JPH11251657A - Magnetic sensor and its manufacture - Google Patents
Magnetic sensor and its manufactureInfo
- Publication number
- JPH11251657A JPH11251657A JP10053127A JP5312798A JPH11251657A JP H11251657 A JPH11251657 A JP H11251657A JP 10053127 A JP10053127 A JP 10053127A JP 5312798 A JP5312798 A JP 5312798A JP H11251657 A JPH11251657 A JP H11251657A
- Authority
- JP
- Japan
- Prior art keywords
- insb
- substrate
- magnetic sensor
- plane
- gaas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 24
- 239000004065 semiconductor Substances 0.000 claims abstract description 16
- 239000013078 crystal Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 5
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims 1
- 230000001681 protective effect Effects 0.000 abstract description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 26
- 239000010408 film Substances 0.000 description 9
- 239000010409 thin film Substances 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ホール効果を利用
した磁気センサ及びその製造方法に関し、特に、ブラシ
レスモータ等の機器の位置検出等に用いられる磁気セン
サ及びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor utilizing the Hall effect and a method of manufacturing the same, and more particularly to a magnetic sensor used for detecting the position of a device such as a brushless motor and a method of manufacturing the same.
【0002】[0002]
【従来の技術】CD−ROMやVTR(ビデオテープレ
コーダ)の駆動に用いられるブラシレスモータは、永久
磁石を円筒形に形成したロータ、このロータに2個以上
が対称的に近接配置されたステータ、このステータに巻
回された駆動コイル(電機子)、ステータを固定するヨ
ーク等から構成されており、ブラシを有しない構成に特
長がある。IC、トランジスタ等を用いて構成されてい
る転流回路で駆動コイルに印加する電流を切り換えるこ
とにより回転磁界が形成され、永久磁石によるロータが
回転する。ブラシレスモータは、永久磁石と電機子の間
に常に回転力が発生する関係を続けさせるためには、電
機子の励磁がロータの磁極(N、S)の位置に合わせて
行われる必要がある。このロータの磁極位置の検出に
は、一般にホールセンサが用いられており、ステータの
先端面のロータに面した場所に配設され、ロータの磁極
が通過する毎にホール出力電圧(ロータ位置信号)が発
生する。2. Description of the Related Art A brushless motor used for driving a CD-ROM or a VTR (video tape recorder) is a rotor having a permanent magnet formed in a cylindrical shape, a stator having two or more permanent magnets arranged symmetrically close to each other. It is composed of a drive coil (armature) wound around the stator, a yoke for fixing the stator, and the like, and is characterized in that it has no brush. A rotating magnetic field is formed by switching the current applied to the driving coil in a commutation circuit configured using an IC, a transistor, and the like, and the rotor is rotated by the permanent magnet. In the brushless motor, the armature must be excited in accordance with the position of the magnetic poles (N, S) of the rotor in order to maintain a relationship in which a rotational force is always generated between the permanent magnet and the armature. In general, a Hall sensor is used to detect the magnetic pole position of the rotor. The Hall sensor is disposed at a position facing the rotor at the tip end surface of the stator, and a Hall output voltage (rotor position signal) is output each time the magnetic pole of the rotor passes. Occurs.
【0003】ホールセンサは、半導体チップに高移動度
を持つ III−V族半導体結晶であるGaAs(ガリウム
砒素)やInSb(アンチモン化インジウム)を用いて
構成された磁気センサである。具体的には、半導体チッ
プの片面に4個のオーム性電極を設けて構成され、一対
の電極の間に直流電源が接続され、他の一対の電極間が
出力端子を構成している。直流電源からホール入力電流
を流した状態のまま、半導体チップの厚み方向に磁界を
加えると、磁界の大きさに応じたホール出力電圧が出力
される。A Hall sensor is a magnetic sensor made of GaAs (gallium arsenide) or InSb (indium antimonide), which is a III-V semiconductor crystal having high mobility in a semiconductor chip. Specifically, the semiconductor chip is configured by providing four ohmic electrodes on one surface of the semiconductor chip, a DC power supply is connected between a pair of electrodes, and an output terminal is formed between the other pair of electrodes. When a magnetic field is applied in the thickness direction of the semiconductor chip with the Hall input current flowing from the DC power supply, a Hall output voltage corresponding to the magnitude of the magnetic field is output.
