JPH11212095A - Liquid crystal display device and production therefor - Google Patents
Liquid crystal display device and production thereforInfo
- Publication number
- JPH11212095A JPH11212095A JP1240398A JP1240398A JPH11212095A JP H11212095 A JPH11212095 A JP H11212095A JP 1240398 A JP1240398 A JP 1240398A JP 1240398 A JP1240398 A JP 1240398A JP H11212095 A JPH11212095 A JP H11212095A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- opening
- alignment
- display device
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、斜め方向からの視
認性が良好で、据え置き型の大画面モニタとして好適な
液晶表示装置およびその製法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device which has good visibility in oblique directions and is suitable as a stationary large screen monitor, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】OA機器の普及と共に、オフィスの省ス
ペース化とOA作業環境の向上の必要性が高まってい
る。また、電力消費に占めるOA機器の割合も増加の一
途をたどっており、個々のOA機器の省エネルギー化も
重要な課題である。薄型軽量低消費電力を特徴とする液
晶表示装置は、これらの要求を満足し得る唯一の液晶表
示装置である。2. Description of the Related Art With the spread of OA equipment, there is an increasing need to save office space and improve the OA working environment. In addition, the ratio of OA equipment to power consumption is steadily increasing, and energy saving of individual OA equipment is also an important issue. A liquid crystal display device characterized by thinness, light weight and low power consumption is the only liquid crystal display device that can satisfy these requirements.
【0003】偏光を用いる液晶表示装置の視角特性は、
液晶層の配向状態によって決定される。液晶層の平均配
向方向が基板平面方向を向いている場合に、視角特性は
良好になる。横電界方式以前の液晶表示装置の大部分で
は、暗表示と明表示のいずれか一方でしか前記条件が満
足されなかったため、それらの視角特性は据え置き型の
大画面モニタ用としては不十分であった。A viewing angle characteristic of a liquid crystal display device using polarized light is as follows.
It is determined by the alignment state of the liquid crystal layer. When the average orientation direction of the liquid crystal layer is in the plane direction of the substrate, the viewing angle characteristics are good. In most liquid crystal display devices before the horizontal electric field method, the above condition was satisfied only in one of the dark display and the bright display, so that their viewing angle characteristics were insufficient for a stationary large-screen monitor. Was.
【0004】横電界方式液晶表示装置は、暗表示と明表
示のいずれにおいても液晶層の平均配向方向が基板平面
方向となるため、モニタとして用いるのに十分な表示特
性を有する。これを実現するため、横電界方式では櫛歯
状電極を一対の基板の片側に設け、液晶層に印加される
電界の方向が基板平面方向を向く様にしている。The in-plane switching mode liquid crystal display device has sufficient display characteristics for use as a monitor because the average orientation direction of the liquid crystal layer is in the direction of the substrate plane in both dark display and bright display. In order to realize this, in the lateral electric field method, a comb-shaped electrode is provided on one side of a pair of substrates, and the direction of the electric field applied to the liquid crystal layer is directed to the plane direction of the substrate.
【0005】液晶表示装置のしきい値電圧と応答時間
は、液晶層の粘性係数、弾性係数、誘電率異方性、液晶
層に印加される電界強度等の因子によって決定される。[0005] The threshold voltage and response time of a liquid crystal display device are determined by factors such as the viscosity coefficient, elastic modulus, dielectric anisotropy, and electric field intensity applied to the liquid crystal layer.
【0006】横電界方式では、電極の構造を変えたた
め、前述の諸因子のしきい値電圧と応答時間に対する寄
与もまた大きく変わることになった。その結果、櫛歯状
電極を用いないアクティブマトリクス液晶表示装置に比
べて、しきい値電圧、応答時間とも増大することになっ
た。具体的には、しきい値電圧はおゝよそ6V以上に、
応答時間はおゝよそ90ms以上になった。In the horizontal electric field method, the contribution of the above-mentioned factors to the threshold voltage and the response time also greatly changes because the structure of the electrodes is changed. As a result, both the threshold voltage and the response time are increased as compared with an active matrix liquid crystal display device that does not use a comb-shaped electrode. Specifically, the threshold voltage is about 6 V or more,
The response time was about 90 ms or more.
【0007】[0007]
【発明が解決しようとする課題】先にも述べた様に、し
きい値電圧と応答時間は液晶材料の粘性係数、弾性係
数、誘電率異方性の影響を受ける。従って、液晶材料の
物性値を改良してしきい値電圧と応答時間を向上する方
法がまず考えられる。As described above, the threshold voltage and the response time are affected by the viscosity coefficient, elastic coefficient, and dielectric anisotropy of the liquid crystal material. Therefore, a method for improving the threshold voltage and the response time by improving the physical properties of the liquid crystal material is considered first.
【0008】しかし、液晶材料の物性値は、互いにトレ
ードオフの関係にあるため、全ての物性値を、しきい値
電圧と応答時間が向上する様に変えることは困難と思わ
れる。従って、液晶材料の物性値の改良では、しきい値
電圧と応答時間を大幅に向上することは期待できない。However, since the physical property values of the liquid crystal material are in a trade-off relationship with each other, it seems difficult to change all the physical property values so as to improve the threshold voltage and the response time. Therefore, it is not expected that the improvement of the physical properties of the liquid crystal material significantly improves the threshold voltage and the response time.
【0009】しきい値電圧の低減は、駆動系のコスト低
減のために必要である。また、応答時間の短縮は、動き
の早い動画の再生のために必要である。Reduction of the threshold voltage is necessary for reducing the cost of the driving system. In addition, shortening of the response time is necessary for reproducing a fast-moving moving image.
【0010】本発明が解決しようとする課題は、横電界
方式のしきい値電圧低減と応答時間の短縮にある。An object of the present invention is to reduce the threshold voltage and the response time of the in-plane switching method.
【0011】[0011]
【課題を解決するための手段】本発明では液晶層の配向
状態に着目した。液晶層の配向状態を変えれば、液晶材
料は同じであっても、その粘弾性係数のしきい値電圧と
応答時間に対する寄与を変えれるのではないかと考え
た。In the present invention, attention has been paid to the alignment state of the liquid crystal layer. We thought that if the orientation of the liquid crystal layer was changed, the contribution of the viscoelastic coefficient to the threshold voltage and the response time could be changed even if the liquid crystal material was the same.
【0012】液晶表示装置の1画素中には、信号電極、
共通電極、画素電極、ブラックマトリクス等の不透明な
部材が分布して光を通さない部分が存在する。また、こ
れらの不透明な部材がなく光を通す部分が存在する。In one pixel of the liquid crystal display device, a signal electrode,
Opaque members such as a common electrode, a pixel electrode, and a black matrix are distributed, and there are portions that do not transmit light. In addition, there is a portion through which light passes without these opaque members.
【0013】前者を非開口部、後者を開口部と呼ぶこと
にする。また、非開口部の一部とは、例えば非開口部中
の信号電極、共通電極、画素電極等の金属で形成された
不透明な電極の分布する部分、あるいは、これらの金属
電極の分布する部分の一部分も指す。本発明ではこの非
開口部の一部も含めて非開口部と総称する。The former is referred to as a non-opening, and the latter is referred to as an opening. In addition, a part of the non-opening means, for example, a portion where an opaque electrode formed of a metal such as a signal electrode, a common electrode, or a pixel electrode in the non-opening is distributed, or a portion where these metal electrodes are distributed. Also refers to a part of In the present invention, a part of the non-opening is generally referred to as a non-opening.
【0014】前記課題を解決する本発明の要旨は、次の
とおりである。The gist of the present invention for solving the above problems is as follows.
【0015】〔1〕 少なくとも一方が透明な一対の基
板と、該一対の基板間に配置された液晶層と、前記一対
の基板の一方の基板上に形成され、該基板面に平行な電
界を液晶に印加するための電極群と、これらの電極群に
接続された複数のアクティブ素子と、前記液晶と基板と
の間に配置された配向層と、前記液晶層の配向状態に応
じて光学特性を変える光学手段を備え、一画素内に光を
透過する開口部と光を透過しない非開口部とを有するア
クティブマトリクス型の液晶表示装置の、電圧を印加し
ない状態における前記液晶層の配向方向が、開口部と非
開口部とで異なる液晶表示装置にある。[1] At least one of a pair of transparent substrates, a liquid crystal layer disposed between the pair of substrates, and an electric field formed on one of the pair of substrates and parallel to the substrate surface. An electrode group for applying to the liquid crystal, a plurality of active elements connected to these electrode groups, an alignment layer disposed between the liquid crystal and the substrate, and an optical characteristic according to an alignment state of the liquid crystal layer. The liquid crystal display device of the active matrix type having an optical means for changing the aperture, and having an opening for transmitting light and a non-opening for not transmitting light in one pixel, the orientation direction of the liquid crystal layer in a state where no voltage is applied. The liquid crystal display device differs between the opening and the non-opening.
