Nothing Special   »   [go: up one dir, main page]

JPH11258418A - Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film - Google Patents

Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film

Info

Publication number
JPH11258418A
JPH11258418A JP6491998A JP6491998A JPH11258418A JP H11258418 A JPH11258418 A JP H11258418A JP 6491998 A JP6491998 A JP 6491998A JP 6491998 A JP6491998 A JP 6491998A JP H11258418 A JPH11258418 A JP H11258418A
Authority
JP
Japan
Prior art keywords
shielding film
film
heat ray
ray shielding
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6491998A
Other languages
Japanese (ja)
Inventor
Hiroko Kuno
裕子 久野
Hiromitsu Takeda
広充 武田
Kenji Adachi
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6491998A priority Critical patent/JPH11258418A/en
Publication of JPH11258418A publication Critical patent/JPH11258418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating liquid from which a film having high transmittance and low reflectance in the visible light region and low transmittance and high reflectance in the near infrared region and film conductivity controllable to be about 10<6> Ω/(square) or higher can be formed by a simple coating method without requiring a costly physical film formation method and to provide a heat-ray shielding film produced from the coating liquid. SOLUTION: This coating liquid is a dispersant containing fine particles silicides of one or more metals selected from Cr, Mn, Co, Ni, Re, Mo, W, Ti, Zr, Hf, V, Nb, and Ta with an average particle diameter of 100 nm or smaller and alternatively further containing one or more fine particles of ruthenium oxide and iridium oxide with an average particle diameter of 100 nm or smaller. This heat ray-shielding film is obtained by applying any of such a coating liquid to a substrate and then drying the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両、ビル、事務
所、一般住宅などの窓、電話ボックス、ショーウインド
ー、照明用ランプなど、ガラス、プラスチックスその他
の各種熱線遮蔽機能を必要とする透明もしくは半透明基
材に塗布して熱線遮蔽膜とするための塗布液、及び、こ
れにより得られる熱線遮蔽膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent or transparent glass or plastics or any other heat ray shielding function, such as a window for a vehicle, a building, an office or a general house, a telephone box, a show window, a lighting lamp and the like. The present invention relates to a coating liquid for applying to a translucent substrate to form a heat ray shielding film, and a heat ray shielding film obtained by the application liquid.

【0002】[0002]

【従来の技術】従来、太陽光や電球などの外部光源から
熱成分を除去・減少する方法として、ガラス表面に可視
・赤外域の波長を反射する材料を利用して熱線反射ガラ
スとすることが行なわれていた。そして、熱線反射のた
めの材料には、FeOX、CoOX、CrOX、TiOX
の金属酸化物や、Ag、Au、Cu、Ni、Alなどの
自由電子を多量にもつ金属材料が選択されてきた。
2. Description of the Related Art Conventionally, as a method of removing or reducing a heat component from an external light source such as sunlight or a light bulb, a heat ray reflecting glass using a material which reflects a visible / infrared wavelength on a glass surface is used. Was being done. As materials for heat ray reflection, metal oxides such as FeO x , CoO x , CrO x , and TiO x and metal materials having a large amount of free electrons such as Ag, Au, Cu, Ni, and Al are selected. It has been.

【0003】しかし、これらの材料では熱効果に大きく
寄与する近赤外線以外に、可視光領域の光も同時に反射
もしくは吸収する性質があり、可視光透過率が低下して
しまう欠点があった。建材、乗り物、電話ボックスなど
に用いられる透明基材では、可視光領域の高い透過率が
必要とされ、これらの材料を利用する場合は可視光透過
率を高くするため膜厚を非常に薄くしなければならず、
従ってスプレー焼き付けやCVD法、或いはスパッタ法
や真空蒸着法などの物理成膜法を用いて10nmレベル
の極めて薄い薄膜に成膜して用いられることが通常行な
われてきた。
However, these materials have the property of simultaneously reflecting or absorbing light in the visible light region in addition to near infrared rays which greatly contribute to the thermal effect, and have a drawback that the visible light transmittance is reduced. Transparent base materials used for building materials, vehicles, telephone boxes, etc., require high transmittance in the visible light region, and when using these materials, the thickness must be extremely thin to increase the visible light transmittance. Must be
Therefore, it has been generally practiced to form an extremely thin film having a thickness of 10 nm using a physical film forming method such as spray baking, a CVD method, or a sputtering method or a vacuum evaporation method.

【0004】これらの成膜方法は大がかりな装置や真空
設備を必要とし、生産性、大面積化に問題があり、ま
た、膜の製造コストが高かった。
[0004] These film forming methods require large-scale equipment and vacuum equipment, have problems in productivity and increase in area, and have a high film manufacturing cost.

【0005】また、これらの膜は膜厚を薄くして透過率
を高くしようとすると熱線遮蔽特性が低下し、逆に膜厚
を厚くして熱線遮蔽特性を高くすると膜が暗くなってし
まう。さらに、これらの材料熱線遮蔽特性を高くしよう
とすると可視光領域の反射率も同時に高くなってしまう
傾向があり、鏡のようなギラギラした外観を与えて美観
を損ねてしまった。
[0005] Further, when these films are made thinner to increase the transmittance, the heat ray shielding characteristics are degraded. Conversely, when the film thickness is increased to increase the heat ray shielding characteristics, the films become darker. Further, when the heat ray shielding properties of these materials are to be enhanced, the reflectance in the visible light region tends to be increased at the same time, giving a glare-like appearance like a mirror and impairing the aesthetic appearance.

【0006】さらに、これらの材料では膜の導電性が高
くなるものが多い。膜の導電性が高いと携帯電話やT
V、ラジオなどの電波を反射して受信不能になったり、
周辺地域に電波障害を引き起こすなどの欠点があった。
Further, many of these materials have high conductivity of the film. If the conductivity of the film is high, mobile phones and T
V, radio and other radio waves are reflected and become unreceivable,
There were drawbacks such as causing radio interference in the surrounding area.

【0007】上記従来の欠点を改善するためには、膜の
物理特性として、可視光領域の光の反射率が低く、近赤
外領域の光の反射率が高く、かつ、膜の導電性が概ね1
6Ω/□以上に制御可能な膜を形成する必要があっ
た。しかしながら従来このような膜、或いはこのような
膜を形成する材料は知られていなかった。
[0007] In order to improve the above-mentioned drawbacks, the physical properties of the film are such that the reflectance of light in the visible light region is low, the reflectance of light in the near infrared region is high, and the conductivity of the film is low. Generally 1
0 6 Ω / □ has been necessary to form a controllable membrane above. However, conventionally, such a film or a material for forming such a film has not been known.

【0008】可視光透過率が高く、かつ熱線遮蔽機能を
もつ材料としては、アンチモン含有酸化錫(ATO)
や、錫含有酸化インジウム(ITO)が知られている。
これらの材料は可視光反射率が比較的低く、ギラギラし
た外観を与えることはないが、プラズマ波長が近赤外域
の比較的長波長側にあり、可視光に近い近赤外域におけ
るこれらの膜の反射・吸収効果は十分でなかった。ま
た、物理成膜法でこれらの膜を形成した場合には、膜の
導電性が上がって電波を反射してしまう欠点があった。
As a material having a high visible light transmittance and a heat ray shielding function, antimony-containing tin oxide (ATO)
Also, tin-containing indium oxide (ITO) is known.
Although these materials have a relatively low visible light reflectance and do not give a glare-like appearance, the plasma wavelength is relatively long in the near infrared region, and these films have a near-infrared region close to visible light. The reflection and absorption effects were not sufficient. Further, when these films are formed by a physical film forming method, there is a disadvantage that the conductivity of the films is increased and radio waves are reflected.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、可視光領域の光の透過率が高くて
反射率が低く、近赤外領域の光の透過率が低くて反射率
が高く、膜の導電性が概ね106Ω/□以上に制御可能
な膜を、高コストの物理成膜法を用いずに簡便な塗布法
で成膜できる塗布液と、これを用いた熱線遮蔽膜とを提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and has a high transmittance of light in the visible light region, a low reflectance, and a low transmittance of light in the near infrared region. A coating solution that can form a film having high reflectivity and a film conductivity of approximately 10 6 Ω / □ or more by a simple coating method without using an expensive physical film forming method; It is an object to provide a heat ray shielding film used.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、材料そのものの特性として自由電子
を多量に保有する珪素化合物に着目し、種々検討の結
果、これを超微粒子化し、かつ高度に分散した膜を作製
することにより、可視光領域に透過率の極大をもつとと
もに、可視光領域に近い近赤外域に強いプラズマ反射を
発現して透過率の極小をもつようになるという現象を見
出し、本発明を完成した。
Means for Solving the Problems In order to achieve the above object, the present inventors have focused on a silicon compound having a large amount of free electrons as a characteristic of the material itself. By producing a highly dispersed film that has a high transmittance in the visible light region, strong plasma reflection is exhibited in the near infrared region near the visible light region, and the transmittance is minimized. The present invention was completed by finding the phenomenon of becoming "a".