【0004】InSbは、バンドギャップが常温で0.
18eVと狭いため、不純物ドーピングを行わなくても
電子濃度が2×1016cm-3程度と高く、また、InS
b中の電子の移動度も75,000cm2 /Vsと III
−V化合物半導体中では最も大きい。このため、電子濃
度と電子移動度の積の逆数で与えられるInSbの抵抗
率は、GaAsなど他の化合物半導体の抵抗率に比べて
極めて小さい。したがって、InSbを感磁部として持
つホール素子(以下、これを「InSbホール素子」と
いう)は、入力抵抗が小さくなる傾向にある。[0004] InSb has a band gap of 0.1 at room temperature.
Since the electron concentration is as narrow as 18 eV, the electron concentration is as high as about 2 × 10 16 cm −3 even if impurity doping is not performed.
The mobility of electrons in b is also 75,000 cm 2 / Vs and III
It is the largest among -V compound semiconductors. For this reason, the resistivity of InSb, which is given by the reciprocal of the product of the electron concentration and the electron mobility, is extremely smaller than the resistivity of another compound semiconductor such as GaAs. Therefore, a Hall element having InSb as a magnetic sensing part (hereinafter referred to as “InSb Hall element”) tends to have a low input resistance.
【0005】定電圧駆動におけるInSbホール素子で
消費される電力Wは、電流をI、電圧をV、抵抗をRと
すれば、次式で与えられる。 W=I・V=V2 /R 上式から明らかなように、抵抗Rの値が小さいと、これ
に反比例して消費電力Wが大きくなる。The power W consumed by the InSb Hall element in the constant voltage drive is given by the following equation, where I is the current, V is the voltage, and R is the resistance. W = IV = V 2 / R As is clear from the above equation, when the value of the resistor R is small, the power consumption W increases in inverse proportion to the value.
【0006】[0006]
【発明が解決しようとする課題】しかし、従来の磁気セ
ンサによると、InSbホール素子は、入力抵抗が低い
ため、定電圧駆動時に消費電力が大きくなるという不具
合がある。一般に、半導体素子は、高温環境下で使用す
るとキャリアが熱励起されるため、半導体中のキャリア
濃度が高くなる傾向にある。特に、InSb等のよう
に、バンドギャップの狭い半導体ほどその傾向が大き
い。このため、抵抗が低く消費電力が大きい素子、つま
り発熱量の多い素子を或る温度以上で使用すると、キャ
リア濃度の増加→抵抗の低下→発熱量の増加→キャリア
濃度の増加→・・・という状態を繰り返す悪循環に陥
り、最終的には破壊に至る可能性がある。以上のよう
に、入力抵抗の低いInSbホール素子は、高温での動
作の信頼性に欠けるという問題を抱えていた。However, according to the conventional magnetic sensor, the input resistance of the InSb Hall element is low, so that there is a problem that power consumption becomes large at the time of constant voltage driving. Generally, when a semiconductor element is used in a high-temperature environment, carriers are thermally excited, so that the carrier concentration in the semiconductor tends to increase. In particular, a semiconductor having a narrower band gap, such as InSb, has a larger tendency. Therefore, when an element having low resistance and high power consumption, that is, an element having a large amount of heat generation, is used at a certain temperature or higher, the carrier concentration increases → resistance decreases → heat generation increases → carrier concentration increases → A vicious cycle that repeats the situation can eventually lead to destruction. As described above, the InSb Hall element having a low input resistance has a problem that the reliability of operation at a high temperature is lacking.
