip on the exit side of the annealing furnace (maximum reached plate temperature), ° C, and may be abbreviated as Tss hereinafter). In addition, the soaking time is defined as "the time from when the temperature of the steel strip reaches the recrystallization start temperature (soaking start temperature) to when the steel strip exits the annealing furnace, sec. I do.

【0018】図1から、高温かつ長時間焼鈍になるにつ
れて、Siピークまでのスパッタ時間が長くなっていく
こと、すなわち酸化スケール層が厚くなっていくことが
わかる。
FIG. 1 shows that the higher the temperature and the longer the annealing time, the longer the sputtering time up to the Si peak, that is, the thicker the oxide scale layer.

【0019】また前記GDSによる分析結果から、酸化
スケールの大部分がCr2 3 として存在していること
が判明した。Cr2 3 の酸化挙動は次式(1)に示す
放物線則に従い、緻密で均一な外部酸化層を形成するこ
とが知られている。
[0019] Analysis result of the GDS, most of oxide scale was found to be present as Cr 2 0 3. Oxidation Behavior of cr 2 0 3 in accordance with the parabolic law shown in the following equation (1), it is known to form a dense and uniform outer oxide layer.

【0020】 ΔW= (kp.t)1/2 …… (1) ΔW:酸化増量(g/cm2 ) kp:酸化速度定数(g2 /cm4 ・sec) t :時間(sec) ここで生成する酸化スケールはCr2 3 のみとし、生
成時から放物線則が成り立つとすると、Cr2 3 に対
する酸化速度定数kpの温度依存性はアレニウスの式に
基づき速度論的に次式に従う。
ΔW = (kp.t) 1/2 (1) ΔW: increase in oxidation (g / cm 2 ) kp: oxidation rate constant (g 2 / cm 4 · sec) t: time (sec) oxide scale produced is only Cr 2 0 3, when the generation time of a parabolic law holds, the temperature dependence of the oxidation rate constants kp for Cr 2 0 3 follows the kinetically following equation based on the Arrhenius equation.

【0021】 kp=3.16×10-4・exp(−2.06×104 /T) …(2) T:温度(℃) 式(2)を式(1)に代入し、Tについて整理すると T=2.06×104 /ln(3.16×10-4・t/ΔW2 ) …(3) 一方、Cr2 3 の密度5.2g/cm3 、Crの原子
量を52、酸素の原子量を16とすると、酸化スケール
の厚さΔL(μm)と酸化増量ΔWの関係は、 ΔW=5.2×10-4・ΔL・3×16/(2×52十3×16)…(4) 式(4)を式(3)に代入すると、 T=2.06×104 /ln(1.17×104 ・t/ΔL2 ) …(5) を得る。
Kp = 3.16 × 10 −4 exp (−2.06 × 10 4 / T) (2) T: temperature (° C.) Substituting equation (2) into equation (1), Rearranging T = 2.06 × 10 4 /ln(3.16×10 -4 · t / ΔW 2) ... (3) On the other hand, Cr 2 0 3 of density 5.2g / cm 3, Cr atomic weight of 52 Assuming that the atomic weight of oxygen is 16, the relationship between the thickness ΔL (μm) of the oxide scale and the increase in oxidation ΔW is as follows: ΔW = 5.2 × 10 −4 ΔL × 3 × 16 / (2 × 52 × 16 × 16) (4) By substituting equation (4) into equation (3), T = 2.06 × 10 4 / ln (1.17 × 10 4 · t / ΔL 2 ) (5) is obtained.

【0022】さらに式(5)中の温度Tおよび時間tを
先に定義した均熱板温Tssおよび均熱時間tsに変換
すると次式(6)を得る。 Tss=2.06×104 /ln(2.93×103 ・ts/ΔL2 )− 273 ……(6) この式(6)を用いることにより、任意の均熱板温およ
び均熱時間について生成する酸化スケール厚ΔLを求め
ることができるようになった。図2に、式(6)による
理論スケール厚と焼鈍条件との関係を表した等高線図を
示す。
Further, when the temperature T and the time t in the equation (5) are converted into the soaking plate temperature Tss and the soaking time ts defined above, the following equation (6) is obtained. Tss = 2.06 × 10 4 /ln(2.93×10 3 · ts / ΔL 2 ) −273 (6) By using this equation (6), an arbitrary soaking plate temperature and soaking time can be obtained. It is now possible to determine the oxide scale thickness ΔL generated for. FIG. 2 is a contour diagram showing the relationship between the theoretical scale thickness and the annealing conditions according to equation (6).