【0016】〔2〕前記配向層は前記液晶層と近接し、
前記配向層と前記液晶層との界面における液晶の配向方
向を界面配向方向とすると、該界面配向方向が開口部と
非開口部とで異なる前記の液晶表示装置にある。[2] The alignment layer is close to the liquid crystal layer,
In the above-mentioned liquid crystal display device, when the alignment direction of the liquid crystal at the interface between the alignment layer and the liquid crystal layer is defined as the interface alignment direction, the interface alignment direction is different between the opening and the non-opening.
【0017】〔3〕前記配向層が、光反応性の有機高分
子膜で形成されている前記の液晶表示装置にある。[3] The liquid crystal display according to the above, wherein the alignment layer is formed of a photoreactive organic polymer film.
【0018】〔4〕前記界面配向方向と電界方向の成す
角が、非開口部よりも開口部において大きくなるよう構
成されている前記の液晶表示装置にある。[4] In the above liquid crystal display device, the angle formed between the interface orientation direction and the electric field direction is larger in the opening than in the non-opening.
【0019】〔5〕前記開口部における界面配向方向と
電界方向との成す角が、45〜85度である前記の液晶
表示装置にある。[5] In the above liquid crystal display device, the angle between the interface orientation direction and the electric field direction in the opening is 45 to 85 degrees.
【0020】〔6〕前記配向層と前記液晶層との界面に
おける液晶の配向方向を界面配向方向とすると、該界面
配向方向が開口部と非開口部とで異なる前記液晶表示装
置の製法において、前記配向層を光重合型の光配向材料
で形成し、前記開口部(または非開口部)を遮光して直
線偏光光を所定の角度で照射することにより選択的に光
重合して配向させ、次いで前記非開口部(または開口
部)に直線偏光光を所定の角度で照射することにより光
重合して配向させ、前記開口部と非開口部の配向方向が
所定の角度で互いに異なるよう配向させる液晶表示装置
の製法にある。[6] Assuming that the alignment direction of the liquid crystal at the interface between the alignment layer and the liquid crystal layer is the interface alignment direction, the method of manufacturing the liquid crystal display device, wherein the interface alignment direction differs between the opening and the non-opening, The alignment layer is formed of a photo-polymerization type photo-alignment material, and is selectively photopolymerized and aligned by irradiating linearly polarized light at a predetermined angle while shielding the opening (or non-opening), Next, the non-opening (or the opening) is irradiated with linearly polarized light at a predetermined angle to be photopolymerized and oriented, and the orientations of the opening and the non-opening are different from each other at a predetermined angle. It is in the manufacturing method of the liquid crystal display device.
【0021】[0021]
【発明の実施の形態】液晶層の配向状態のうち、開口部
の配向状態はコントラスト比等の表示特性を最高値にす
るために既に最適化されている。従って、開口部の配向
状態はそのままにして、非開口部における液晶層の配向
状態を変えることにした。DESCRIPTION OF THE PREFERRED EMBODIMENTS Among the alignment states of a liquid crystal layer, the alignment state of an opening has already been optimized in order to maximize display characteristics such as contrast ratio. Therefore, the alignment state of the liquid crystal layer in the non-opening part is changed while the alignment state of the opening part is kept as it is.
【0022】その1例を図1、2を用いて説明する。図
1は本発明の液晶表示装置、図2は従来の横電解方式液
晶表示装置の1画素の1部分であり、図1、図2共に
(a),(c)は電圧無印加時の液晶配向状態を、ま
た、図(b),(d)は電圧印加時の液晶配向状態を示
す。An example will be described with reference to FIGS. FIG. 1 shows a liquid crystal display device according to the present invention, and FIG. 2 shows a part of one pixel of a conventional lateral electrolysis type liquid crystal display device. FIGS. 1 and 2 show (a) and (c) liquid crystals when no voltage is applied. FIGS. 4B and 4D show the alignment state and the liquid crystal alignment state when a voltage is applied.
【0023】図2の従来の横電解方式液晶表示装置で
は、図(a),(c)に示すように、非開口部の液晶1
1の配向方向21と、開口部の液晶12の配向方向22
が同じ方向である。In the conventional liquid crystal display device of the horizontal electrolysis type shown in FIG. 2, as shown in FIGS.
1 and the alignment direction 22 of the liquid crystal 12 in the opening.
Are in the same direction.
【0024】これに対して図1の本発明の液晶表示装置
では、図(a),(c)に示すように、非開口部の液晶
15の配向方向21と、開口部の液晶16の配向方向2
2との方向が異なっている。On the other hand, in the liquid crystal display device of the present invention shown in FIG. 1, as shown in FIGS. 1A and 1C, the alignment direction 21 of the liquid crystal 15 in the non-opening portion and the alignment direction of the liquid crystal 16 in the opening portion. Direction 2
2 and the direction is different.
【0025】開口部および開口部と同様の配向状態とす
る非開口部を白ぬきで示す。信号配線、共通電極、ソー
ス電極が存在する部分が非開口部であり、これを斜線で
示す。斜線部の液晶配向方向21は、白ぬきの部分の液
晶配向方向22に比べて電界方向9との成す角が小さ
い。The opening and the non-opening having the same orientation as the opening are shown in white. A portion where the signal wiring, the common electrode, and the source electrode are present is a non-opening portion, which is indicated by oblique lines. The angle formed by the liquid crystal alignment direction 21 in the hatched portion and the electric field direction 9 is smaller than that in the liquid crystal alignment direction 22 in the white portion.
【0026】次に、図1に示した様な液晶配向の実現方
法を説明する。非開口部と、開口部の液晶配向方向とが
異なるようにするため、本発明では配向膜に光配向性高
分子を用いる。Next, a method for realizing the liquid crystal alignment as shown in FIG. 1 will be described. In order to make the liquid crystal alignment directions of the non-opening and the opening different, in the present invention, a photo-alignable polymer is used for the alignment film.
【0027】光配向性高分子を用いた液晶表示装置は、
例えば、特許第2608661号公報に記載されてい
る。光配向性高分子は、その光反応性のため照射した直
線偏光の電気ベクトル振動方向で規定される方向に化学
結合を生じ、液晶分子は、光配向性高分子の化学結合の
方向で規定される方向に配向する。従って、光配向性高
分子による液晶の配向方向は照射する直線偏光の電気ベ
クトル振動方向により制御することができる。A liquid crystal display device using a photo-alignable polymer is:
For example, it is described in Japanese Patent No. 2608661. The photo-alignment polymer forms a chemical bond in the direction defined by the direction of electric vector oscillation of the linearly polarized light irradiated due to its photoreactivity, and the liquid crystal molecule is defined by the direction of the chemical bond in the photo-alignment polymer. Orientation. Therefore, the alignment direction of the liquid crystal by the photo-alignable polymer can be controlled by the direction of the electric vector oscillation of the linearly polarized light to be irradiated.
【0028】図4に示す様に、非開口部と、その他の部
分を順次マスキングして光照射することにより〔図4
(b)、(d)〕、非開口部と開口部との液晶配向方向
が、異なるようにすることができる。As shown in FIG. 4, the non-opening portion and other portions are sequentially masked and irradiated with light [FIG.
(B), (d)], the liquid crystal alignment directions of the non-opening and the opening may be different.
【0029】光照射を十分に行って光配向性高分子の光
反応を完了させれば、光配向性高分子は、それ以降の光
照射には反応しない。従って図5に示す様に、1回目の
光照射で光照射部分の光反応を完了させれば〔図5
(b)〕、2回目の光照射ではマスクは不要である〔図
5(d)〕。If light irradiation is sufficiently performed to complete the photoreaction of the photoalignable polymer, the photoalignable polymer does not react to subsequent light irradiation. Therefore, as shown in FIG. 5, if the photoreaction of the light irradiation part is completed by the first light irradiation [FIG.
(B)] In the second light irradiation, a mask is unnecessary [FIG. 5 (d)].