【0011】すなわち、本発明の熱線遮蔽膜用塗布液
は、Cr、Mn、Co、Ni、Re、Mo、W、Ti、
Zr、Hf、V、Nb、および、Taの群から選択され
る1種または2種以上の金属の平均粒径100nm以下
の珪素化合物微粒子を含有した分散液からなることを特
徴とする。
That is, the coating solution for a heat ray shielding film of the present invention comprises Cr, Mn, Co, Ni, Re, Mo, W, Ti,
It is characterized by comprising a dispersion liquid containing fine particles of a silicon compound having an average particle diameter of 100 nm or less of one or more metals selected from the group consisting of Zr, Hf, V, Nb, and Ta.

【0012】また、本発明の他の熱線遮蔽膜形成用塗布
液は、Cr、Mn、Co、Ni、Re、Mo、W、T
i、Zr、Hf、V、Nb、および、Taの群から選択
される1種または2種以上の金属の平均粒径100nm
以下の珪素化合物微粒子と、平均粒径100nm以下の
酸化ルテニウム微粒子、および、平均粒径100nm以
下の酸化イリジウム微粒子のうちの1種以上とを含有し
た分散液からなることを特徴とする。
Further, other coating liquids for forming a heat ray shielding film of the present invention include Cr, Mn, Co, Ni, Re, Mo, W, T
i, Zr, Hf, V, Nb, and one or more metals selected from the group of Ta having an average particle size of 100 nm
It is characterized by comprising a dispersion containing the following silicon compound fine particles, ruthenium oxide fine particles having an average particle diameter of 100 nm or less, and at least one kind of iridium oxide fine particles having an average particle diameter of 100 nm or less.

【0013】また、本発明の他の熱線遮蔽膜形成用塗布
液は、上記いずれかの構成で更に、珪素、ジルコニウ
ム、チタン、もしくは、アルミニウムの金属アルコキシ
ド、または、金属アルコキシドの部分加水分解重合物の
うちの1種以上を含有した分散液からなることを特徴と
する。
[0013] In another aspect of the present invention, the coating solution for forming a heat ray shielding film further comprises a metal alkoxide of silicon, zirconium, titanium or aluminum or a partially hydrolyzed polymer of metal alkoxide. Characterized by comprising a dispersion containing at least one of the above.

【0014】上記いずれかの構成の熱線遮蔽膜形成用塗
布液は、樹脂バインダーを含有していても良い。
The coating solution for forming a heat ray shielding film having any one of the above constitutions may contain a resin binder.

【0015】また、本発明の熱線遮蔽膜は、上記いずれ
かの熱線遮蔽膜形成用塗布液を基材に塗布後加熱して得
た微粒子分散膜であって、熱線遮蔽特性を示す主成分
が、Cr、Mn、Co、Ni、Re、Mo、W、Ti、
Zr、Hf、V、Nb、および、Taのうちの1種もし
くは2種以上の金属の珪素化合物の微粒子であり、この
微粒子が樹脂バインダー中、もしくは、珪素、ジルコニ
ウム、チタン、および、アルミニウムの金属酸化物のう
ちの1種以上を含有する酸化物のバインダー中に分散さ
れたことを特徴とする。
Further, the heat ray shielding film of the present invention is a fine particle dispersion film obtained by applying any one of the above-mentioned coating solutions for forming a heat ray shielding film to a substrate and then heating the substrate. , Cr, Mn, Co, Ni, Re, Mo, W, Ti,
Fine particles of a silicon compound of one or more of Zr, Hf, V, Nb, and Ta, and the fine particles are contained in a resin binder or a metal of silicon, zirconium, titanium, and aluminum. It is characterized by being dispersed in an oxide binder containing at least one of the oxides.

【0016】また、上記熱線遮蔽膜上に更に、珪素、ジ
ルコニウム、チタン、および、アルミニウムの金属酸化
物のうちの1種以上を含有する酸化物膜を被膜して、も
しくは、上記熱線遮蔽膜上に更に、樹脂膜を被膜して多
層熱線遮蔽膜としても良い。
Further, an oxide film containing at least one of metal oxides of silicon, zirconium, titanium and aluminum is coated on the heat ray shielding film, or Further, a multilayer heat ray shielding film may be formed by coating a resin film.

【0017】上記いじれかの熱線遮蔽膜は、透過率が、
波長400〜700nmに極大値を、波長700〜18
00nmに極小値をもち、かつ、透過率の極大値と極小
値との差が百分率で15ポイント以上であることを特徴
とし、また、表面抵抗値が106Ω/□以上であること
を特徴とする。
[0017] Any of the above heat ray shielding films has a transmittance of
A maximum value at a wavelength of 400 to 700 nm and a wavelength of 700 to 18
It is characterized by having a minimum value at 00 nm, a difference between the maximum value and the minimum value of the transmittance of 15 points or more in percentage, and a surface resistance value of 10 6 Ω / □ or more. And

【0018】[0018]

【発明の実施の形態】本発明に使用される珪素化合物微
粒子としては、珪化チタン(TiSi2)、珪化コバル
ト(CoSi2.CoSi)、珪化タングステン(WS
2)、珪化モリブデン(MoSi2)、珪化ニオブ(N
bSi2)、珪化バナジウム(VSi2)、珪化クロム
(CrSi、Cr3Si、CrSi2)、珪化マンガン
(MnSi、MnSi2)、珪化ニッケル(NiS
i)、珪化レニウム(ReSi2)などの微粒子が、そ
の代表的なものとして挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Silicon compound fine particles used in the present invention include titanium silicide (TiSi 2 ), cobalt silicide (CoSi 2 .CoSi), and tungsten silicide (WSi).
i 2 ), molybdenum silicide (MoSi 2 ), niobium silicide (N
bSi 2 ), vanadium silicide (VSi 2 ), chromium silicide (CrSi, Cr 3 Si, CrSi 2 ), manganese silicide (MnSi, MnSi 2 ), nickel silicide (NiS
i), fine particles such as rhenium silicide (ReSi 2 ) are typical examples thereof.

【0019】また、本発明に使用される珪素化合物微粒
子としては、その表面が酸化していないことが好ましい
が、通常は僅かに酸化していることが多く、また微粒子
の分散工程で表面の酸化が起こることはある程度避けら
れない。しかしその場合でも熱線遮蔽効果を発現する有
効性に変わりはない。
The fine particles of the silicon compound used in the present invention are preferably not oxidized on the surface, but are usually slightly oxidized in many cases. Is inevitable to some extent. However, even in that case, there is no change in the effectiveness of exhibiting the heat ray shielding effect.

【0020】また、これらの珪素化合物微粒子は、結晶
としての完全性が高いほど大きい熱線遮蔽効果が得られ
るが、結晶性が低くX線回折で極めてブロードな回折ピ
ークを生じるようなものであっても、微粒子内部の基本
的な結合が各金属と珪素の結合から成り立っているもの
であるならば熱線遮蔽効果を発現する。
Further, these silicon compound fine particles have a higher heat ray shielding effect as the crystal perfection becomes higher, but have a low crystallinity and generate an extremely broad diffraction peak in X-ray diffraction. Also, if the basic bond inside the fine particles is made up of the bond between each metal and silicon, a heat ray shielding effect is exhibited.