【0023】図1と図2の等高線図が類似することか
ら、オーステナイト系ステンレス鋼板の酸化スケールの
生成挙動が放物線則に従うことがわかる。そこで、酸化
スケール厚をGDS分析によるSiピークまでのスパッ
タ時間で直線近似すると式(7)を得る。図3に、理論
酸化スケール厚ΔLとGDSによるSiピークまでのス
パッタ時間tsiとの関係を示す。
The fact that the contour diagrams of FIGS. 1 and 2 are similar indicates that the formation behavior of the oxide scale of the austenitic stainless steel sheet follows the parabolic law. Then, when the thickness of the oxide scale is linearly approximated by the sputtering time up to the Si peak by GDS analysis, equation (7) is obtained. FIG. 3 shows the relationship between the theoretical oxide scale thickness ΔL and the sputtering time tsi up to the Si peak by GDS.

【0024】 tsi=4.42×10・ΔL+1.02 ……(7) 本発明では、以上のようにして酸化スケール厚を焼鈍条
件により間接的に推定することを可能にした。
Tsi = 4.42 × 10 · ΔL + 1.02 (7) In the present invention, the oxide scale thickness can be indirectly estimated based on the annealing conditions as described above.

【0025】続いて、本発明の脱スケールにおける上記
酸化スケール厚に基づく焼鈍条件の制御について述べ
る。以上のようにして求めた酸化スケール厚みから、オ
ーステナイト系ステンレス鋼板の適正脱スケール焼鈍範
囲(均熱板温及び均熱時間)を以下のように限定するこ
とができるが、その場合の酸洗浴の条件は、先に表1に
示した実操業上可能な酸洗条件範囲の下限値とする。
Next, control of annealing conditions based on the thickness of the oxidized scale in descaling according to the present invention will be described. From the oxide scale thickness obtained as described above, the appropriate descaling annealing range (heating plate temperature and heating time) of the austenitic stainless steel sheet can be limited as follows. The conditions are the lower limit of the range of pickling conditions that can be practically used as shown in Table 1 above.

【0026】本願発明者は、オーステナイト系ステンレ
ス鋼の脱スケール性は、生成スケールの性状およびスケ
ール厚みから次の3種類に区別できることを見出した。 (1)低温短時間タイプの焼鈍では、光沢を有する黄色
っぽいテンパーカラー状のスケールを生成する。スケー
ル厚みは0.15μm以下で、最初の中性塩電解酸洗で
その大部分が溶解してしまう。その結果引き続く混酸浸
漬過程で地鉄表面と混酸との接触面積が大きくなり、脱
クロム層があまり発達していないにも関わらず完全に脱
スケールが完了する。
The present inventor has found that the descalability of austenitic stainless steel can be classified into the following three types based on the properties of the formed scale and the scale thickness. (1) The low-temperature short-time type annealing produces a glossy, yellowish, temper-colored scale. The scale thickness is 0.15 μm or less, and most of the scale is dissolved by the first neutral salt electrolytic pickling. As a result, the contact area between the surface of the iron base and the mixed acid increases in the subsequent mixed acid immersion process, and complete descaling is completed even though the dechromized layer has not developed much.