【0007】したがって、本発明の目的は、入力抵抗を
高くすることのできる磁気センサ及びその製造方法を提
供することにある。Accordingly, it is an object of the present invention to provide a magnetic sensor capable of increasing the input resistance and a method for manufacturing the same.
【0008】[0008]
【課題を解決するための手段】本発明は、上記の目的を
達成するため、第1の特徴として、InSbによって形
成された感磁部層を有する磁気センサにおいて、前記感
磁部層は、半導体基板、半絶縁性基板等の基板の(11
1)面上に形成されていることを特徴とする磁気センサ
を提供する。According to a first aspect of the present invention, there is provided a magnetic sensor having a magnetosensitive layer formed of InSb, wherein the magnetosensitive layer is formed of a semiconductor. (11) of substrates such as substrates and semi-insulating substrates
1) To provide a magnetic sensor characterized by being formed on a surface.
【0009】また、本発明は、上記の目的を達成するた
め、第2の特徴として、(111)面を有する基板と、
前記基板の(111)面上に形成した十字形のInSb
感磁部層と、前記InSb感磁部層の十字形の端部のそ
れぞれに形成したオーミック性電極とを備えることを特
徴とする磁気センサを提供する。また、本発明は、上記
の目的を達成するため、第3の特徴として、基板の(1
11)面上にInSb膜を成長させ、前記InSb膜に
十字形のエッチングを施してInSb感磁部層を形成
し、前記感磁部層の4つの末端部にオーミック性電極を
形成することを特徴とする磁気センサの製造方法を提供
する。In order to achieve the above object, the present invention provides, as a second feature, a substrate having a (111) plane;
Cross-shaped InSb formed on the (111) plane of the substrate
A magnetic sensor comprising: a magnetic sensing part layer; and ohmic electrodes formed at respective cross-shaped ends of the InSb magnetic sensing part layer. In order to achieve the above object, the present invention provides, as a third feature, (1)
11) Growing an InSb film on the surface, performing a cross-shaped etching on the InSb film to form an InSb magnetic sensing layer, and forming ohmic electrodes at four terminal portions of the magnetic sensing layer. A method for manufacturing a magnetic sensor is provided.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施の形態につい
て図面を基に説明する。図1は本発明の磁気センサの製
造方法を説明するための立方格子の結晶方向を示す。図
中、〔 〕は方向指数を示し、( )は面方位を示す。
従来、GaAs上にInSb薄膜を成長させて感磁部層
を形成するに際し、図1の(b)に示すように、GaA
sの立方格子の(100)面に配向するようにInSb
を成長させていた。しかし、この(100)面の選択が
最適であるか否かについて疑問を持った本発明者らは、
GaAsの立方格子の各方向からInSb薄膜を成長さ
せ、その入力抵抗を測定した。その結果、図1の(a)
に示す(111)面に配向するように成長させたInS
b薄膜をホール素子の感磁部層に用いたとき、高い入力
抵抗が得られることを見い出した。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cubic lattice crystal direction for describing a method of manufacturing a magnetic sensor according to the present invention. In the figure, [] indicates a direction index, and () indicates a plane orientation.
Conventionally, when an InSb thin film is grown on GaAs to form a magnetosensitive layer, as shown in FIG.
InSb so as to be oriented to the (100) plane of the s cubic lattice
Was growing. However, we questioned whether this (100) plane selection is optimal or not.
InSb thin films were grown from each direction of the GaAs cubic lattice, and the input resistance was measured. As a result, FIG.
InS grown so as to be oriented on the (111) plane shown in FIG.
It has been found that a high input resistance can be obtained when the thin film b is used for the magneto-sensitive layer of the Hall element.