【0021】また、本発明に使用される酸化ルテニウム
及び酸化イリジウムの微粒子としては、二酸化ルテニウ
ム(RuO2)、ルテニウム酸鉛(Pb2Ru26.5)、
ルテニウム酸ビスマス(Bi2Ru27)、二酸化イリ
ジウム(IrO2)、イリジウム酸ビスマス(Bi2Ir
27)、イリジウム酸鉛(Pb2Ir26.5)などの微
粒子がその代表的な例として挙げられる。これらの微粒
子は酸化物として安定であり、また多量の自由電子を保
持しており極めて有効な熱線遮蔽機能をもっている。
The fine particles of ruthenium oxide and iridium oxide used in the present invention include ruthenium dioxide (RuO 2 ), lead ruthenate (Pb 2 Ru 2 O 6.5 ),
Bismuth ruthenate (Bi 2 Ru 2 O 7 ), iridium dioxide (IrO 2 ), bismuth iridate (Bi 2 Ir)
Fine particles such as 2 O 7 ) and lead iridate (Pb 2 Ir 2 O 6.5 ) are typical examples. These fine particles are stable as oxides, retain a large amount of free electrons, and have an extremely effective heat ray shielding function.

【0022】これらの珪素化合物微粒子、酸化ルテニウ
ム微粒子、酸化イリジウム微粒子は暗黒色、茶黒色、緑
黒色などに着色した粉末であるが、粒径が可視光波長に
比べて十分小さく薄膜中に分散した状態においては膜に
可視光透過性が生じる。しかし、赤外光遮蔽能は十分強
く保持できる。この理由は詳細には理解されていない
が、これら微粒子中の自由電子の量が多く、微粒子内部
及び表面の自由電子プラズモンによるプラズマ周波数が
ちょうど、可視〜近赤外の付近にあるために、この波長
領域の熱線が選択的に反射・吸収されると考えられる。
These silicon compound fine particles, ruthenium oxide fine particles, and iridium oxide fine particles are powders colored dark black, brown black, green black, etc., and have a particle size sufficiently smaller than the wavelength of visible light to be dispersed in a thin film. In this state, the film becomes transparent to visible light. However, the infrared light shielding ability can be maintained sufficiently strong. Although the reason for this is not understood in detail, the amount of free electrons in these fine particles is large, and the plasma frequency due to free electron plasmons inside and on the fine particles is just in the vicinity of the visible to near-infrared. It is considered that heat rays in the wavelength region are selectively reflected and absorbed.

【0023】実験によれば、これら微粒子を十分細かく
かつ均一に分散した膜では、透過率が波長400〜70
0nmに極大値をもち、かつ、波長700〜1800n
mに極小値をもち、さらにこれらの極大値と極小値との
差が百分率で15ポイント以上と十分大きいことが観察
される。可視光波長が380〜780nmであり、視感
度が550nm付近をピークとする釣鐘型であることを
考慮すると、このような膜では可視光を有効に透過しそ
れ以外の熱線を有効に反射・吸収することが理解でき
る。
According to an experiment, a film in which these fine particles are sufficiently finely and uniformly dispersed has a transmittance of 400 to 70 wavelength.
It has a maximum value at 0 nm and a wavelength of 700 to 1800 n
It is observed that m has a minimum value, and that the difference between these maximum value and minimum value is sufficiently large as a percentage of 15 points or more. Considering that the visible light wavelength is 380 to 780 nm and that the visibility is a bell-shaped peak with a peak around 550 nm, such a film effectively transmits visible light and effectively reflects and absorbs other heat rays. I can understand.

【0024】本発明において、塗布液中の珪素化合物微
粒子、酸化ルテニウム微粒子、酸化イリジウム微粒子の
平均粒径は100nm以下が良い。粒子径が100nm
よりも大きくなると、上に述べたような特有の透過率プ
ロファイル、すなわち透過率が波長400〜700nm
に極大値をもち、かつ、波長700〜1800nmに極
小値をもち、かつ、極大値と極小値との差が百分率で1
5ポイント以上であるようなプロファイルが得られず、
単調に透過率の減少した灰色っぽい膜になる。また粒子
径が100nmよりも大きい場合には、分散液中の微粒
子同士の凝集傾向が強くなり、微粒子の沈降原因とな
る。さらに100nm以上の微粒子もしくはそれらの凝
集した粗大粒子は、光散乱源となって膜に曇り(ヘイ
ズ)を生じたり、可視光透過率が減少する原因となるの
で好ましくない。従って上記無機微粒子の平均粒径は1
00nm以下とする必要がある。なお、現状の技術で経
済的に入手可能な最低の粒径は2nm程度であるが、加
減をこれに限定するものではない。
In the present invention, the average particle diameter of the silicon compound fine particles, ruthenium oxide fine particles, and iridium oxide fine particles in the coating solution is preferably 100 nm or less. Particle size 100nm
If it is larger, the specific transmittance profile as described above, that is, the transmittance is 400 to 700 nm in wavelength
Has a local maximum value, and has a local minimum value at a wavelength of 700 to 1800 nm, and the difference between the local maximum value and the local minimum value is 1% in percentage.
I couldn't get a profile with more than 5 points,
It becomes a grayish film with a monotonous decrease in transmittance. If the particle diameter is larger than 100 nm, the tendency of the fine particles in the dispersion liquid to agglomerate becomes strong, which causes sedimentation of the fine particles. Further, fine particles having a size of 100 nm or more or coarse particles aggregated thereof are not preferable because they act as a light scattering source and cause clouding (haze) of the film or decrease in visible light transmittance. Therefore, the average particle diameter of the inorganic fine particles is 1
It is necessary to be less than 00 nm. Note that the minimum particle size economically available with the current technology is about 2 nm, but the adjustment is not limited to this.

【0025】塗布液中の微粒子の分散媒は特に限定され
るものではなく、塗布条件や塗布環境、塗布液中のアル
コキシド、合成樹脂バインダーなどに合わせて選択可能
である。例えば、水や、アルコール、エーテル、エステ
ル、ケトンなどの有機溶媒の各種が使用可能であり、ま
た必要に応じて酸やアルカリを添加してpHを調整して
も良い。
The dispersion medium of the fine particles in the coating solution is not particularly limited, and can be selected according to the coating conditions, coating environment, alkoxide in the coating solution, synthetic resin binder, and the like. For example, various organic solvents such as water, alcohols, ethers, esters, and ketones can be used, and the pH may be adjusted by adding an acid or an alkali as needed.

【0026】更に、塗布液中微粒子の分散安定性を一層
向上させるために、各種の界面活性剤、カップリング剤
などを添加することも可能である。そのときのそれぞれ
の添加量は、無機微粒子に対して30重量%以下、好ま
しくは5重量%以下である。
Further, in order to further improve the dispersion stability of the fine particles in the coating liquid, it is possible to add various surfactants, coupling agents and the like. The amount of each addition at that time is 30% by weight or less, preferably 5% by weight or less based on the inorganic fine particles.

【0027】この塗布液を用いて膜としたときの膜の導
電性は、微粒子の接触箇所を経由した導電パスに沿って
行われるため、例えば界面活性剤やカップリング剤の量
を加減することで導電パスを部分的に切断することがで
き、106Ω/□以上の表面抵抗値へ膜の導電性を低下
させることは容易に可能である。また珪素、ジルコニウ
ム、チタン、アルミニウムの各金属のアルコキシド、も
しくはこれら金属の部分加水分解重合物、または合成樹
脂バインダーの含有量を加減することによっても導電性
のコントロールが可能である。
When the film is formed using this coating solution, the conductivity of the film is formed along the conductive path passing through the contact portion of the fine particles. Therefore, for example, the amount of the surfactant or the coupling agent may be adjusted. , The conductive path can be partially cut, and the conductivity of the film can be easily reduced to a surface resistance value of 10 6 Ω / □ or more. The conductivity can also be controlled by adjusting the content of the alkoxide of each metal of silicon, zirconium, titanium and aluminum, or the partially hydrolyzed polymer of these metals, or the content of the synthetic resin binder.

【0028】上記微粒子の分散方法は、微粒子が均一に
溶液中に分散する方法であれば任意に選択できるが、例
としては、ビーズミル、ボールミル、サンドミル、超音
波分散などの方法を挙げることができる。
The method for dispersing the fine particles can be arbitrarily selected as long as the fine particles are uniformly dispersed in the solution. Examples of the method include a bead mill, a ball mill, a sand mill, and an ultrasonic dispersion method. .