【0027】(2)高温長時間タイプの焼鈍では、光沢
の全くない緑色のスケールを生成する。スケール厚みは
0.25μm以上で、中性塩電解ではほとんど除去され
ず厚いスケールに覆われたままであるが、酸素との親和
力がFeより大きいCrが優先的に選択酸化されて外方
拡散する結果、脱クロム層が深く発達している。そのた
めに、引き続く混酸浸漬での酸の浸透性が高く、スケー
ルの溶解が促進されて脱スケールが完了する。
(2) A high-temperature long-time type annealing produces a green scale with no gloss. Although the scale thickness is 0.25 μm or more, it is hardly removed by neutral salt electrolysis and remains covered by a thick scale, but Cr having an affinity for oxygen larger than Fe is preferentially selectively oxidized and diffused outward. The dechromized layer is deeply developed. Therefore, the permeability of the acid in the subsequent mixed acid immersion is high, the dissolution of the scale is promoted, and the descaling is completed.

【0028】(3)前述した両者の中間タイプの焼鈍で
は、赤みがかった半光沢のスケールを生成する。スケー
ル厚みは0.20μm前後で、中性塩電解酸洗後はスケ
ールが厚く残っている部分と地鉄が見える部分が混在し
ている。引き続く混酸浸漬後も中性塩電解で厚く残った
部分のスケールがそのまま残存し、結果として脱スケー
ル不良となる。これは、スケール残存部の内部脱クロム
層がそれほど深くなく、混酸浸漬における酸の浸透性を
高めるまでに至らないためである。
(3) The intermediate type annealing described above produces a reddish semi-gloss scale. The scale thickness is about 0.20 μm, and after the neutral salt electrolytic pickling, a part where the scale remains thick and a part where the ground iron is visible are mixed. Even after the subsequent immersion in the mixed acid, the scale of the portion that remains thick by the neutral salt electrolysis remains as it is, resulting in poor descaling. This is because the internal dechromed layer in the scale remaining portion is not so deep and does not lead to an increase in the permeability of the acid in the mixed acid immersion.

【0029】以上を総括すると、脱スケール不良を防ぐ
には、脱スケールが困難である中間タイプの焼鈍(スケ
ール厚ΔLが0.20μm前後)の範囲にならないよう
に焼鈍条件を制御すれば良いといえる。
To summarize the above, in order to prevent poor descaling, it is sufficient to control the annealing conditions so that the descaling does not fall within the range of intermediate type annealing (scale thickness ΔL is about 0.20 μm). I can say.

【0030】以上の知見に基づき、本発明にあっては、
スケール厚みが0.15μm以下あるいは0.25μm
以上になるように焼鈍条件を修正する。これにより、実
操業において必然的に生じる酸洗条件の変動に依存せず
に、換言すれば酸洗条件の範囲の下限に近づいても、常
に脱スケールを完了させることが可能になる。 (実施例)以下に本発明の実施例を示す。
Based on the above findings, in the present invention,
Scale thickness 0.15μm or less or 0.25μm
The annealing conditions are modified so as to be as described above. This makes it possible to always complete the descaling without depending on the fluctuation of the pickling conditions inevitably occurring in the actual operation, in other words, even when approaching the lower limit of the range of the pickling conditions. (Examples) Examples of the present invention will be described below.

【0031】表4に、オーステナイト系ステンレス鋼か
らなる3種類の供試材A,B,Cの化学成分を示した。
Table 4 shows the chemical components of three types of test materials A, B and C made of austenitic stainless steel.

【0032】[0032]

【表4】 [Table 4]

【0033】これらの各供試材について、表5に示すよ
うな種々の焼鈍条件(均熱板温Tssと均熱時間ts)
で焼鈍を行った後、表6に示す酸洗条件(表1の酸洗条
件範囲の下限値に近く設定)で酸洗して、脱スケール性
を検討した。
With respect to each of these test materials, various annealing conditions as shown in Table 5 (soaking plate temperature Tss and soaking time ts)
After the annealing, pickling was performed under the pickling conditions shown in Table 6 (set close to the lower limit of the range of the pickling conditions in Table 1), and the descalability was examined.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】図4は、均熱板温Tss及び均熱時間ts
で表した焼鈍条件と、得られた脱スケール実績との関係
をプロットしたものである。図4中の×印は、脱スケー
ルが完了しなかった焼鈍条件を示す。
FIG. 4 shows the soaking plate temperature Tss and the soaking time ts.
Is a plot of the relationship between the annealing conditions represented by and the resulting descaling results. The crosses in FIG. 4 indicate annealing conditions under which descaling was not completed.