【0030】また、信号配線、共通電極、画素電極が存
在する非開口部は不透明で、その他の部分は透明である
ため、非開口部中の不透明な部分をマスクとして利用し
てもよい。Since the non-opening where the signal wiring, the common electrode and the pixel electrode are present is opaque and the other parts are transparent, the opaque part in the non-opening may be used as a mask.
【0031】図6に示す様に、まず始めに基板背面(電
極等が形成されている面の反対側)から光を照射し、開
口部を含む透明な部分の液晶の配向方向を定める〔図6
(b)〕。次に、基板表面(電極等が形成されている
側)から光を照射し、非開口部中の不透明な部分の液晶
の配向方向を定める〔図6(d)〕。As shown in FIG. 6, first, light is irradiated from the back surface of the substrate (the side opposite to the surface on which the electrodes and the like are formed) to determine the orientation of the liquid crystal in the transparent portion including the opening. 6
(B)]. Next, light is irradiated from the substrate surface (the side on which the electrodes and the like are formed) to determine the alignment direction of the liquid crystal in the opaque portion in the non-opening (FIG. 6D).
【0032】本発明の前提となる横電界方式の動作原理
を図2の従来例を用いて説明する。図2(a)、(b)
は横電界方式の1画素内での液晶分子の動作を表わす模
式断面図で、図2(c)、(d)は正面図である。ま
た、図2(a)、(c)は電圧無印加時の液晶の配向状
態を表し、図2(b)、(d)は電圧印加時の液晶配向
状態を表す。一方の基板の内側に線状電極1,4が形成
され、基板の液晶層に接する面は配向膜5で覆われてい
る。The principle of operation of the in-plane switching method, which is the premise of the present invention, will be described with reference to the conventional example shown in FIG. FIG. 2 (a), (b)
FIGS. 2C and 2D are schematic cross-sectional views showing the operation of liquid crystal molecules in one pixel of a horizontal electric field method, and FIGS. 2C and 2D are front views. FIGS. 2A and 2C show the alignment state of the liquid crystal when no voltage is applied, and FIGS. 2B and 2D show the liquid crystal alignment state when the voltage is applied. Linear electrodes 1 and 4 are formed inside one of the substrates, and the surface of the substrate in contact with the liquid crystal layer is covered with an alignment film 5.
【0033】配向膜5との相互作用により、棒状の液晶
分子11,12は両基板界面において電極1,4の長手
方向に若干の角度を成して配向されている。そして、電
圧無印加時における1画素内の液晶の配向状態はほぼ一
様であり、上記の配向となっている。Due to the interaction with the alignment film 5, the rod-like liquid crystal molecules 11 and 12 are aligned at a slight angle in the longitudinal direction of the electrodes 1 and 4 at the interface between both substrates. When no voltage is applied, the alignment state of the liquid crystal in one pixel is substantially uniform, and has the above-described alignment.
【0034】ここで、画素電極4と共通電極1に異なる
電位を与え、両者の電位差により液晶に電界9を印加す
ると、液晶分子の有する誘電率異方性により図2
(b)、(d)に示す様に、液晶分子12は電界方向9
に向きを変える。これに伴い、液晶の配向方向と偏光板
透過軸方位とで決定される液晶セルの光透過率が変化す
る。横電界方式はこの光透過率変化を利用して表示を行
う。Here, when different potentials are applied to the pixel electrode 4 and the common electrode 1 and an electric field 9 is applied to the liquid crystal due to the potential difference between the two, the dielectric anisotropy of the liquid crystal molecules causes the dielectric anisotropy shown in FIG.
As shown in (b) and (d), the liquid crystal molecules 12
Turn around. Accordingly, the light transmittance of the liquid crystal cell determined by the orientation direction of the liquid crystal and the azimuth of the transmission axis of the polarizing plate changes. The horizontal electric field method uses the change in light transmittance to perform display.
【0035】また、液晶表示装置の応答時間は、印加電
圧値を切り換えた際に液晶層が配向を変化させるのに要
する時間に相当する。この応答時間は、透過率変化が飽
和値の90%に達するまでに要する時間で定義される。The response time of the liquid crystal display device corresponds to the time required for the liquid crystal layer to change the orientation when the applied voltage value is switched. This response time is defined as the time required for the transmittance change to reach 90% of the saturation value.
【0036】以上説明した電圧印加に伴う液晶層の配向
変化は、フレデリクス転移である。E.JAKEMAN
とE.P.PAYNSら(文献:PHYSICS LE
TTERS Vol.39A No.1 pp69)によ
れば、フレデリクス転移のしきい値電圧Vth、電圧印加
時の応答時間Ton、電圧切断時の応答時間Toffは各々
次式で表される。The change in the orientation of the liquid crystal layer due to the application of a voltage as described above is a Freedericksz transition. E. FIG. Jakeman
And E. P. PAYNS et al. (Literature: PHYSICS LE
According to TTERS Vol. 39A No. 1 pp69), the threshold voltage V th of the Freedericksz transition, the response time T on when the voltage is applied, and the response time T off when the voltage is disconnected are represented by the following equations.
【0037】[0037]
【数1】 Vth=π√(K/Δε) …(1) Ton=η/(ΔεE2/4π−Kq2) …(2) Toff=η/Kq2 …(3) ここで、K、η、Δε、Eはそれぞれ弾性係数の実効
値、粘性係数の実効値、誘電率異方性、電界強度であ
る。[Number 1] V th = π√ (K / Δε ) ... (1) T on = η / (ΔεE 2 / 4π-Kq 2) ... (2) T off = η / Kq 2 ... (3) here, K, η, Δε, and E are the effective value of the elastic modulus, the effective value of the viscosity coefficient, the dielectric anisotropy, and the electric field strength, respectively.
【0038】液晶層は異方性を有するため、その粘性係
数と弾性係数も数種類に分類される。弾性係数を例にと
ると、ネマチック液晶層の弾性係数はk11、k22、k33
に分類され、それぞれスプレー型変形、ツイスト型変
形、ベンド型変形に対応する。当然ながら、異なる種類
の粘性係数、弾性係数はその値も互いに異なる。前記の
式(1)〜(3)中のη、Kは、これら数種類の粘性係
数、弾性係数の組み合せである。Since the liquid crystal layer has anisotropy, its viscosity coefficient and elastic coefficient are classified into several types. Taking the elastic modulus as an example, the elastic modulus of the nematic liquid crystal layer is k 11 , k 22 , k 33
, And correspond to spray-type deformation, twist-type deformation, and bend-type deformation, respectively. Naturally, different types of viscosity coefficient and elastic coefficient have different values. Η and K in the above equations (1) to (3) are combinations of these several types of viscosity coefficient and elastic coefficient.
【0039】フレデリクス転移に寄与する粘性係数、弾
性係数の組み合せは、電圧印加または電圧切断に伴って
生じる液晶層の変形の仕方で決定される。また、弾性係
数を例にとると、液晶層の変形がスプレー型変形に近い
場合には、k11の寄与が大きくなる。また、電圧印加ま
たは電圧切断に伴って液晶層にスプレー型変形に近い変
形が生じるならば、これに寄与するk11の符号は正にな
る。同様にして、スプレー型に近い変形が解消するなら
ばk11の符号は負になる。The combination of the viscosity coefficient and the elastic coefficient contributing to the Freedericks transition is determined by the manner in which the liquid crystal layer is deformed when a voltage is applied or cut off. Also, taking the elastic modulus as an example, the deformation of the liquid crystal layer in the case close to the spray-type deformation, the contribution of k 11 becomes larger. Furthermore, if deformation close to the spray-type deformation to the liquid crystal layer in accordance with the voltage applied or a voltage cut occurs, the sign of which contributes k 11 to become positive. Similarly, the sign of k 11 if deformed close to the spray type is eliminated becomes negative.
【0040】電圧印加または電圧切断に伴って液晶層に
生じる変形は、電圧無印加時の液晶配向状態と電界方向
によって決定される。これらのうち、電界方向と開口部
の配向状態は、前記の様に既に最適化されているため、
非開口部における液晶配向状態を変えることにした。The deformation that occurs in the liquid crystal layer due to the application of a voltage or the disconnection of the voltage is determined by the liquid crystal alignment state when no voltage is applied and the direction of the electric field. Of these, the direction of the electric field and the orientation of the opening are already optimized as described above.
The liquid crystal alignment state in the non-opening portion was changed.