【0029】本発明における熱線遮蔽膜は、基材上に上
記微粒子が高密度に堆積し膜を形成するものであり、塗
布液中に含まれる珪素、ジルコニウム、チタン、アルミ
ニウムの各金属アルコキシド、もしくはこれら金属アル
コキシドの部分加水分解重合物、または合成樹脂バイン
ダーは、塗布、硬化後、微粒子の基材への結着性を向上
させ、更に膜の硬度を向上させる効果がある。またこの
ようにして得られた膜上に、さらに珪素、ジルコニウ
ム、チタン、アルミニウムなどの各金属アルコキシドも
しくはこれら金属アルコキシドの加水分解重合物または
合成樹脂を含有する被膜を第2層として被着すること
で、微粒子を主成分とする膜の基材への結着力や、膜の
硬度及び耐候性を一層向上させることも可能となる。
The heat ray shielding film in the present invention is a film in which the above-mentioned fine particles are deposited on a substrate at a high density to form a film, and each metal alkoxide of silicon, zirconium, titanium and aluminum contained in the coating solution, or These partially hydrolyzed polymers of metal alkoxides or synthetic resin binders have the effect of improving the binding properties of the fine particles to the base material after coating and curing, and further improving the hardness of the film. Further, a film containing a metal alkoxide such as silicon, zirconium, titanium, or aluminum, a hydrolyzed polymer of these metal alkoxides, or a synthetic resin is further applied as a second layer on the film thus obtained. Thus, it becomes possible to further improve the binding force of the film containing fine particles as a main component to the substrate, and the hardness and weather resistance of the film.

【0030】塗布液中に珪素、ジルコニウム、チタン、
アルミニウムの各金属アルコキシド、もしくはこれら金
属アルコキシドの加水分解重合物、または合成樹脂バイ
ンダーを含まない場合、この塗布液を基材に塗布後に得
られる膜は、基材上に上記微粒子のみが堆積した膜構造
になる。このままでも熱線遮蔽効果を示すが、この膜に
上記と同様に更に珪素、ジルコニウム、チタン、アルミ
ニウムの各金属のアルコキシド、もしくはこれら金属の
加水分解重合物、または合成樹脂バインダーを含む塗布
液を塗布して被膜を形成し多層膜とすることにより、塗
布液成分が第1層の微粒子の堆積した間隙を埋めて成膜
されるため、膜のヘイズが低減し可視光透過率が向上
し、また微粒子の基材への結着性が向上する。
Silicon, zirconium, titanium,
When each metal alkoxide of aluminum, or a hydrolysis polymer of these metal alkoxides, or a synthetic resin binder is not contained, a film obtained after applying this coating solution to a substrate is a film in which only the fine particles are deposited on the substrate. Structure. Although the heat ray shielding effect is exhibited as it is, the coating liquid containing an alkoxide of each metal of silicon, zirconium, titanium, and aluminum, or a hydrolyzed polymer of these metals, or a synthetic resin binder is applied to the film as described above. By forming a coating film to form a multilayer film, the coating liquid component is formed to fill the gaps where the fine particles of the first layer are deposited, so that the haze of the film is reduced and the visible light transmittance is improved. Of the base material to the base material is improved.

【0031】上記微粒子を主成分とする膜を、珪素、ジ
ルコニウム、チタン、アルミニウムの各金属のアルコキ
シド、もしくはこれら金属の加水分解重合物からなる被
膜で結着する方法としては、スパッタ法や蒸着法も可能
であるが、成膜工程の容易さやコストが低いなどの利点
から塗布法が有効である。この被膜用塗布液は、水やア
ルコール中に珪素、ジルコニウム、チタン、アルミニウ
ムの各金属のアルコキシド、もしくはこれら金属アルコ
キシドの加水分解重合物を1種以上含むものであり、そ
の含有液は加熱後に得られる酸化物換算で全溶液中の4
0重量%以下が好ましい。また必要に応じて酸やアルカ
リを添加してpHを調整することも可能である。このよ
うな液を上記微粒子を主成分とする膜上に更に第2層と
して塗布し加熱することで、珪素、ジルコニウム、チタ
ン、アルミニウムなどの酸化物被膜を容易に作製するこ
とが可能である。
As a method of binding the film containing the fine particles as a main component with a film made of alkoxide of each metal of silicon, zirconium, titanium, and aluminum, or a hydrolyzed polymer of these metals, a sputtering method or a vapor deposition method is used. Although a coating method is also possible, a coating method is effective from advantages such as easiness of a film forming process and low cost. The coating liquid for coating contains at least one alkoxide of each metal of silicon, zirconium, titanium, and aluminum, or a hydrolyzed polymer of these metal alkoxides in water or alcohol. 4 in the total solution in terms of oxides
It is preferably 0% by weight or less. If necessary, the pH can be adjusted by adding an acid or an alkali. By coating such a liquid as a second layer on a film containing the above fine particles as a main component and heating, an oxide film of silicon, zirconium, titanium, aluminum or the like can be easily formed.

【0032】塗布液及び被膜用の塗布液の塗布方法とし
ては特に限定されるものではなく、スピンコート法、ス
プレーコート法、ディップコート法、スクリーン印刷
法、ロールコート法、流し塗りなど、処理液を平坦且つ
薄く均一に塗布できる方法であれば如何なる方法でも適
宜採用することができる。
The method of applying the coating liquid and the coating liquid for forming a coating film is not particularly limited, and treatment liquids such as spin coating, spray coating, dip coating, screen printing, roll coating, and flow coating are used. Any method can be used as appropriate as long as it is a method that can be applied uniformly and thinly.

【0033】上記各金属アルコキシド及びその加水分解
重合物を含む塗布液の塗布後の基材加熱温度は、100
℃未満では塗膜中に含まれるアルコキシド及びその加水
分解重合物の重合反応が未完結で残る場合が多く、また
水や有機溶媒が膜中に残留し、加熱後の膜の可視光透過
率の低減の原因となるので、100℃以上が好ましく、
更に好ましくは塗布液中の溶媒の沸点以上で加熱を実施
する。
The substrate heating temperature after application of the coating solution containing each of the above metal alkoxides and their hydrolyzed polymers is 100
Below ℃, the polymerization reaction of the alkoxide and the hydrolyzed polymer contained in the coating film often remains uncompleted, and water and organic solvents remain in the film, and the visible light transmittance of the film after heating is reduced. 100 ° C. or higher is preferable because it causes reduction.
More preferably, heating is performed at a temperature equal to or higher than the boiling point of the solvent in the coating solution.

【0034】また合成樹脂バインダーを使用した場合
は、それぞれの硬化方法に従って硬化させれば良く、例
えば紫外線硬化樹脂であれば紫外線を適宜照射すれば良
く、また常温硬化樹脂であれば塗布後そのまま放置して
おけばよいため、既存の窓ガラスなどへの現場での塗布
が可能であり、汎用性が広がる。
When a synthetic resin binder is used, it may be cured according to the respective curing method. For example, an ultraviolet curable resin may be appropriately irradiated with ultraviolet light, and a room temperature curable resin may be left as it is after application. Since it is sufficient to apply it, it can be applied to an existing window glass or the like on site, and the versatility is expanded.

【0035】本発明の塗布液に使用するバインダー成分
として、或いはオーバーコート用の塗布液としては、オ
ルガノシラザン溶液を用いても良い。オルガノシザラン
溶液としては、側鎖基の修正や酸化触媒の添加で重合硬
化温度が100℃以下のものも市販されており、これら
を用いることによって成膜温度をかなり低くすることが
できる。常温硬化性バインダーとしては、市販のシリケ
ート系のものを用いることも可能である。どちらも硬化
後はSiO2の無機膜を形成し、耐候性や膜強度におい
て樹脂膜よりも優れている。
An organosilazane solution may be used as a binder component used in the coating solution of the present invention or as a coating solution for overcoating. As organosizaran solutions, those having a polymerization curing temperature of 100 ° C. or less due to modification of a side chain group or addition of an oxidation catalyst are commercially available. By using these, the film forming temperature can be considerably lowered. As the room temperature curable binder, a commercially available silicate-based binder can be used. In both cases, an inorganic film of SiO 2 is formed after curing, and is superior to a resin film in weather resistance and film strength.