【0037】これから、実操業において酸能力が最も低
くなった酸洗条件下でも、理論スケール厚が0.20μ
m前後にならないような焼鈍を実施することによって、
脱スケール不良は発生しないことを確認できた。
It can be seen that the theoretical scale thickness is 0.20 μm even under the pickling conditions under which the acid capacity was the lowest in actual operation.
m by performing annealing so that it does not become
It was confirmed that no descaling failure occurred.

【0038】[0038]

【発明の効果】以上説明したように、本発明に係る脱ス
ケール性に優れたオーステナイト系ステンレス鋼板の製
造方法によれば、オーステナイト系ステンレス鋼板を連
続焼鈍するにあたって、生成する酸化スケールの厚さを
焼鈍条件から推定し、酸洗でスケールが除去しやすいス
ケール厚みとなるように焼鈍条件を修正するようにした
ので、オーステナイト系ステンレス鋼板の脱スケール不
良を完全になくすことができるようになった。
As described above, according to the method for producing an austenitic stainless steel sheet having excellent descaling properties according to the present invention, the thickness of the oxide scale formed during continuous annealing of the austenitic stainless steel sheet is reduced. Since the annealing conditions were estimated from the annealing conditions and the annealing conditions were modified so that the scale thickness was easily removed by pickling, defective descaling of the austenitic stainless steel sheet could be completely eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼鈍条件とGDSによるSiピークまでのスパ
ッタ時間の関係を示す図である。
FIG. 1 is a diagram showing a relationship between annealing conditions and a sputtering time up to a Si peak by GDS.

【図2】焼鈍条件と理論スケール厚との関係を示す図で
ある。
FIG. 2 is a diagram showing the relationship between annealing conditions and theoretical scale thickness.

【図3】理論スケール厚とGDSによるSiピークまで
のスパッタ時間の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a theoretical scale thickness and a sputtering time up to a Si peak by GDS.

【図4】焼鈍条件と脱スケール実績の関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between annealing conditions and actual descaling.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 オーステナイト系ステンレス鋼板を連続
焼鈍するにあたり、焼鈍条件をもとに焼鈍時に生成する
スケールの厚みを推定し、酸洗でスケールを除去しやす
いスケール厚みとなるように焼鈍条件を修正することを
特徴とする脱スケール性に優れたオーステナイト系ステ
ンレス鋼板の製造方法。
1. In continuous annealing of an austenitic stainless steel sheet, the thickness of a scale formed during annealing is estimated based on the annealing conditions, and the annealing conditions are modified so that the scale thickness can be easily removed by pickling. A method for producing an austenitic stainless steel sheet excellent in descaling property.
【請求項2】 前記連続焼鈍の焼鈍条件を修正するにあ
たり、酸洗でスケールを除去しやすいスケール厚みを
0.15μm以下または0.25μm以上に設定するこ
とを特徴とする請求項1記載の脱スケール性に優れたオ
ーステナイト系ステンレス鋼板の製造方法。
2. The method according to claim 1, wherein, in correcting the annealing conditions of the continuous annealing, a scale thickness at which scale is easily removed by pickling is set to 0.15 μm or less or 0.25 μm or more. Manufacturing method of austenitic stainless steel sheet with excellent scale.
【請求項3】 前記焼鈍条件として、焼鈍炉の均熱温度
および均熱時間を用いる請求項1または請求項2記載の
脱スケール性に優れたオーステナイト系ステンレス鋼板
の製造方法。
3. The method for producing an austenitic stainless steel sheet having excellent descalability according to claim 1, wherein the soaking conditions include a soaking temperature and a soaking time of an annealing furnace.
JP7430598A 1998-03-23 1998-03-23 Manufacture of austenitic stainless steel sheet excellent in descaling property Pending JPH11269539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7430598A JPH11269539A (en) 1998-03-23 1998-03-23 Manufacture of austenitic stainless steel sheet excellent in descaling property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7430598A JPH11269539A (en) 1998-03-23 1998-03-23 Manufacture of austenitic stainless steel sheet excellent in descaling property