【0041】従来の横電界方式と本発明における、フレ
デリクス転移に寄与する弾性係数の違いを以下に説明す
る。図2に示す様に、従来の横電界方式では、電圧無印
加時において開口部の液晶配向状態も、非開口部の液晶
配向状態も共に等しく、電界方向に対して約75度を成
す。電圧無印加時において液晶層は一様であり、変形は
生じていない。The difference between the conventional in-plane switching method and the present invention will be described below. As shown in FIG. 2, in the conventional in-plane switching method, when no voltage is applied, both the liquid crystal alignment state of the opening and the liquid crystal alignment state of the non-opening part are equal to each other, forming about 75 degrees with respect to the direction of the electric field. When no voltage is applied, the liquid crystal layer is uniform and no deformation occurs.
【0042】図2(b)に示す様に液晶層厚方向では電
圧印加に伴いツイスト型変形が生じ、図2(d)に示す
様に電界方向9ではベンド型とスプレー型の変形が生じ
る。従って、従来の横電界方式ではフレデリクス転移に
寄与する弾性係数Kは次式(4)で表される。As shown in FIG. 2B, in the thickness direction of the liquid crystal layer, twist-type deformation occurs with the application of a voltage, and as shown in FIG. Accordingly, the elastic coefficient K that contributes to the Freedericksz transition in the conventional in-plane switching method is expressed by the following equation (4).
【0043】[0043]
【数2】 K=ak22+bk11+ck33 …(4) ここで、a、b、cは正の係数である。K = ak 22 + bk 11 + ck 33 (4) where a, b, and c are positive coefficients.
【0044】一方、本発明では図1に示す様に、電圧無
印加時において非開口部における液晶の配向状態は開口
部のそれと異なる。前者は従来と同様に電界方向に対し
て約75度を成すが、後者はこれよりも小さい角度、例
えば15度を成す。そのため、電圧無印加時において電
界方向にベンド型とスプレー型の変形が生じている。On the other hand, in the present invention, as shown in FIG. 1, the alignment state of the liquid crystal in the non-opening portion when no voltage is applied is different from that in the opening portion. The former forms about 75 degrees with respect to the direction of the electric field as before, while the latter forms a smaller angle, for example, 15 degrees. Therefore, when no voltage is applied, a bend type and a spray type deformation occur in the direction of the electric field.
【0045】この場合、液晶層厚方向では、従来と同様
に電圧印加に伴いツイスト型変形が生じるが〔図1
(b)〕、電界方向では電圧印加に伴いベンド型とスプ
レー型の変形が解消する〔図1(d)〕。従って、本発
明ではフレデリクス転移に寄与する弾性係数Kは次式
(5)で表される。In this case, in the thickness direction of the liquid crystal layer, a twist-type deformation occurs in accordance with the voltage application as in the prior art [FIG.
(B)] In the direction of the electric field, the deformation of the bend type and the spray type is eliminated with the application of the voltage [FIG. 1 (d)]. Therefore, in the present invention, the elastic coefficient K that contributes to the Freedericksz transition is represented by the following equation (5).
【0046】[0046]
【数3】 K=ak22−(bk11+ck33) …(5) 式(4)と式(5)との比較より明らかな様に、本発明
におけるKは従来の横電界方式よりも小さい。式(1)
〜(3)より、Kが減少すれば、VthとTonは減少し、
Toffは増大する。従って、本発明では従来の横電界方
式よりもしきい値電圧が減少して、より低電圧での駆動
が可能になる。K = ak 22 − (bk 11 + ck 33 ) (5) As is clear from the comparison between Expressions (4) and (5), K in the present invention is smaller than that in the conventional in-plane switching method. . Equation (1)
Than to (3), if the decrease in K is, V th and T on is reduced,
T off increases. Therefore, in the present invention, the threshold voltage is reduced as compared with the conventional in-plane switching method, and driving at a lower voltage becomes possible.
【0047】また、電圧印加時の応答時間は短縮し、電
圧切断時の応答時間は増大する。低電圧駆動化は、駆動
系の低コスト化のために有利である。In addition, the response time when applying a voltage is reduced, and the response time when disconnecting a voltage is increased. Low voltage driving is advantageous for reducing the cost of the driving system.
【0048】次に、低電圧駆動時における応答時間につ
いて述べる。図7に従来の横電界方式の応答時間の印加
電圧依存性を破線で示す。Tonは印加電圧値の増大と共
に減少し、Toffは印加電圧値に依らずほぼ一定であ
り、両者は6V付近で等しくなる。Next, the response time during low voltage driving will be described. FIG. 7 shows the dependency of the response time of the conventional in-plane switching method on the applied voltage by a broken line. T on decreases with increasing applied voltage value, T off is substantially constant regardless of the applied voltage value, both equal around 6V.
【0049】汎用のLCD駆動用ICで安定的に得られ
る印加電圧である5V以下を低電圧領域としてこれに着
目する。Attention will be paid to a low voltage region of 5 V or less, which is an applied voltage that can be stably obtained by a general-purpose LCD driving IC.
【0050】TonとToffが等しければ理想的である
が、従来の横電界方式では5V以下においてTonはT
offよりも2倍以上大きい。TonとToffが極端に異なる
場合、人間が感じる応答時間は両者の内の長い方で決定
される。そのため、従来の横電界方式を低電圧で駆動す
ると、特に動きの激しい画像がやや不鮮明になる傾向に
あった。It is ideal if T on and T off are equal. However, in the conventional in-plane switching method, T on is less than 5 V at 5 V or less.
More than twice larger than off . When T on and T off are extremely different, the response time perceived by a human is determined by the longer of the two. For this reason, when the conventional in-plane switching method is driven at a low voltage, particularly intensely moving images tend to be slightly unclear.
【0051】本発明の応答時間の印加電圧依存性を図7
に実線で示す。本発明では前記の様にTonは減少しT
offは増大するため、低電圧駆動時におけるTonとToff
の差が低減される。その結果、5V以下の低電圧駆動時
でも、動画を鮮明に表示できる様になる。FIG. 7 shows the dependence of the response time on the applied voltage according to the present invention.
Is shown by a solid line. T on as of the in the present invention is reduced to T
Since off increases, T on and T off during low voltage driving
Is reduced. As a result, a moving image can be clearly displayed even when driven at a low voltage of 5 V or less.
【0052】以上の様に、本発明には広視野角を特徴と
する横電界方式の駆動電圧を低減でき、かつ、低電圧駆
動時の応答時間(TonとToff)の差を低減する作用が
ある。As described above, according to the present invention, it is possible to reduce the driving voltage of the in-plane switching method, which is characterized by a wide viewing angle, and to reduce the difference between the response times (T on and T off ) during low voltage driving. There is action.
【0053】[0053]
【実施例】次に本発明を実施例に基づきより具体的に説
明する。Next, the present invention will be described more specifically based on examples.
【0054】〔実施例 1〕厚さ1.1mmの表面を研
磨した透明なガラス基板の2枚の一方に、横電界が印加
できる薄膜トランジスタ13と各種の配線電極を形成
し、さらにその上に窒化シリコンからなる絶縁保護膜を
形成した。[Example 1] A thin film transistor 13 to which a lateral electric field can be applied and various wiring electrodes were formed on one of two transparent glass substrates polished on the surface with a thickness of 1.1 mm. An insulating protective film made of silicon was formed.
【0055】薄膜トランジスタ13と各種の配線電極
(走査電極,信号電極)の構造を図3に示す。図3は、
1画素の正面図とA―A’、B―B’の模式断面図を併
記した。FIG. 3 shows the structure of the thin film transistor 13 and various wiring electrodes (scanning electrodes, signal electrodes). FIG.
A front view of one pixel and schematic cross-sectional views of AA ′ and BB ′ are also shown.
【0056】薄膜トランジスタ素子13は、画素電極
4,信号電極3,走査電極12およびアモルファスシリ
コン13により構成される。また、共通電極1,走査電
極12,信号電極3および画素電極4は、それぞれ同一
の金属層をパターンニングすることにより形成した。The thin film transistor element 13 is composed of the pixel electrode 4, the signal electrode 3, the scanning electrode 12, and the amorphous silicon 13. Further, the common electrode 1, the scanning electrode 12, the signal electrode 3, and the pixel electrode 4 were formed by patterning the same metal layer.