【0011】特に、GaAsの(111)面上に形成さ
れたInSbは、GaAsの(001)面上に形成され
た同一の膜厚を持つInSbに比べて、4倍以上も高い
値の入力抵抗を持つことを見い出した。このように高い
入力抵抗を持つため、消費電力が低減される。消費電力
が下がることにより、発熱による自己破壊の可能性を低
減することができる。In particular, the InSb formed on the (111) plane of GaAs has an input resistance four times or more higher than that of InSb having the same thickness formed on the (001) plane of GaAs. Has been found. With such a high input resistance, power consumption is reduced. By reducing power consumption, the possibility of self-destruction due to heat generation can be reduced.
【0012】InSb薄膜は、MBE(Molecular Beam
Epitaxy:分子線エピタキシー)法、MOVPE(Meta
l Organic Vapor Phase Epitaxy :有機金属気相成長)
法、または蒸着法を用いて形成することができる。ま
た、GaAs基板は、閃亜鉛鉱型結晶構造に属するもの
であるが、GaAsのほか、ダイヤモンド型結晶構造、
閃亜鉛鉱型結晶構造、またはウルツ鉱型結晶構造を持つ
半導体を基板に用いることができる。いずれの場合も、
その(111)面にInSb薄膜を形成する。The InSb thin film is made of MBE (Molecular Beam).
Epitaxy: molecular beam epitaxy, MOVPE (Meta
l Organic Vapor Phase Epitaxy)
It can be formed by a method or an evaporation method. The GaAs substrate belongs to a zinc-blende type crystal structure. In addition to GaAs, a diamond type crystal structure,
A semiconductor having a zinc blende crystal structure or a wurtzite crystal structure can be used for the substrate. In either case,
An InSb thin film is formed on the (111) plane.
【0013】[0013]
【実施例】次に、本発明の磁気センサ及びその製造方法
の実施例及び評価結果について説明する。 まず、半絶縁性GaAs(111)A面基板(すなわ
ち、面方位(111)のガリウム面)上に、分子線エピ
タキシー法により、基板温度380〜480℃、成長速
度0.1〜3.0μm/h、III 族原子であるインジウ
ム(In)とV族原子であるアンチモン(Sb)の分子
線強度比V/III =1.5〜6.0の条件において、厚
さ0.15μmのInSb膜を成長させた。Next, examples of the magnetic sensor of the present invention and a method for manufacturing the same and evaluation results will be described. First, a substrate temperature of 380 to 480 ° C. and a growth rate of 0.1 to 3.0 μm / m are formed on a semi-insulating GaAs (111) A-plane substrate (that is, a gallium plane of (111) plane orientation) by molecular beam epitaxy. h, Under the condition that the molecular beam intensity ratio of indium (In) as a group III atom and antimony (Sb) as a group V atom is V / III = 1.5 to 6.0, an InSb film having a thickness of 0.15 μm is formed. Grew.
【0014】次に、半絶縁性GaAs基板の(11
1)A面上に形成されたInSbを十字形にエッチング
により加工した。InSbによる感磁部層を保護するた
め、その表面にSiO2 膜を蒸着により形成した。 更に、十字形の感磁部層の4つの末端部の保護膜を除
去し、ここに電極間距離とInSb感磁部層の幅の比が
1.1になる様に、Au/Geによるオーミック性電極
を蒸着により張り付け、ホール素子を作成した。Next, the semi-insulating GaAs substrate (11)
1) InSb formed on the A surface was processed into a cross shape by etching. In order to protect the magnetosensitive layer made of InSb, a SiO 2 film was formed on the surface thereof by vapor deposition. Furthermore, the protective films at the four terminal portions of the cross-shaped magnetic sensing layer were removed, and the ohmic contact with Au / Ge was adjusted so that the ratio between the interelectrode distance and the width of the InSb magnetic sensing layer was 1.1. An active electrode was attached by vapor deposition to produce a Hall element.