【0036】本発明の膜では上記超微粒子の分散した膜
であるために、物理成膜法により製造された酸化物薄膜
のように結晶が緻密に膜内を埋めた鏡面状表面をもつ膜
に比べると、可視光領域での反射が少なく、ギラギラし
た外観を呈することが回避できる。その一方で、上記の
ように可視〜近赤外域にプラズマ周波数をもつために、
これに伴うプラズマ反射が近赤外域で大きくなる、とい
う非常に好ましい特性をもっている。また可視光領域の
反射をさらに抑制したい場合は、本微粒子分散膜の上
に、SiO2やMgFのような低屈折率の膜を成膜する
事により、容易に視感反射率1%以下の多層膜を製造可
能である。
Since the film of the present invention is a film in which the above-mentioned ultrafine particles are dispersed, a film having a mirror-like surface in which crystals are densely filled like a thin oxide film produced by a physical film formation method is used. By comparison, reflection in the visible light region is small, and it is possible to avoid giving a glaring appearance. On the other hand, in order to have a plasma frequency in the visible to near infrared region as described above,
It has a very favorable characteristic that the plasma reflection accompanying this becomes large in the near infrared region. When it is desired to further suppress the reflection in the visible light region, a low-refractive-index film such as SiO 2 or MgF is easily formed on the fine particle-dispersed film so that the luminous reflectance is 1% or less. Multilayer films can be manufactured.

【0037】本発明の塗布液には、透過率を向上させる
ために、さらにATOやITOやアルミニウム添加酸化
亜鉛などの超微粒子を混合することも可能である。これ
らの透明超微粒子は添加量を増すと可視光に近い近赤外
線領域での吸収が増加するため、可視光透過率の高い熱
線遮蔽膜とすることが可能である。また逆にATOやI
TOやアルミニウム添加酸化亜鉛などの超微粒子を分散
した液に本発明の塗布液を添加して、膜に着色すると同
時にその熱線遮蔽効果を補助することも可能である。こ
の場合、主体となるITOなどに対して奔の僅かの添加
量で熱線遮蔽効果を補助できるため、ITOの必要量の
大幅な減少が可能となり、液のコストを下げられるとい
う利点がある。
In order to improve the transmittance, the coating liquid of the present invention may further contain ultrafine particles such as ATO, ITO, and aluminum-added zinc oxide. As the amount of these transparent ultrafine particles increases, the absorption in the near infrared region close to visible light increases, so that a heat ray shielding film having high visible light transmittance can be obtained. And ATO and I
It is also possible to add the coating liquid of the present invention to a liquid in which ultrafine particles such as TO or aluminum-added zinc oxide are dispersed, to color the film and at the same time assist its heat ray shielding effect. In this case, since the heat ray shielding effect can be assisted by a very small amount of addition to the main ITO or the like, the required amount of ITO can be greatly reduced, and there is an advantage that the cost of the liquid can be reduced.

【0038】本発明の塗布液には、また、膜になったと
きの赤外線の遮蔽能と同時に、人体に有害な紫外線の遮
蔽機能を向上させるために、酸化チタンや酸化亜鉛、酸
化セリウムなどの無機系の微粒子や、有機系のベンゾフ
ェノンやベンゾトリアゾールなどの1種もしくは2種以
上を添加することも可能である。
The coating solution of the present invention also contains titanium oxide, zinc oxide, cerium oxide, etc., in order to improve the function of shielding ultraviolet rays harmful to the human body at the same time as the ability to shield infrared rays when formed into a film. It is also possible to add one or more of inorganic fine particles and organic benzophenone and benzotriazole.

【0039】本発明による塗布液は、上記無機微粒子を
分散したものであり、焼成時の熱による塗布成分の分解
或いは化学反応を利用して目的の熱線遮蔽膜を形成する
ものではないため、特性の安定した均一な膜厚の透過膜
を形成することができる。
The coating liquid according to the present invention is a dispersion in which the above-mentioned inorganic fine particles are dispersed, and does not form a target heat ray shielding film by utilizing decomposition or a chemical reaction of coating components due to heat during baking. A permeable film having a stable and uniform film thickness can be formed.

【0040】本発明における微粒子分散膜は、基材上に
微粒子が高密度に堆積し膜を形成するものであり、塗布
液中に含まれる珪素、ジルコニウム、チタン、アルミニ
ウムの各金属のアルコキシドもしくはこれらの加水分解
重合物、もしくは合成樹脂バインダーは、塗膜の硬化
後、微粒子の基材上への結着性を向上させ、さらに膜の
強度を向上させる効果がある。
The fine particle-dispersed film of the present invention is a film in which fine particles are deposited on a substrate at a high density to form a film, and the alkoxide of each metal of silicon, zirconium, titanium, and aluminum contained in the coating solution or these alkoxides. The hydrolysis polymer or the synthetic resin binder has an effect of improving the binding property of the fine particles to the substrate after the coating film is cured, and further has the effect of improving the strength of the film.

【0041】このように本発明によれば上記無機微粒子
の材料を適当に混合することで、熱線遮蔽効果を有する
膜の製造が可能であるが、これらの微粒子材料は無機材
料であるので、有機材料と比べて耐候性は非常に高く、
例えば太陽光線(紫外線)の当たる部位に使用しても、
色や諸機能の劣化はほとんど生じない。
As described above, according to the present invention, it is possible to produce a film having a heat ray shielding effect by appropriately mixing the above-mentioned inorganic fine particles. Weather resistance is very high compared to materials,
For example, even if it is used in the area where sunlight (ultraviolet rays) hits,
Deterioration of color and functions hardly occurs.

【0042】[0042]

【実施例】以下本発明の実施例を比較例と共に説明す
る。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0043】(実施例1) 平均粒径69nmのCoS
2微粒子8g、ジアセトンアルコール(DAA)80
g、水及び分散剤適量を混合し、直径4mmのジルコニ
アボールを用いて100時間ボールミル混合して、Co
Si2分散液100gを作製した。これをA液とする。
平均重合度で4〜5量体である多摩化学工業株式会社製
エチルシリケート40を6g、エタノール31g、5%
塩酸水溶液8g、水5gで調製したエチルシリケート溶
液50gと、水800g、及びエタノール300gを良
く混合・攪拌して、エチルシリケート混合液1150g
を調製した。これをB液とする。
Example 1 CoS having an average particle diameter of 69 nm
i 2 particles 8 g, diacetone alcohol (DAA) 80
g, water and an appropriate amount of a dispersant, and ball mill mixing using zirconia balls having a diameter of 4 mm for 100 hours to obtain Co.
100 g of a Si 2 dispersion was prepared. This is designated as solution A.
6 g of ethyl silicate 40 (manufactured by Tama Chemical Industry Co., Ltd.) having an average degree of polymerization of 4 to 5 and ethanol 31 g, 5%
50 g of an ethyl silicate solution prepared with 8 g of a hydrochloric acid aqueous solution and 5 g of water, 800 g of water, and 300 g of ethanol were thoroughly mixed and stirred, and 1150 g of an ethyl silicate mixed solution was obtained.
Was prepared. This is designated as solution B.

【0044】A液とB液を、CoSi2濃度が1.0
%、CoSi2/SiO2比が4:1となるような割合で
混合・攪拌し、塗布液を作製した。これをC液とする。
この溶液15gを145rpmで回転する200×20
0×3mmのソーダライム板ガラス基板上にビーカから
滴下し、そのまま3分間振り切った後、回転を止めた。
これを240℃の電気炉に入れて30分間加熱し目的と
する膜を得た。
The solution A and the solution B were used when the CoSi 2 concentration was 1.0
% And a ratio such that the CoSi 2 / SiO 2 ratio is 4: 1 to form a coating solution. This is designated as liquid C.
Rotate 15 g of this solution at 145 rpm 200 × 20
The solution was dropped from a beaker onto a 0 × 3 mm soda-lime glass substrate, shaken for 3 minutes, and then stopped rotating.
This was placed in an electric furnace at 240 ° C. and heated for 30 minutes to obtain a target film.

【0045】形成された膜の分光特性は日立製作所製の
分光光度計を用いて測定した。CoSi2微粒子を用い
た本実施例の膜の透過プロファイルからは、透過率の極
大値が507nm、極小値が1029nmにあり、極大
値と極小値の差が36ポイントと十分大きく、またJI
S−R−3106に基づいて、膜正味の値として可視光
透過率64.3%が得られた。
The spectral characteristics of the formed film were measured using a spectrophotometer manufactured by Hitachi, Ltd. According to the transmission profile of the film of this example using CoSi 2 fine particles, the maximum value of the transmittance is 507 nm, the minimum value is 1029 nm, the difference between the maximum value and the minimum value is 36 points, which is sufficiently large.
Based on SR-3106, a visible light transmittance of 64.3% was obtained as a net value of the film.