【0057】画素電極4は、正面図において3本の共通
電極1の間に形成されている。画素ピッチは横方向(隣
り合う信号電極3間)100μm、縦方向(隣り合う走
査電極12間)300μmである。走査電極12と信号
電極3とは複数画素間に跨っており、その抵抗低減と線
欠陥低減のために電極幅を広めに設定した。The pixel electrode 4 is formed between the three common electrodes 1 in the front view. The pixel pitch is 100 μm in the horizontal direction (between adjacent signal electrodes 3) and 300 μm in the vertical direction (between adjacent scan electrodes 12). The scanning electrode 12 and the signal electrode 3 extend over a plurality of pixels, and the electrode width is set wider to reduce the resistance and the line defect.
【0058】また、同様の理由から共通電極1の配線部
(信号電極3に対し直角に形成された部分)の電極幅を
広めに設定した。なお、走査電極12,信号電極3,共
通電極1の幅はそれぞれ10μm,8μm,8μmとし
た。For the same reason, the electrode width of the wiring portion of the common electrode 1 (the portion formed at right angles to the signal electrode 3) was set to be wide. The widths of the scanning electrode 12, the signal electrode 3, and the common electrode 1 were 10 μm, 8 μm, and 8 μm, respectively.
【0059】一方、開口率向上のために、1画素単位で
独立に形成した画素電極4と共通電極1の信号電極3に
対し直角に形成された部分の幅は若干狭くし、それぞれ
5μmと6μmとした。上記電極の幅を狭くしたことに
より、異物混入等による断線発生の可能性が高まるが、
仮にこれらの電極に断線が生じても画素欠陥としかなら
ないため、その影響は少ない。On the other hand, in order to improve the aperture ratio, the width of the pixel electrode 4 and the portion of the common electrode 1 formed at right angles to the signal electrode 3 independently of each other are slightly reduced to 5 μm and 6 μm, respectively. And By reducing the width of the electrode, the possibility of disconnection due to foreign matter contamination etc. increases,
Even if a disconnection occurs in these electrodes, it is only a pixel defect, so that the influence is small.
【0060】画素数は、640×3本の信号電極配線と
480本の走査電極配線により640×3×480個と
した。The number of pixels was 640 × 3 × 480 with 640 × 3 signal electrode wirings and 480 scanning electrode wirings.
【0061】もう一方の基板には、ブラックマトリクス
付きのカラーフィルタを形成した。2枚の基板を組み合
わせた時のブラックマトリクスは、図3では破線30の
外側になるように形成した。On the other substrate, a color filter with a black matrix was formed. The black matrix formed by combining the two substrates was formed outside the broken line 30 in FIG.
【0062】図3中における非開口部は、破線30の内
側で、かつ、金属電極(信号電極3と共通電極1と画素
電極4)が存在しない部分を云う。また、開口部は、破
線30の外側および破線30の内側の上記金属電極が存
在する部分を云う。The non-opening portion in FIG. 3 refers to a portion inside the broken line 30 and where no metal electrode (the signal electrode 3, the common electrode 1, and the pixel electrode 4) is present. The opening refers to a portion outside the broken line 30 and inside the broken line 30 where the metal electrode exists.
【0063】2枚の基板上の配向膜としては、パラメト
キシ桂皮酸を側鎖に有するポリビニルエステルを用い
た。その分子構造を〔化1〕式に示す。As an alignment film on the two substrates, a polyvinyl ester having paramethoxycinnamic acid in a side chain was used. Its molecular structure is shown in Formula 1.
【0064】[0064]
【化1】 Embedded image
【0065】(式中、nは整数)なお、上記〔化1〕式
のnは、50〜100000が好ましい。(Where n is an integer) In the above formula, n is preferably from 50 to 100,000.
【0066】この有機配向膜は、光照射により側鎖のパ
ラメトキシ桂皮酸が光二量化反応を起こす。照射光に直
線偏光を用いれば、その電気ベクトルの振動方向に光反
応を生じる2つのパラメトキシ桂皮酸の組み合わせを選
択できる。即ち、光反応で生じる化学結合の方向を制御
することができる。In this organic alignment film, the side chain paramethoxycinnamic acid causes a photodimerization reaction by light irradiation. If linearly polarized light is used as the irradiation light, a combination of two paramethoxycinnamic acids that cause a photoreaction in the vibration direction of the electric vector can be selected. That is, the direction of the chemical bond generated by the photoreaction can be controlled.
【0067】液晶分子は、直線偏光の振動方向の垂直方
向に配向することが経験的に知られているため、照射光
(直線偏光)の振動方向により、液晶の配向方向を制御
できる。薄膜トランジスタの形成に用いられてきたフォ
トプロセスの技術を、これと組み合わせれば、配向膜上
に液晶の配向方向の異なる微小な領域を多数形成でき
る。It is empirically known that the liquid crystal molecules are aligned in the direction perpendicular to the direction of oscillation of linearly polarized light. Therefore, the orientation of liquid crystal can be controlled by the direction of oscillation of irradiation light (linearly polarized light). If the photo process technology used for forming the thin film transistor is combined with this, a large number of minute regions having different alignment directions of the liquid crystal can be formed on the alignment film.
【0068】前記〔化1〕式に示す有機配向膜以外に
も、例えば、〔化2〕〜〔化4〕式で示す分子構造の有
機配向膜も、同様にして用いることができる。これらの
配向膜と光配向技術に関しては、例えば、特許第260
8661号公報や、MartinSchadt Hubert Seiber
le Andreas Schusterらの文献(NATUREVo
l.381,16 May 1995)に詳細に記載さ
れている。In addition to the organic alignment film represented by the formula [1], for example, an organic alignment film having a molecular structure represented by the formula [2] to [4] can be used in the same manner. Regarding these alignment films and optical alignment technology, for example, Japanese Patent No. 260
No. 8661 and Martin Schadt Hubert Seiber
le Andreas Schuster et al. (NATUREVo)
1.381, 16 May 1995).
【0069】こうした有機化合物としては、Such organic compounds include:
【0070】[0070]
【化2】 Embedded image
【0071】〔式中、Rは、[Wherein, R is
【0072】[0072]
【化3】 Embedded image
【0073】R’は−(CH2)m−または−(CH2)m−O
CO−、R''は−H,−F,−Cl,−CN,−OCH
3または−(CH2)mH、mは1〜10の整数を示す〕で
表される有機化合物がある。R ′ is — (CH 2 ) m — or — (CH 2 ) m —O
CO— and R ″ are —H, —F, —Cl, —CN, —OCH
3 or - (CH 2) m H, m is an organic compound represented by an integer from 1 to 10].
【0074】本発明では、上記の光配向材料と光配向技
術とを用いて、非開口部と開口部における液晶の配向方
向が異なる様に設定した。In the present invention, the alignment direction of the liquid crystal in the non-opening portion and the opening portion is set to be different by using the above-described photo-alignment material and the photo-alignment technique.
【0075】光源には波長320nmに輝線を有する高
圧水銀灯を用い、グラントムソンプリズムを介して自然
光である光源光を直線偏光にした。照射光量は5J/c
m2とした。A high-pressure mercury lamp having a bright line at a wavelength of 320 nm was used as a light source, and natural light source light was linearly polarized through a Glan-Thompson prism. Irradiation light amount is 5J / c
It was m 2.
【0076】配向膜の配向処理過程を図4に示す。2枚
の基板のうち、薄膜トランジスタ14と各種の配線電極
を形成した基板(図3のA―A’断面)上に、スピンコ
ートにより前記の有機配向膜23(膜厚:1000Å)
を形成した〔図4(a)〕。FIG. 4 shows the alignment process of the alignment film. Of the two substrates, the above-mentioned organic alignment film 23 (thickness: 1000 °) is formed on the substrate (cross section AA ′ in FIG. 3) on which the thin film transistor 14 and various wiring electrodes are formed by spin coating.
Was formed [FIG. 4 (a)].
【0077】次に、金属電極(1,3,4)と対応する
基板上にフォトマスク26を形成し、遮光部が金属電極
と一致する様に位置合わせを行った。その後、フォトマ
スク26側から直線偏光を照射した〔図4(b)〕。Next, a photomask 26 was formed on the substrate corresponding to the metal electrodes (1, 3, 4), and alignment was performed so that the light-shielding portion coincided with the metal electrode. Thereafter, linearly polarized light was irradiated from the photomask 26 side (FIG. 4B).