【0015】図2は本発明による磁気センサであり、G
aAs基板上にエッチングにより形成したInSb感磁
部層を設けた状態を示している。更に、図3は図2のI
I−II断面を示す。図3において、1はGaAs(1
11)A面基板であり、この基板上にはInSb感磁部
層2が十字形に形成されている。このInSb感磁部層
2の4つの先端部には、図2に示すように、オーミック
性電極3a,3b,3c,3dが設けられている。この
オーミック性電極3a〜3dは、図3に示すように、I
nSb感磁部層2の表面形状に沿った段差を有してい
る。GaAs(111)A面基板1の露出面及びInS
b感磁部層2の露出面には、保護膜4が設けられてい
る。FIG. 2 shows a magnetic sensor according to the present invention.
This figure shows a state in which an InSb magnetosensitive layer formed by etching is provided on an aAs substrate. Further, FIG.
The I-II cross section is shown. In FIG. 3, 1 is GaAs (1
11) A-side substrate, on which the InSb magnetosensitive layer 2 is formed in a cross shape. As shown in FIG. 2, ohmic electrodes 3a, 3b, 3c, and 3d are provided at the four tips of the InSb magnetosensitive layer 2. As shown in FIG. 3, the ohmic electrodes 3a to 3d
There is a step along the surface shape of the nSb magnetosensitive layer 2. Exposed surface of GaAs (111) A-plane substrate 1 and InS
The protection film 4 is provided on the exposed surface of the b-sensitive layer 2.
【0016】本発明者らは、半絶縁性GaAs(10
0)面基板上に形成したInSbを感磁部層にした(1
00)−InSbホール素子(選択した結晶面が本発明
と異なるのみで製造方法を上記した通りにした従来品=
比較例)と、上記した本発明方法により半絶縁性GaA
s(111)A面基板1上に形成したInSbを感磁部
層2にした(111)A−InSbホール素子(本発明
品)とを作成した。これら2種類のホール素子の電極3
aと電極3c間の抵抗を室温において測定した。この結
果を示したのが表1である。The present inventors have proposed a semi-insulating GaAs (10
(0) InSb formed on the surface substrate was used as the magnetosensitive layer (1).
00) -InSb Hall element (conventional product whose manufacturing method is as described above except that the selected crystal plane is different from the present invention =
Comparative Example) and semi-insulating GaAs by the method of the present invention described above.
A (111) A-InSb Hall element (product of the present invention) in which InSb formed on the s (111) A plane substrate 1 was used as the magnetosensitive layer 2 was prepared. Electrodes 3 of these two types of Hall elements
The resistance between a and the electrode 3c was measured at room temperature. Table 1 shows the results.
【0017】[0017]
【表1】 [Table 1]
【0018】表1に示されるように、(111)A−I
nSbホール素子は、(100)−InSbホール素子
に比べて、約4.5倍という非常に大きな入力抵抗値を
示した。また、室温において、これら2種類のホール素
子の電極3aと電極3c間に2Vの電圧を印加し、ホー
ル素子の上面から0.1Tの磁東密度を加え、ホール素
子の電極3bと電極3d間に生じたホール起電力を測定
したところ、表2の結果を得た。As shown in Table 1, (111) A-I
The nSb Hall element exhibited an extremely large input resistance value of about 4.5 times as compared with the (100) -InSb Hall element. At room temperature, a voltage of 2 V is applied between the electrodes 3a and 3c of these two types of Hall elements, a magnetic east density of 0.1 T is applied from the upper surface of the Hall elements, and a voltage between the electrodes 3b and 3d of the Hall elements is increased. The results shown in Table 2 were obtained by measuring the Hall electromotive force generated in the above.