【0046】本実施例による膜の透過色は美しい濃緑色
であった。また可視光反射率は7.2%と低く、市販の
熱線反射ガラスのような膜面のギラツキ感はまったく感
じられなかった。
The transmission color of the film according to this example was a beautiful dark green. Further, the visible light reflectance was as low as 7.2%, and no glare on the film surface was felt at all like a commercially available heat ray reflective glass.

【0047】更にこの膜の表面抵抗値を、三菱化学製の
表面抵抗計を用いて測定したところ5.3×1012Ω/
□が得られ、膜抵抗値が十分高いために電波透過性には
全く問題がないことが分かった。
Further, the surface resistance value of this film was measured using a surface resistance meter manufactured by Mitsubishi Chemical Corporation to find that it was 5.3 × 10 12 Ω /.
□ was obtained, and it was found that there was no problem in radio wave transmission because the film resistance was sufficiently high.

【0048】(比較例1) 塗布法に比べて高コストの
物理成膜法により作製された市販の熱線反射ブロンズガ
ラスについて、340〜1800nmの分光透過率を測
定し、JIS−R−3106に従って可視光透過率を求
めたところ、38.8%となった。また可視光反射率は
34.2%と非常に高く、外観もギラギラしたミラー状
の外観を呈していた。また膜面の表面抵抗値は83Ω/
□と低く、電波透過性及び反射性には問題があることが
明らかである。
Comparative Example 1 A commercially available heat-reflective bronze glass produced by a physical film-forming method, which is more expensive than the coating method, was measured for its spectral transmittance at 340 to 1800 nm and was visible according to JIS-R-3106. The light transmittance was determined to be 38.8%. Further, the visible light reflectance was as high as 34.2%, and the appearance was a mirror-like appearance. The surface resistance of the film surface is 83Ω /
It is clear that there is a problem in radio wave transmission and reflection, as low as □.

【0049】(実施例2) 実施例1で作製したC液を
板ガラスの1層目としてスピンコートした後、そのまま
3分間回転を続け、続いてB液をSiO2固形分換算で
0.9%になるようにエタノールで希釈したシリケート
液15gを板ガラス上にビーカから滴下してさらに回転
を3分間続けた後、回転を止めた。このようにして塗布
した2層膜のガラス基板を240℃の電気炉に入れ、3
0分間加熱して目的とする2層膜を得た。
(Example 2) The solution C prepared in Example 1 was spin-coated as the first layer of the sheet glass, and the rotation was continued for 3 minutes, and then the solution B was 0.9% in terms of SiO 2 solid content. Then, 15 g of a silicate solution diluted with ethanol was dropped from a beaker onto a plate glass, and the rotation was further continued for 3 minutes. Then, the rotation was stopped. The glass substrate of the two-layer film coated in this manner is placed in an electric furnace at 240 ° C.
After heating for 0 minutes, the desired two-layer film was obtained.

【0050】形成された膜の分光特性を実施例1と同様
にして評価した。可視光透過率は66.8%と上昇した
反面、可視光反射率は3.4%となって反射光がさらに
抑えられた。さらに裏面に黒テープを貼って裏面からの
反射を無くして測定すると可視光反射率は0.4%とな
り、無反射ガラスに近い外観になった。この膜の透過率
の極大・極小値の位置は、実施例1での単層膜とほぼ同
じであり、同様の熱線遮蔽効果をもつことは明らかであ
る。
The spectral characteristics of the formed film were evaluated in the same manner as in Example 1. Although the visible light transmittance increased to 66.8%, the visible light reflectance was 3.4%, and the reflected light was further suppressed. Further, when a black tape was adhered to the back surface and the measurement was performed without reflection from the back surface, the visible light reflectance was 0.4%, and the appearance was close to that of non-reflective glass. The positions of the maximum value and the minimum value of the transmittance of this film are almost the same as those of the single-layer film in Example 1, and it is apparent that the film has the same heat ray shielding effect.

【0051】以下の実施例3〜13及び比較例2〜3に
おいて成膜された膜の可視光透過率と透過率の極大・極
小値、及び表面抵抗値は、実施例1に述べたと同様な方
法で評価し、実施例1、2の結果も含めてまとめて表1
に示した。
The films formed in the following Examples 3 to 13 and Comparative Examples 2 to 3 have the same visible light transmittance, maximum and minimum values of transmittance, and surface resistance as those described in Example 1. Table 1 shows the results of Examples 1 and 2
It was shown to.

【0052】(実施例3) 平均粒径69nmのCoS
2微粒子8g、イソホロン80g、水及び分散剤適量
を混合し、ジルコニアボールを用いて100時間ボール
ミル混合して、CoSi2イソホロン分散液100gを
作製した。これをD液とする。バインダーとして、エポ
キシ樹脂50重量%をイソホロンに溶解して、エポキシ
樹脂バインダー溶液を作製した。これをE液とする。D
液とE液とエタノールを強力に混合・攪拌して、CoS
2とエポキシ樹脂の固形分が全体の1.4重量%、C
oSi2とエポキシ樹脂の重量比が70:30となるよ
うにして、塗布液を作製し、実施例1と同様にして塗布
液を作製し、成膜・加熱して膜を得た。
Example 3 CoS having an average particle size of 69 nm
i 2 particles 8 g, isophorone 80 g, water and a dispersing agent suitable amount are mixed, and mixed 100 hours in a ball mill containing zirconia balls to prepare a CoSi 2 isophorone dispersion 100 g. This is designated as solution D. As a binder, 50% by weight of an epoxy resin was dissolved in isophorone to prepare an epoxy resin binder solution. This is designated as solution E. D
Solution, E solution and ethanol are mixed and stirred vigorously to obtain CoS
i 2 and the solid content of the epoxy resin are 1.4% by weight of the total, C
A coating liquid was prepared so that the weight ratio of oSi 2 to the epoxy resin was 70:30, and a coating liquid was prepared in the same manner as in Example 1, and a film was formed and heated to obtain a film.

【0053】(実施例4) バインダーとして、信越シ
リコーン製常温硬化型シリケート液X−40−9740
をB液の代わりに用いて、実施例1と同様にして塗布液
を作製し、成膜して膜を得た。ただし加熱はせずに、2
5℃の室温内2日間放置で乾燥膜となったものを評価し
た。
(Example 4) As a binder, a cold-setting silicate solution X-40-9740 manufactured by Shin-Etsu Silicone Co., Ltd.
Was used in place of the B solution to prepare a coating solution in the same manner as in Example 1, and formed into a film. However, without heating, 2
A film that was dried at room temperature of 5 ° C. for 2 days was evaluated.

【0054】(実施例5) バインダーとして、NEケ
ムキャット(株)製低温硬化型ポリペルヒドロシラザン
溶液をE液の代わりに用いて、実施例3に示したCoS
2イソホロン分散液(D液)及びキシレンを混合・攪
拌して、CoSi2濃度が1.0%、CoSi2/SiO
2比が4:1となるようにして、これを塗布液とした。
これを用いて実施例1と同様にして成膜し、80℃の電
気炉中で加熱して膜を得た。
Example 5 A low-temperature curing type polyperhydrosilazane solution manufactured by NE Chemcat Co., Ltd. was used as a binder instead of the solution E, and the CoS shown in Example 3 was used.
The i 2 isophorone dispersion (solution D) and xylene were mixed and stirred to give a CoSi 2 concentration of 1.0% and a CoSi 2 / SiO
This was used as a coating liquid so that the ratio of 2 was 4: 1.
Using this, a film was formed in the same manner as in Example 1, and heated in an electric furnace at 80 ° C. to obtain a film.

【0055】(実施例6) A液調製において、CoS
2の代わりに平均粒径81nmのWC微粒子を用いた
他は、実施例1と全く同様にして塗布液を調製し、これ
を成膜・加熱して目的の膜を得た。
Example 6 In the preparation of solution A, CoS
except that in place of i 2 with WC particles having an average particle diameter of 81nm, the Example 1 exactly to prepare a coating solution in the same manner to obtain the desired film which was deposited and heating.