【0078】該直線偏光の振動方向は、電界方向に対し
15度となる様にした。この様にして、金属電極(1,
3,4)と対応する部分以外を選択的に光照射による配
向処理を行い、配向膜23に配向処理部24を形成した
〔図4(c)〕。The direction of oscillation of the linearly polarized light was set to 15 degrees with respect to the direction of the electric field. In this manner, the metal electrodes (1,
An alignment treatment by light irradiation was selectively performed on portions other than the portions corresponding to (3, 4) to form an alignment treatment portion 24 on the alignment film 23 (FIG. 4C).
【0079】次に、遮光部が金属電極(1,3,4)以
外の部分に対応するフォトマスク27を積層し、遮光部
が上記の部分と一致する様に位置合わせを行い、フォト
マスク27側から直線偏光を照射した〔図4(d)〕。Next, a photomask 27 whose light-shielding portions correspond to portions other than the metal electrodes (1, 3, 4) is laminated, and the light-shielding portions are aligned so as to coincide with the above portions. Irradiated with linearly polarized light from the side [FIG. 4 (d)].
【0080】該直線偏光の振動方向は、電界方向に対し
75度となる様にした。この様にして、金属電極(1,
3,4)が分布する部分だけを選択的に光照射による配
向処理を行い、配向膜23に配向処理部25を形成した
〔図4(e)〕。The oscillation direction of the linearly polarized light was set to be 75 degrees with respect to the direction of the electric field. In this manner, the metal electrodes (1,
The alignment treatment by light irradiation was selectively performed only on the portion where (3, 4) was distributed, and an alignment treatment part 25 was formed on the alignment film 23 (FIG. 4E).
【0081】もう一方の基板にも同様にして配向処理部
を形成した。なお、もう一方の基板の配向膜の配向処理
部の分布が上記基板と等しくなる様形成した。An alignment treatment section was similarly formed on the other substrate. Note that the other substrate was formed such that the distribution of the alignment treatment portions of the alignment film was equal to that of the above substrate.
【0082】次に、これらの2枚の基板の双方の配向膜
が対向する様にして組み立てた。2枚の基板間の表示部
全面にわたって液晶層厚を均一にするため、両基板間に
スペーサ介在させた。該スペーサは、球状のポリマービ
ーズであり、表示部全体に分散されている。また、基板
の周縁部をエポキシ系樹脂に球状のポリマービーズを混
合したシール剤を塗付,硬化してシールした。Next, the two substrates were assembled such that both alignment films faced each other. In order to make the liquid crystal layer thickness uniform over the entire display portion between the two substrates, a spacer was interposed between the two substrates. The spacer is a spherical polymer bead and is dispersed throughout the display unit. The periphery of the substrate was sealed with an epoxy resin mixed with spherical polymer beads and cured.
【0083】以上の工程により、2枚の基板上の液晶の
配向方向を互いにほぼ平行にした。電界方向と配向方向
の成す角は、金属電極部分が15度、それ以外の部分を
75度にした。即ち、照射した直線偏光の振動方向の垂
直方向である。Through the above steps, the alignment directions of the liquid crystals on the two substrates were made substantially parallel to each other. The angle between the direction of the electric field and the orientation direction was 15 degrees for the metal electrode portion and 75 degrees for the other portions. That is, the direction is the vertical direction of the vibration direction of the irradiated linearly polarized light.
【0084】上記により作製した液晶セルに、誘電率異
方性が正で10.2(1kHz、20℃)であり、屈折
率異方性が0.075(波長590nm、20℃)のネ
マチック液晶組成物を真空注入し、紫外線硬化型樹脂の
封止剤で注入口を封止した。液晶層の厚さは4.8μm
とし、液晶層のリタデーションを0.36μmにした。A nematic liquid crystal having a positive dielectric anisotropy of 10.2 (1 kHz, 20 ° C.) and a refractive index anisotropy of 0.075 (wavelength 590 nm, 20 ° C.) The composition was vacuum-injected, and the injection port was sealed with a UV-curable resin sealing agent. The thickness of the liquid crystal layer is 4.8 μm
And the retardation of the liquid crystal layer was 0.36 μm.
【0085】この液晶セルの両面に偏光板(日東電工
製:G1220DU)を積層し、一方の偏光透過軸は開
口部の配向方向に平行にし、他方はそれに直交する様に
配した。上記の液晶の配向方向と電界方向、液晶層のリ
タデーションと偏光板配置により、低電圧で暗表示が得
られ、高電圧で明表示が得られるノーマリクローズ型の
電気光学特性とした。A polarizing plate (G1220DU, manufactured by Nitto Denko) was laminated on both sides of the liquid crystal cell, and one of the polarization transmission axes was parallel to the orientation direction of the opening, and the other was perpendicular to the opening. A normally closed electro-optical characteristic is obtained in which a dark display can be obtained at a low voltage and a bright display can be obtained at a high voltage by the alignment direction and electric field direction of the liquid crystal, the retardation of the liquid crystal layer, and the arrangement of the polarizing plate.
【0086】作製した液晶セルの、透過率の印加電圧依
存性を図8に示す。印加電圧約4.7Vに透過率の極大
値32.5%が得られた。また、印加電圧を0Vから4.
7Vに切り換えたときの応答時間(Ton)は44ms、
4.7Vから0Vに切り換えたときの応答時間(Toff)
は36msで、上記両応答時間はかなり近いものであ
る。FIG. 8 shows the dependency of the transmittance on the applied voltage of the manufactured liquid crystal cell. A maximum value of 32.5% in transmittance was obtained at an applied voltage of about 4.7 V. Also, the applied voltage was changed from 0 V to 4.
The response time (T on ) when switching to 7V is 44 ms,
Response time when switching from 4.7V to 0V (T off )
Is 36 ms, and the above two response times are fairly close.
【0087】次に、駆動回路を接続しバックライトを搭
載して液晶表示装置とした。明表示における印加電圧の
実効値が4.7Vとなる条件で駆動し、動きの激しい画
像を含む様々な画像を表示して、その表示状態を観察し
たところ、動きの激しい画像もその鮮明度が低下しなか
った。Next, a driving circuit was connected and a backlight was mounted to obtain a liquid crystal display device. When the display was driven under the condition that the effective value of the applied voltage in the bright display was 4.7 V, and various images including images with a sharp movement were displayed, and the display state was observed, the sharpness of the image with a sharp movement was also improved. Did not drop.
【0088】上記のように液晶の配向方向を液晶表示装
置の非開口部と開口部とを異なるようにしたことによ
り、比較的低電圧(4.7V)で透過率の極大値が得ら
れ、かつ、TonとToffの差も少ないことが分かった。
その結果、低電圧駆動で動きの激しい画像も鮮明に表示
し得る液晶表示装置が得られた。As described above, by setting the alignment direction of the liquid crystal to be different between the non-opening portion and the opening portion of the liquid crystal display device, a maximum value of transmittance can be obtained at a relatively low voltage (4.7 V). It was also found that the difference between T on and T off was small.
As a result, a liquid crystal display device capable of clearly displaying a rapidly moving image with low voltage driving was obtained.
【0089】〔実施例 2〕実施例1の液晶表示装置に
おいて、金属電極が分布する部分の配向方向を変えて、
電界方向と配向方向の成す角を25度にした。この液晶
表示装置は、5.0Vにおいて透過率の極大値が得ら
れ、極大値は32.2%であった。また、TonとToffは
それぞれ50ms、31msであった。[Embodiment 2] In the liquid crystal display device of Embodiment 1, the orientation direction of the portion where the metal electrodes are distributed is changed.
The angle between the direction of the electric field and the direction of orientation was 25 degrees. In this liquid crystal display device, the maximum value of the transmittance was obtained at 5.0 V, and the maximum value was 32.2%. Further, T on and T off were 50 ms and 31 ms, respectively.
【0090】明表示における印加電圧の実効値が5.0
Vとなる条件で駆動し、表示状態を観察したところ、動
きの激しい画像を表示しても画像は鮮明であった。The effective value of the applied voltage in bright display is 5.0
When driving was performed under the condition of V, and the display state was observed, the image was clear even when a rapidly moving image was displayed.
【0091】〔実施例 3〕実施例1の液晶表示装置に
おいて、金属電極が分布する部分の配向方向を変えて、
電界方向と配向方向の成す角を35度にした。この液晶
表示装置は、5.4Vにおいて透過率の極大値が得ら
れ、極大値は32.4%であった。また、TonとToffは
それぞれ58ms、29msであった。[Embodiment 3] In the liquid crystal display device of Embodiment 1, the orientation direction of the portion where the metal electrode is distributed is changed,
The angle between the electric field direction and the orientation direction was 35 degrees. In this liquid crystal display device, the maximum value of the transmittance was obtained at 5.4 V, and the maximum value was 32.4%. Further, T on and T off were 58 ms and 29 ms, respectively.