【0019】[0019]
【表2】 [Table 2]
【0020】ホール起電力の大きさはその素子の感度の
高さを表しているが、表2から明らかなように、(11
1)A−InSbホール素子のホール起電力は、(10
0)−InSbホール素子のホール起電力に比べて高く
なっている。以上の結果から、半絶縁性GaAs(11
1)A面基板上に形成されたInSbを感磁部層2とす
る本発明に係るホール素子は、半絶縁性GaAs(10
0)面基板上に形成されたInSbを感磁部層とする従
来のホール素子と同等以上の出力ホール電圧を維持しつ
つ、入力抵抗を4倍以上に高くできることが明らかにな
った。The magnitude of the Hall electromotive force indicates the sensitivity of the device. As is clear from Table 2, (11)
1) The Hall electromotive force of the A-InSb Hall element is (10
0) It is higher than the Hall electromotive force of the -InSb Hall element. From the above results, semi-insulating GaAs (11
1) The Hall element according to the present invention using InSb formed on the A-plane substrate as the magnetosensitive layer 2 is a semi-insulating GaAs (10
0) It has been found that the input resistance can be increased by a factor of four or more while maintaining an output Hall voltage equal to or higher than that of a conventional Hall element using InSb formed on a surface substrate as a magnetosensitive layer.
【0021】これらホール素子の感磁部2であるInS
b層の膜厚は、0.05〜2.0μmとすることが望ま
しいこともわかった。ホール素子の感磁部であるInS
b層を形成する基板として、GaAs(111)B面基
板、InP(111)A面基板、InP(111)B面
基板、Si(111)基板、Ge(111)基板等を用
いても同様の効果が得られた。InS, which is the magnetic sensing part 2 of these Hall elements,
It was also found that the thickness of the b layer is desirably 0.05 to 2.0 μm. InS, the magneto-sensitive part of the Hall element
The same applies to the case where a GaAs (111) B surface substrate, an InP (111) A surface substrate, an InP (111) B surface substrate, a Si (111) substrate, a Ge (111) substrate, or the like is used as the substrate for forming the b layer. The effect was obtained.
【0022】また、これらホール素子の感磁部であるI
nSb層に不純物としてC(炭素)、Si(珪素)、S
(硫黄)、Ge(ゲルマニウム)、Te(テルル)、ま
たはSe(セレン)をドーピングし、或いはイオン注入
することによっても、同様の効果が得られた。そして、
これらの不純物濃度は、1.0×1014cm-3以上1.
0×10199cm-3未満にして好結果が得られる。The magnetic sensing part of these Hall elements, I
C (carbon), Si (silicon), S as impurities in the nSb layer
Similar effects were obtained by doping (sulfur), Ge (germanium), Te (tellurium), or Se (selenium) or by ion implantation. And
These impurity concentrations are 1.0 × 10 14 cm −3 or more.
Good results are obtained with less than 0 × 10 19 cm −3 .
【0023】[0023]
【発明の効果】以上より明らかな如く、本発明の磁気セ
ンサ及びその製造方法によれば、半導体基板、半絶縁性
基板等の基板の(111)面上にInSbによる感磁部
層を形成した磁気センサ、または、(111)面を有す
る基板と、前記基板の(111)面上に成長させたIn
Sb層と、前記InSb層上に形成した十字形のInS
b感磁部層と、前記InSb感磁部層の十字形の端部の
それぞれに形成したオーミック性電極とを備えた磁気セ
ンサにし、或いは、面方位が(111)になるようにし
て基板上にInSb膜を成長させ、このInSb膜に十
字形のエッチングを施してInSb感磁部層を形成する
磁気センサの製造方法にしたので、入力抵抗を大きくす
ることが可能になり、消費電力の低減が図られ、高温雰
囲気下の動作における信頼性を向上させることができ
る。As is clear from the above, according to the magnetic sensor and the method of manufacturing the same of the present invention, the magnetosensitive layer made of InSb is formed on the (111) plane of a substrate such as a semiconductor substrate or a semi-insulating substrate. A magnetic sensor or a substrate having a (111) plane, and In grown on the (111) plane of the substrate.