【0056】(実施例7) A液調製において、CoS
2の代わりに平均粒径51nmのTiSi2微粒子を用
いた他は、実施例1と全く同様にして塗布液を調製し、
これを成膜・加熱して目的の膜を得た。
Example 7 In the preparation of solution A, CoS
A coating solution was prepared in exactly the same manner as in Example 1, except that TiSi 2 fine particles having an average particle size of 51 nm were used instead of i 2 .
This was deposited and heated to obtain a target film.

【0057】(実施例8) A液調製において、CoS
2の代わりに平均粒径48nmのZrSi2微粒子を用
いた他は、実施例1と全く同様にして塗布液を調製し、
これを成膜・加熱して目的の膜を得た。
Example 8 In the preparation of solution A, CoS
A coating solution was prepared in exactly the same manner as in Example 1 except that ZrSi 2 fine particles having an average particle size of 48 nm were used instead of i 2 ,
This was deposited and heated to obtain a target film.

【0058】(実施例9) A液調製において、CoS
2の代わりに平均粒径60nmのNiSi2微粒子を用
いた他は、実施例1と全く同様にして塗布液を調製し、
これを成膜・加熱して目的の膜を得た。
Example 9 In the preparation of solution A, CoS
A coating solution was prepared in exactly the same manner as in Example 1 except that NiSi 2 fine particles having an average particle size of 60 nm were used instead of i 2 ,
This was deposited and heated to obtain a target film.

【0059】(実施例10) A液調製において、Co
Si2の代わりに平均粒径50nmのTaSi2微粒子を
用いた他は、実施例1と全く同様にして塗布液を調製
し、これを成膜・加熱して目的の膜を得た。
Example 10 In the preparation of solution A,
A coating liquid was prepared in exactly the same manner as in Example 1 except that TaSi 2 fine particles having an average particle diameter of 50 nm were used instead of Si 2 , and the coating liquid was formed and heated to obtain a target film.

【0060】(実施例11) A液調製において、Co
Si2の代わりに平均粒径83nmのNbSi2微粒子を
用いた他は、実施例1と全く同様にして塗布液を調製
し、これを成膜・加熱して目的の膜を得た。
Example 11 In the preparation of solution A,
A coating solution was prepared in exactly the same manner as in Example 1 except that NbSi 2 fine particles having an average particle size of 83 nm were used instead of Si 2 , and this was formed and heated to obtain a target film.

【0061】(実施例12) 平均粒径30nmの酸化
ルテニウム(RuO2)微粒子15g、N−メチル−2
−ピロリドン(NMP)23g、ジアセトンアルコール
(DAA)57g、水及び分散剤適量を混合し、直径4
mmのジルコニアボールを用いて100時間ボールミル
混合して、RuO2分散液100gを作製した。このR
uO2分散液に、RuO2濃度が1%、RuO2:SiO2
=4:1となるようにB液のシリケート液を混合・攪拌
してRuO2分散シリケート液とした。これをF液とす
る。F液に、RuO2:CoSi2=1.0:1.0の
重量比になるようにA液を混合して十分攪拌し、塗布液
を調製した。この塗布液を用いて、実施例1と全く同様
にして成膜・加熱して目的の膜を得た。
(Example 12) 15 g of ruthenium oxide (RuO 2 ) fine particles having an average particle diameter of 30 nm, N-methyl-2
-Mix 23 g of pyrrolidone (NMP), 57 g of diacetone alcohol (DAA), water and an appropriate amount of dispersant,
Using a zirconia ball having a diameter of 100 mm, ball mill mixing was carried out for 100 hours to prepare 100 g of a RuO 2 dispersion. This R
In the uO 2 dispersion, a RuO 2 concentration of 1%, RuO 2 : SiO 2
= 4: 1, and the silicate liquid of the liquid B was mixed and stirred to obtain a RuO 2 dispersed silicate liquid. This is designated as solution F. The solution A was mixed with the solution F so that the weight ratio of RuO 2 : CoSi 2 = 1.0: 1.0, and the mixture was sufficiently stirred to prepare a coating solution. Using this coating solution, a film was formed and heated in exactly the same manner as in Example 1 to obtain a target film.

【0062】(実施例13) 平均粒径28nmのIr
2微粒子を用いた他は、実施例11と全く同様にし
て、IrO2:CoSi2=1:1の混合分散シリケート
塗布液を作製し、これを成膜・加熱して目的の膜を得
た。
Example 13 Ir having an average particle size of 28 nm
A mixed dispersion silicate coating liquid of IrO 2 : CoSi 2 = 1: 1 was prepared in the same manner as in Example 11 except that the O 2 fine particles were used, and this was formed and heated to obtain a target film. Was.

【0063】以上の実施例1〜13では全ての膜につい
て、透過率の極大が波長400〜700nmにあり、極
小値が波長700〜1800nmにあって、かつ、極大
値と極小値との差が百分率で15%以上であることが観
測され、これらの膜が熱線遮蔽膜として有用であること
が確認された。また全ての膜は可視光領域での反射率が
8%以下であってミラー状のギラツキが無く、さらに表
面抵抗値が3.5×1011Ω/□以上であって電波透過
性において問題のないことが確かめられた。
In the above Examples 1 to 13, for all the films, the maximum of the transmittance is in the wavelength of 400 to 700 nm, the minimum value is in the wavelength of 700 to 1800 nm, and the difference between the maximum value and the minimum value is It was observed that the percentage was 15% or more, and it was confirmed that these films were useful as heat ray shielding films. In addition, all of the films have a reflectance of 8% or less in the visible light region, have no mirror-like glare, and have a surface resistance of 3.5 × 10 11 Ω / □ or more. It was confirmed that there was not.

【0064】(比較例2) 平均粒径174nmのCo
Si2を用いた他は、実施例1と全く同様にして、Co
Si2分散シリケート塗布液を作製し、これを成膜・加
熱して目的の膜を得た。しかしこの膜は粒子径が大きす
ぎるために、曇りが大きくて(ヘイズ値33%)透明性
に欠き、またやや緑みを帯びた灰色となり、さらに極大
値と極小値の差が9%と小さく、熱線遮蔽膜として実用
に供することは困難と判断された。
Comparative Example 2 Co having an average particle size of 174 nm
Except that Si 2 was used, Co
An Si 2 dispersed silicate coating solution was prepared, and formed into a film and heated to obtain a target film. However, since this film has a too large particle size, it has a large haze (haze value of 33%), lacks transparency, becomes slightly greenish gray, and has a small difference of 9% between the maximum value and the minimum value. Therefore, it was judged that it was difficult to practically use as a heat ray shielding film.

【0065】(比較例3) 平均粒径22nmのITO
超微粒子を用いた他は、実施例1と全く同様にして、I
TO分散シリケート塗布液を作製し、これを成膜・加熱
して目的の膜を得た。しかしこの膜は透過率が、可視光
域から1500nmの赤外域に至るまで90%以上であ
り、近赤外線を遮蔽するという目的にはこの濃度(1
%)では使用できないことが分かった。
Comparative Example 3 ITO having an average particle size of 22 nm
Except for using ultrafine particles, I
A TO-dispersed silicate coating solution was prepared, formed into a film, and heated to obtain a target film. However, this film has a transmittance of 90% or more from the visible light region to the infrared region of 1500 nm.
%) Cannot be used.