【0092】明表示における印加電圧の実効値が5.4
Vとなる条件で駆動し、表示状態を観察したところ、動
きの激しい画像を表示しても画像は鮮明であった。The effective value of the applied voltage in the bright display is 5.4.
When driving was performed under the condition of V, and the display state was observed, the image was clear even when a rapidly moving image was displayed.
【0093】〔実施例 4〕実施例1の液晶表示装置に
おいて、配向膜の配向処理工程を変えた。[Embodiment 4] In the liquid crystal display device of Embodiment 1, the alignment treatment step of the alignment film was changed.
【0094】本実施例における配向膜の配向処理工程を
図5に示す。まず始めに、実施例1と同様にフォトマス
ク26を用いて金属電極(1,3,4)が分布しない部
分だけを選択的に光照射して配向処理し、配向膜23に
配向処理部24を形成した〔図5(b)、(c)〕。FIG. 5 shows the alignment process of the alignment film in this embodiment. First, similarly to the first embodiment, only the portion where the metal electrodes (1, 3, 4) are not distributed is selectively irradiated with light using the photomask 26 to perform alignment processing. Was formed [FIGS. 5 (b) and 5 (c)].
【0095】直線偏光の振動方向は、実施例1と同様に
電界方向に対して75度になる様にした。ただしこの
時、光照射を十分に行って配向処理部24の光反応を完
結させ、その後、光を照射しても光反応が起こらない様
にした。The oscillation direction of the linearly polarized light was set to 75 degrees with respect to the direction of the electric field as in the first embodiment. However, at this time, light irradiation was sufficiently performed to complete the photoreaction of the alignment processing unit 24, and then the photoreaction was prevented from occurring even when the light was irradiated.
【0096】次に、フォトマスク無しで1回目と同じ方
向から直線偏光を光照射した〔図5(d)〕。直線偏光
の振動方向は電界方向に対して15度になる様にした。Next, linearly polarized light was irradiated from the same direction as the first time without a photomask [FIG. 5 (d)]. The oscillation direction of the linearly polarized light was set to 15 degrees with respect to the direction of the electric field.
【0097】本実施例では、1回目の光照射で光照射部
の光反応を完結させることにより、2階目はフォトマス
クを用いずとも金属電極(1,3,4)が分布する部分
だけを選択的に配向処理することができた〔図5
(e)〕。In this embodiment, the photoreaction of the light-irradiated portion is completed by the first light-irradiation, so that the second floor can be used only in the portion where the metal electrodes (1, 3, 4) are distributed without using a photomask. Could be selectively oriented [FIG.
(E)].
【0098】上記液晶表示装置の表示特性は、実施例1
とほぼ同様であり、4.7Vで透過率の極大値(32.5
%)が得られ、TonとToffはそれ44ms、35ms
であった。駆動回路を接続し、バックライトを搭載した
液晶表示装置としての表示状態を観察したところ、動き
の激しい画像を表示しても画像は鮮明であった。The display characteristics of the liquid crystal display device were as described in Example 1.
And the maximum value of the transmittance at 4.7 V (32.5 V).
%), And T on and T off are 44 ms and 35 ms, respectively.
Met. When a driving circuit was connected and the display state of the liquid crystal display device equipped with a backlight was observed, the image was clear even when a rapidly moving image was displayed.
【0099】〔実施例 5〕実施例1の液晶表示装置に
おいて、配向膜の配向処理工程を変えた。本実施例にお
ける配向膜の配向処理工程を図6に示す。まず始めに、
金属電極(1,3,4)が形成されていない側から基板
面に直線偏光を照射した〔図(b)〕。[Embodiment 5] In the liquid crystal display device of Embodiment 1, the alignment process of the alignment film was changed. FIG. 6 shows an alignment process of the alignment film in this embodiment. First of all,
The substrate surface was irradiated with linearly polarized light from the side where the metal electrodes (1, 3, 4) were not formed [FIG.
【0100】この時、は、光を通さないためこれらが分
布しない部分だけに光を照射することができる。このよ
うにフォトマスクを用いずに金属電極が分布しない部分
だけを選択的に配向処理し、配向膜23に配向処理部2
4を形成した〔図(c)〕。この時、直線偏光の振動方
向は実施例1と同様に電界方向に対して75度に設定し
た。また、実施例4と同様に光照射を十分に行って光反
応を完結させ、その後、光が照射されても光反応が起こ
らない様にした。At this time, since light does not pass through, it is possible to irradiate only a portion where these are not distributed. As described above, only the portion where the metal electrodes are not distributed is selectively subjected to the alignment treatment without using the photomask, and the alignment film 2 is provided on the alignment film 23.
4 was formed [FIG. At this time, the oscillation direction of the linearly polarized light was set at 75 degrees with respect to the direction of the electric field as in the first embodiment. Light irradiation was sufficiently performed in the same manner as in Example 4 to complete the light reaction, and thereafter, the light reaction was prevented from occurring even when the light was irradiated.
【0101】次に、フォトマスクを用いずに金属電極
(1,3,4)が形成されている側の基板面に直線偏光
を光照射した〔図(d)〕。直線偏光の振動方向は電界
方向に対して15度になる様にした。このようにして、
フォトマスクを用いずに1回目の光照射で配向処理して
いない金属電極部に対応する部分を配向処理して配向処
理部23を形成した〔図(e)〕。Next, the surface of the substrate on which the metal electrodes (1, 3, 4) were formed was irradiated with linearly polarized light without using a photomask [FIG. The oscillation direction of the linearly polarized light was set to 15 degrees with respect to the direction of the electric field. In this way,
A portion corresponding to the metal electrode portion which was not subjected to the orientation treatment by the first light irradiation without using the photomask was subjected to the orientation treatment to form the orientation-treated portion 23 (FIG. 9E).
【0102】作成した液晶表示素子の表示特性は実施例
1とほぼ同様であり、4.7Vで透過率の極大値(3
2.5%)が得られ、TonとToffはそれ44ms、3
5msであった。駆動回路を接続しバックライトを搭載
し液晶表示装置として表示状態を観察したところ、動き
の激しい画像を表示しても画像は鮮明であった。The display characteristics of the liquid crystal display device thus produced are almost the same as those of the first embodiment, and the maximum value of the transmittance at 4.7 V (3
2.5%), and T on and T off are 44 ms, 3
It was 5 ms. When a driving circuit was connected, a backlight was mounted, and the display state was observed as a liquid crystal display device, the image was clear even when a rapidly moving image was displayed.
【0103】〔実施例 6〕実施例1の液晶表示装置に
おいて、配向が異なる2つの領域の境界を変えた。実施
例1の液晶表示装置では、配向が異なる2つの領域の境
界を、金属電極(1,3,4)が分布する部分とそれ以
外の部分との境界に一致させたが、本実施例では上記境
界を金属電極の分布領域内に設定した。[Embodiment 6] In the liquid crystal display device of Embodiment 1, the boundary between two regions having different orientations was changed. In the liquid crystal display device according to the first embodiment, the boundary between the two regions having different orientations is matched with the boundary between the portion where the metal electrodes (1, 3, 4) are distributed and the other portion. The boundary was set within the distribution region of the metal electrode.
【0104】具体的な製造工程を図9に示す。図9
(a)〜(e)は図4(a)〜(e)に対応している。
1回目の光照射に用いるフォトマスク26の遮光部は、
実施例1と同様に基板の金属電極(1,3,4)の分布
領域に対応している。しかし、その分布領域の広さは、
金属電極の分布領域よりも約2μmだけ狭く設定した。FIG. 9 shows a specific manufacturing process. FIG.
(A) to (e) correspond to FIGS. 4 (a) to (e).
The light shielding portion of the photomask 26 used for the first light irradiation is
This corresponds to the distribution region of the metal electrodes (1, 3, 4) on the substrate as in the first embodiment. However, the size of the distribution area is
The width was set to be narrower by about 2 μm than the distribution area of the metal electrodes.