An Sb layer and a cross-shaped InS formed on the InSb layer.
a magnetic sensor comprising a magnetic sensing layer b and ohmic electrodes formed at each of the cross-shaped ends of the InSb magnetic sensing layer, or on a substrate with a plane orientation of (111). A method for manufacturing a magnetic sensor in which an InSb film is grown on the substrate and a cross-shaped etching is performed on the InSb film to form an InSb magnetosensitive layer, the input resistance can be increased, and power consumption can be reduced. Therefore, reliability in operation in a high-temperature atmosphere can be improved.
【図1】本発明の磁気センサの製造方法を説明するため
の立方格子の結晶方向を示す説明図である。FIG. 1 is an explanatory view showing a crystal direction of a cubic lattice for explaining a method of manufacturing a magnetic sensor of the present invention.
【図2】本発明による磁気センサを示す平面図である。FIG. 2 is a plan view showing a magnetic sensor according to the present invention.
【図3】図2のII−II断面を示す断面図である。FIG. 3 is a sectional view showing a II-II section of FIG. 2;
1 GaAs(111)A面基板 2 InSb感磁部層 3a,3b,3c,3d オーミック性電極 4 保護膜 Reference Signs List 1 GaAs (111) A surface substrate 2 InSb magnetosensitive layer 3a, 3b, 3c, 3d Ohmic electrode 4 Protective film
Claims (9)
有する磁気センサにおいて、 前記感磁部層は、半導体基板、半絶縁性基板等の基板の
(111)面上に形成されていることを特徴とする磁気
センサ。1. A magnetic sensor having a magnetic sensing layer formed of InSb, wherein the magnetic sensing layer is formed on a (111) plane of a substrate such as a semiconductor substrate or a semi-insulating substrate. Characteristic magnetic sensor.
感磁部層と、 前記InSb感磁部層の十字形の端部のそれぞれに形成
したオーミック性電極とを備えることを特徴とする磁気
センサ。2. A substrate having a (111) plane, and a cross-shaped InSb formed on the (111) plane of the substrate.
A magnetic sensor comprising: a magnetic sensing layer; and ohmic electrodes formed at respective cross-shaped ends of the InSb magnetic sensing layer.
特徴とする請求項2記載の磁気センサ。3. The magnetic sensor according to claim 2, wherein the substrate is a GaAs substrate.
閃亜鉛鉱型結晶構造、またはウルツ鉱型結晶構造を有す
ることを特徴とする請求項2記載の磁気センサ。4. The method according to claim 1, wherein the substrate has a diamond-type crystal structure,
3. The magnetic sensor according to claim 2, wherein the magnetic sensor has a zinc blende type crystal structure or a wurtzite type crystal structure.
長させ、 前記InSb膜に十字形のエッチングを施してInSb
感磁部層を形成し、 前記InSb感磁部層の4つの末端部にオーミック性電
極を形成することを特徴とする磁気センサの製造方法。5. An InSb film is grown on the (111) plane of the substrate, and the InSb film is subjected to a cross-shaped etching.
A method for manufacturing a magnetic sensor, comprising: forming a magnetic sensing layer; and forming ohmic electrodes at four terminal portions of the InSb magnetic sensing layer.
造、閃亜鉛鉱型結晶構造、またはウルツ鉱型結晶構造の
基板を用いることを特徴とする請求項5記載の磁気セン
サの製造方法。6. The method according to claim 5, wherein a substrate having a diamond-type crystal structure, a zinc-blende-type crystal structure, or a wurtzite-type crystal structure is used as the substrate.
を特徴とする請求項5または6記載の磁気センサの製造
方法。7. The method according to claim 5, wherein GaAs is used as the substrate.
法、MOVPE法、または蒸着法を用いて行うことを特
徴とする請求項5記載の磁気センサの製造方法。8. The formation of the InSb magnetosensitive layer is performed by MBE.
6. The method for manufacturing a magnetic sensor according to claim 5, wherein the method is performed using an MOVPE method, or an evaporation method.