【0066】[0066]

【表1】 [Table 1]

【0067】[0067]

【発明の効果】以上の実施例に示されるように、本発明
によれば、可視光領域の光の透過率が高くて反射率が低
く、近赤外領域の光の透過率が低くて反射率が高く、膜
の導電性が概ね106Ω/□以上に制御可能な膜を、高
コストの物理成膜法を用いずに簡便な塗布法で成膜でき
る塗布液と、これを用いた熱線遮蔽膜とが提供できた。
本発明の膜は、従来膜に比べて表面のギラツキ感が無
く、また電波透過性にも優れた熱線遮蔽膜である。ま
た、本発明の塗布液を用いることにより、コスト面や大
面積膜の面から工業的有用性が高い。
As shown in the above embodiments, according to the present invention, the transmittance of light in the visible light region is high and the reflectance is low, and the transmittance of light in the near infrared region is low and the reflection is low. A coating solution that can form a film having a high rate and a film conductivity of approximately 10 6 Ω / □ or more by a simple coating method without using a high-cost physical film forming method; A heat ray shielding film could be provided.
The film of the present invention is a heat ray shielding film which has less glare on the surface and is excellent in radio wave permeability as compared with the conventional film. In addition, the use of the coating liquid of the present invention has high industrial utility in terms of cost and large-area film.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Cr、Mn、Co、Ni、Re、Mo、
W、Ti、Zr、Hf、V、Nb、および、Taの群か
ら選択される1種または2種以上の金属の平均粒径10
0nm以下の珪素化合物微粒子を含有した分散液からな
る熱線遮蔽膜形成用塗布液。
1. Cr, Mn, Co, Ni, Re, Mo,
Average particle size of one or more metals selected from the group consisting of W, Ti, Zr, Hf, V, Nb, and Ta
A coating solution for forming a heat ray shielding film, comprising a dispersion containing silicon compound fine particles of 0 nm or less.
【請求項2】 Cr、Mn、Co、Ni、Re、Mo、
W、Ti、Zr、Hf、V、Nb、および、Taの群か
ら選択される1種または2種以上の金属の平均粒径10
0nm以下の珪素化合物微粒子と、平均粒径100nm
以下の酸化ルテニウム微粒子、および、平均粒径100
nm以下の酸化イリジウム微粒子のうちの1種以上とを
含有した分散液からなる熱線遮蔽膜形成用塗布液。
2. Cr, Mn, Co, Ni, Re, Mo,
Average particle size of one or more metals selected from the group consisting of W, Ti, Zr, Hf, V, Nb, and Ta
0 nm or less silicon compound fine particles and an average particle diameter of 100 nm
The following ruthenium oxide fine particles and an average particle diameter of 100
A coating liquid for forming a heat ray shielding film, comprising a dispersion liquid containing at least one of iridium oxide fine particles having a diameter of not more than nm.
【請求項3】 請求項1または請求項2に記載の熱線遮
蔽膜形成用塗布液であって、更に、珪素、ジルコニウ
ム、チタン、もしくは、アルミニウムの金属アルコキシ
ド、または、金属アルコキシドの部分加水分解重合物の
うちの1種以上を含有した分散液からなる熱線遮蔽膜形
成用塗布液。
3. The coating solution for forming a heat ray shielding film according to claim 1, further comprising a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a partial hydrolysis polymerization of a metal alkoxide. A coating liquid for forming a heat ray shielding film, comprising a dispersion containing at least one of the following substances.
【請求項4】 樹脂バインダーを含有する請求項1〜請
求項3いずれかに記載の熱線遮蔽膜形成用塗布液。
4. The coating solution for forming a heat ray shielding film according to claim 1, further comprising a resin binder.
【請求項5】 請求項1〜請求項4いずれかに記載の熱
線遮蔽膜形成用塗布液を基材に塗布後加熱して得た微粒
子分散膜であって、熱線遮蔽特性を示す主成分が、C
r、Mn、Co、Ni、Re、Mo、W、Ti、Zr、
Hf、V、Nb、および、Taのうちの1種もしくは2
種以上の金属の珪素化合物の微粒子であり、該微粒子が
樹脂バインダー中、もしくは、珪素、ジルコニウム、チ
タン、および、アルミニウムの金属酸化物のうちの1種
以上を含有する酸化物のバインダー中に分散された熱線
遮蔽膜。
5. A fine particle dispersed film obtained by applying the coating solution for forming a heat ray shielding film according to any one of claims 1 to 4 to a substrate, followed by heating. , C
r, Mn, Co, Ni, Re, Mo, W, Ti, Zr,
One or two of Hf, V, Nb, and Ta
Fine particles of a silicon compound of at least one kind of metal, and the fine particles are dispersed in a resin binder or an oxide binder containing one or more of metal oxides of silicon, zirconium, titanium, and aluminum. Heat shielding film.
【請求項6】 請求項1〜請求項4いずれかに記載の熱
線遮蔽膜形成用塗布液を基材に塗布後加熱して得た熱線
遮蔽膜の上に、更に、珪素、ジルコニウム、チタン、お
よび、アルミニウムの金属酸化物のうちの1種以上を含
有する酸化物膜を被膜された多層熱線遮蔽膜。
6. A heat ray shielding film obtained by applying the coating solution for forming a heat ray shielding film according to any one of claims 1 to 4 to a substrate and then heating, further comprising silicon, zirconium, titanium, And a multilayer heat ray shielding film coated with an oxide film containing one or more of aluminum metal oxides.
【請求項7】 請求項1〜請求項4いずれかに記載の熱
線遮蔽膜形成用塗布液を基材に塗布後加熱して得た熱線
遮蔽膜の上に、更に、樹脂膜が被膜された多層熱線遮蔽
膜。
7. A resin film is further coated on the heat ray shielding film obtained by applying the heat ray shielding film forming coating liquid according to any one of claims 1 to 4 to a substrate and heating the same. Multilayer heat ray shielding film.
【請求項8】 透過率が、波長400〜700nmに極
大値を、波長700〜1800nmに極小値をもち、か
つ、透過率の極大値と極小値との差が百分率で15ポイ
ント以上である請求項5〜請求項7いずれかに記載の熱
線遮蔽膜。
8. The method according to claim 1, wherein the transmittance has a maximum value at a wavelength of 400 to 700 nm, a minimum value at a wavelength of 700 to 1800 nm, and a difference between the maximum value and the minimum value of the transmittance is 15 points or more as a percentage. The heat ray shielding film according to any one of claims 5 to 7.
【請求項9】 表面抵抗値が106Ω/□以上である請
求項5〜請求項8いずれかに記載の熱線遮蔽膜。
9. The heat ray shielding film according to claim 5, which has a surface resistance value of 10 6 Ω / □ or more.
JP6491998A 1998-03-16 1998-03-16 Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film Pending JPH11258418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6491998A JPH11258418A (en) 1998-03-16 1998-03-16 Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6491998A JPH11258418A (en) 1998-03-16 1998-03-16 Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film

Publications (1)

Publication Number Publication Date
JPH11258418A true JPH11258418A (en) 1999-09-24

Family

ID=13271947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6491998A Pending JPH11258418A (en) 1998-03-16 1998-03-16 Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film

Country Status (1)

Country Link
JP (1) JPH11258418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235294A (en) * 2020-11-19 2021-08-10 嘉兴立一新材料有限公司 Durable electromagnetic shielding fabric and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235294A (en) * 2020-11-19 2021-08-10 嘉兴立一新材料有限公司 Durable electromagnetic shielding fabric and preparation method thereof

Similar Documents

Publication Publication Date Title
US6221945B1 (en) Film for cutting off heat rays and a coating liquid for forming the same
JP4096277B2 (en) Solar shading material, coating liquid for solar shading film, and solar shading film
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP4058822B2 (en) Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane
WO1997048107A1 (en) Transparent conductive film, low-reflection transparent conductive film, and display
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
US20090216492A1 (en) Solar radiation shielding member and solar radiation shielding member forming fluid dispersion
JP4035934B2 (en) Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same
JP2002131531A (en) Heat wave reflecting transparent substrate, method for manufacturing the same and display device for which heat wave reflecting transparent substrate is applied
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
KR100471098B1 (en) Coating solution for heat shield film and how to manufacture the heat shield film using it
JP4182825B2 (en) Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen
JP2003215328A (en) Fine particles for sun protection, coating liquid for forming sun protection film containing the same and sun protection film
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JPH06144874A (en) Heat ray reflective film and its production
JPH11258418A (en) Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film
WO2004060807A1 (en) FINE In4Sn3O12 COMPOSITE OXIDE PARTICLE FOR SOLAR RADIATION SHIELDING, PROCESS FOR PRODUCING THE SAME, COATING FLUID FOR FORMING SOLAR RADIATION SHIELDING FILM, SOLAR RADIATION SHIELDING FILM, AND SUBSTRATE FOR SOLAR RADIATION SHIELDING
JP4415953B2 (en) Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane
JP2002265236A (en) Producing method for fine particle for forming insolation shielding film and application liquid for forming insolation shielding film using the fine particle obtained by the producing method
JPH10182190A (en) Transparent black electroconducive film
JPH11258417A (en) Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film
JP2002201027A (en) Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same
JPH09156963A (en) Coating liquid for heat ray-screening film and heat ray-screening film using the liquid