Publications (1)

Publication Number Publication Date
JPH11269539A true JPH11269539A (en) 1999-10-05

Family

ID=13543296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7430598A Pending JPH11269539A (en) 1998-03-23 1998-03-23 Manufacture of austenitic stainless steel sheet excellent in descaling property

Country Status (1)

Country Link
JP (1) JPH11269539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119643A (en) * 2011-12-06 2013-06-17 Nippon Steel & Sumitomo Metal Corp High-strength hot-rolled steel sheet having excellent corrosion resistance of coating and bending fatigue characteristic, and method for producing the same
JP2019085595A (en) * 2017-11-01 2019-06-06 新日鐵住金株式会社 Method for improving acid cleaning property of hot rolled steel sheet
JP2021021085A (en) * 2019-07-24 2021-02-18 日本製鉄株式会社 Method for production of stainless steel pipe
JP2021110039A (en) * 2019-12-30 2021-08-02 武▲漢▼大学 Method of calculating thickness of oxide film of martensitic heat resistant steel by supercritical high-temperature steam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119643A (en) * 2011-12-06 2013-06-17 Nippon Steel & Sumitomo Metal Corp High-strength hot-rolled steel sheet having excellent corrosion resistance of coating and bending fatigue characteristic, and method for producing the same
JP2019085595A (en) * 2017-11-01 2019-06-06 新日鐵住金株式会社 Method for improving acid cleaning property of hot rolled steel sheet
JP2021021085A (en) * 2019-07-24 2021-02-18 日本製鉄株式会社 Method for production of stainless steel pipe
JP2021110039A (en) * 2019-12-30 2021-08-02 武▲漢▼大学 Method of calculating thickness of oxide film of martensitic heat resistant steel by supercritical high-temperature steam

Similar Documents

Publication Publication Date Title
JP2004323969A (en) High strength cold rolled steel sheet excellent in chemical processing
JPWO2019013351A1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
KR20230151013A (en) Method of forming grain-oriented electrical steel sheet and insulating film
JP2006037215A (en) Steel sheet for enameling having good adhesion to enameling, production method therefor, and enameled product
JP6041079B1 (en) Cold rolled steel strip manufacturing method and manufacturing equipment
WO2017007036A1 (en) Process and equipment for producing cold-rolled steel strip
JPH11269539A (en) Manufacture of austenitic stainless steel sheet excellent in descaling property
KR100819218B1 (en) Hot-rolled steel plate excellent in chemical treatment characteristics and method for production thereof
KR20170122244A (en) Plated steel sheet and manufacturing method thereof
CN107532264A (en) Alloyed zinc hot dip galvanized raw sheet and its manufacture method and alloyed hot-dip galvanized steel sheet
JP2950199B2 (en) Electrogalvanized steel sheet and electrogalvanized steel sheet having excellent wood grain resistance, and methods for producing them
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
JP7421651B2 (en) Stainless steel for fuel cell separator plate with excellent surface electrical conductivity and method for manufacturing the same
JP2013237912A (en) High-tension cold-rolled steel strip excellent in chemical convertibility, and manufacturing method of the same
CN116848280A (en) Steel sheet excellent in phosphate reactivity and method for producing same
KR20230151012A (en) Method of forming grain-oriented electrical steel sheet and insulating film
JPH10176249A (en) Ferritic stainless steel material and its production
JP4402886B2 (en) Steel plate for enamel with extremely excellent enamel adhesion, its manufacturing method, and enamel product
US6921443B1 (en) Process for producing stainless steel with improved surface properties
JP2016216779A (en) Grain oriented magnetic steel sheet and production method therefor
JPH0474899A (en) Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance
JPH09291351A (en) High silicon steel sheet excellent in workability and its production
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP3890790B2 (en) High silicon steel sheet
RU2771315C1 (en) Method for producing electrical steel sheet with oriented grain structure