してC、Si、Ge、S、Te、またはSeをドーピン
グまたはイオン注入することを特徴とする請求項5記載
の磁気センサの製造方法。9. The method according to claim 5, wherein, when forming the InSb film, C, Si, Ge, S, Te, or Se is doped or ion-implanted as an impurity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10053127A JPH11251657A (en) | 1998-03-05 | 1998-03-05 | Magnetic sensor and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10053127A JPH11251657A (en) | 1998-03-05 | 1998-03-05 | Magnetic sensor and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11251657A true JPH11251657A (en) | 1999-09-17 |
Family
ID=12934154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10053127A Pending JPH11251657A (en) | 1998-03-05 | 1998-03-05 | Magnetic sensor and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11251657A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7193288B2 (en) | 2002-04-19 | 2007-03-20 | Asahi Kasei Electronics Co., Ltd. | Magnetoelectric transducer and its manufacturing method |
US7567078B2 (en) | 2004-12-28 | 2009-07-28 | Asahi Kasei Emd Corporation | Magnetic rotation-angle sensor and angle-information processing device |
JP2013168567A (en) * | 2012-02-16 | 2013-08-29 | Asahi Kasei Electronics Co Ltd | Manufacturing method of compound semiconductor thin film |
CN105470382A (en) * | 2015-12-31 | 2016-04-06 | 江苏森尼克电子科技有限公司 | Magnetic-sensitive device with extending electrode and manufacturing process |
-
1998
- 1998-03-05 JP JP10053127A patent/JPH11251657A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7193288B2 (en) | 2002-04-19 | 2007-03-20 | Asahi Kasei Electronics Co., Ltd. | Magnetoelectric transducer and its manufacturing method |
US7567078B2 (en) | 2004-12-28 | 2009-07-28 | Asahi Kasei Emd Corporation | Magnetic rotation-angle sensor and angle-information processing device |
JP2013168567A (en) * | 2012-02-16 | 2013-08-29 | Asahi Kasei Electronics Co Ltd | Manufacturing method of compound semiconductor thin film |
CN105470382A (en) * | 2015-12-31 | 2016-04-06 | 江苏森尼克电子科技有限公司 | Magnetic-sensitive device with extending electrode and manufacturing process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5883564A (en) | Magnetic field sensor having high mobility thin indium antimonide active layer on thin aluminum indium antimonide buffer layer | |
US5184106A (en) | Magnetic field sensor with improved electron mobility | |
US4939456A (en) | Position sensor including a thin film indium arsenide magnetoresistor on a permanent magnet | |
US4978938A (en) | Magnetoresistor | |
EP0682266B1 (en) | Magnetic field sensor | |
US4926154A (en) | Indium arsenide magnetoresistor | |
JPH11251657A (en) | Magnetic sensor and its manufacture | |
KR930000825B1 (en) | Improved magnetoresistors | |
Mil'Shtein | Application of dislocation-induced electric potentials in Si and Ge | |
EP0678925A1 (en) | Magnetic field sensor | |
KR930000793B1 (en) | Improved position sensor | |
US5117543A (en) | Method of making indium arsenide magnetoresistor | |
JP2000138403A (en) | Thin film magnetic sensor | |
JP5424469B2 (en) | Magnetoresistive element | |
JPH0342707B2 (en) | ||
JP2597105Y2 (en) | Hall element | |
JP2001094170A (en) | Hall element | |
JP2597774Y2 (en) | Hall element | |
JPH10326921A (en) | Production of semiconductor thin-film magnetoresistive element | |
JP3399053B2 (en) | Heterojunction Hall element | |
JP3287054B2 (en) | Magnetoelectric conversion element | |
JP3395277B2 (en) | Magnetoelectric conversion element | |
JPH10150231A (en) | Hall element | |
JP2001320107A (en) | Hall element | |
JP2000208830A (en) | Compound semiconductor multilayer thin film and magnetic sensor |