【0105】このフォトマスクを基板上に積層して、遮
光部が金属電極の内側に位置する様に配し、フォトマス
ク側から直線偏光を照射した〔図9(b)〕。直線偏光
の振動方向は電界方向に対して15度になる様にした。
以上の様にして、金属電極(1,3,4)の内側を選択
的に配向処理し、配向処理部24を形成した〔図4
(c)〕。This photomask was laminated on a substrate, arranged so that the light-shielding portion was positioned inside the metal electrode, and irradiated with linearly polarized light from the photomask side (FIG. 9B). The oscillation direction of the linearly polarized light was set to 15 degrees with respect to the direction of the electric field.
As described above, the inside of the metal electrodes (1, 3, 4) was selectively subjected to the orientation treatment to form the orientation-treated portion 24 [FIG.
(C)].
【0106】次に、2回目の光照射に用いるフォトマス
クの遮光部は、1回目のフォトマスク26と相補的な関
係にある。このフォトマスク27を基板上に積層し、遮
光部が開口部全体を覆い、かつ、1回目の光照射におい
て光が照射された非開口部を覆う様に位置合わせを行っ
た。次いで、フォトマスク27側から直線偏光を照射し
た〔図9(d)〕。直線偏光の振動方向は電界方向に対
して75度になる様にした。Next, the light shielding portion of the photomask used for the second light irradiation is complementary to the first photomask 26. The photomask 27 was stacked on the substrate, and the alignment was performed so that the light-shielding portion covered the entire opening and covered the non-opening irradiated with light in the first light irradiation. Next, linearly polarized light was applied from the photomask 27 side (FIG. 9D). The oscillation direction of the linearly polarized light was set to 75 degrees with respect to the direction of the electric field.
【0107】以上の様にして1回目の光照射で光が照射
されなかった部分だけを選択的に配向処理した〔図9
(e)〕。As described above, only the portion not irradiated with light in the first light irradiation was selectively subjected to the alignment treatment [FIG.
(E)].
【0108】もう一方の基板の配向膜にも同様の方法で
配向処理を施し、両基板の配向膜の配向処理方向の分布
が互いに等しくなる様にした。このようにして、配向が
異なる2つの領域の境界を金属電極内領域に設定した。The alignment film on the other substrate was also subjected to an alignment treatment in the same manner so that the distribution of the alignment treatment directions of the alignment films on both substrates was equal to each other. Thus, the boundary between the two regions having different orientations was set as the region inside the metal electrode.
【0109】本発明の液晶表示装置には、液晶セルの上
下に偏光板が配置されている。それらの透過軸が互いに
直交する様に配置し、かつ、上下の偏光板の透過軸のい
ずれかを液晶の配向方向に一致させることにより、電圧
無印加時の光透過率を0%にし、高いコントラスト比が
得られる。このように、開口部では上下の偏光板の透過
軸のいずれかに一致する様に、配向方向を定める必要が
ある。In the liquid crystal display device of the present invention, polarizing plates are arranged above and below a liquid crystal cell. By arranging their transmission axes orthogonal to each other and making one of the transmission axes of the upper and lower polarizers coincide with the orientation direction of the liquid crystal, the light transmittance when no voltage is applied is reduced to 0%, and high. A contrast ratio is obtained. As described above, it is necessary to determine the orientation direction in the opening so as to coincide with one of the transmission axes of the upper and lower polarizing plates.
【0110】非開口部の配向方向は、この条件を満足し
ないため、非開口部の配向方向が開口部に分布すること
があれば、その部分の暗表示透過率が十分低減せず、コ
ントラスト比が低下する。Since the orientation direction of the non-opening does not satisfy this condition, if the orientation of the non-opening is distributed in the opening, the dark display transmittance in that portion is not sufficiently reduced, and the contrast ratio Decrease.
【0111】図4,5,6,9に示した配向処理工程に
おいて、フォトマスクの位置合わせ精度が低下すると、
開口部と非開口部の境界が所定の位置からずれる場合が
ある。In the alignment process shown in FIGS. 4, 5, 6, and 9, when the alignment accuracy of the photomask is reduced,
The boundary between the opening and the non-opening may be shifted from a predetermined position.
【0112】実施例1の液晶表示装置において、ずれが
生じると境界もずれて、開口部に位置するようになる。
この時、本来、非開口部に分布すべき液晶配向が、開口
部に分布するようになるためコントラスト比が低下す
る。In the liquid crystal display device according to the first embodiment, when a shift occurs, the boundary also shifts and is located at the opening.
At this time, the liquid crystal alignment that should originally be distributed in the non-opening portion is distributed in the opening portion, so that the contrast ratio is reduced.
【0113】ところが、本実施例では開口部と非開口部
の境界を非開口部に設定したため、境界が所定の位置か
ら、ある程度ずれてもコントラスト比の低下を防ぐこと
ができる。However, in this embodiment, since the boundary between the opening and the non-opening is set to the non-opening, it is possible to prevent a decrease in the contrast ratio even if the boundary deviates from a predetermined position to some extent.
【0114】これまでの実施例では、画素電極と共通電
極を平行にし、かつ、信号配線に平行にしたが、これ以
外の構造、例えば、画素電極と共通電極が平行でない場
合、あるいは、画素電極と共通電極のいずれか一方が、
信号配線に平行でない場合でも、非開口部と開口部の液
晶配向方向を異なる様にすることで、応答時間やしきい
値電圧に寄与する、粘弾性定数の実効値を最適化するこ
とができ、同様の効果が得られる。In the above embodiments, the pixel electrode and the common electrode are made parallel and parallel to the signal wiring. However, other structures, for example, when the pixel electrode and the common electrode are not parallel, And one of the common electrodes
Even when not parallel to the signal wiring, it is possible to optimize the effective value of the viscoelastic constant, which contributes to the response time and threshold voltage, by making the liquid crystal alignment directions of the non-opening and the opening different. The same effect can be obtained.
【0115】本発明では液晶配向に光重合型の光配向材
料を用いたが、配向処理後の液晶配向方向を固定できる
ものであれば、他の光配向技術も適用可能である。ま
た、非開口部と開口部の液晶配向方向を異ならせるもの
であれば、光配向技術以外の配向技術も適用可能であ
る。In the present invention, a photo-polymerizable photo-alignment material is used for the liquid crystal alignment, but other photo-alignment techniques can be applied as long as the alignment direction of the liquid crystal after the alignment treatment can be fixed. Further, as long as the liquid crystal alignment directions of the non-opening portion and the opening portion are different from each other, an alignment technology other than the optical alignment technology can be applied.
【0116】〔比較例 1〕実施例1の液晶表示装置に
おいて、非開口部の配向方向を変え、電界方向と配向方
向のなす角を75度にした。即ち、従来の横電界方式と
同様に開口部と非開口部の液晶配向方向を同じにした。Comparative Example 1 In the liquid crystal display device of Example 1, the orientation direction of the non-opening portion was changed, and the angle between the electric field direction and the orientation direction was set to 75 degrees. That is, the liquid crystal alignment directions of the opening and the non-opening were made the same as in the conventional in-plane switching method.
【0117】その結果、7.1Vで透過率の極大値が現
れ、その値は32.6%であった。TonとToffはそれぞ
れ73msと25msであった。As a result, a maximum value of the transmittance appeared at 7.1 V, which was 32.6%. T on and T off were 73 ms and 25 ms, respectively.
【0118】明表示における印加電圧の実効値が7.1
Vとなる条件で駆動し、表示状態を観察したところ、動
きの激しい画像では画像の輪郭がぼけ、鮮明度が低下し
た。The effective value of the applied voltage in the bright display is 7.1.
When the image was driven under the condition of V and the display state was observed, the outline of the image was blurred and the sharpness was lowered in an image with a sharp movement.
【0119】TonとToffの差異が大きい場合、人間が
感じる液晶表示装置の応答特性はTo nとToffのうちの
大きい方に対応する。TonとToffがそれぞれ73m
s、25msである場合、人間が感じる応答特性は73
msの方に対応する。[0119] If the difference of T on and T off is large, the response characteristics of the liquid crystal display device which human beings feel corresponds to the larger of the T o n and T off. T on and T off each 73m
s, 25 ms, the response characteristic felt by humans is 73
ms.
【0120】〔比較例 2〕比較例1の液晶表示装置に
おいて、実施例1と同様に明表示における印加電圧の実
効値が4.7Vとなる条件で駆動した。この時、Tonと
Toffはそれぞれ95ms、21msであった。表示状
態を観察したところ、明表示の輝度が半分程度に低下し
た。また、比較例1と同様に動きの激しい画像において
鮮明度の著しい低下が観測された。[Comparative Example 2] The liquid crystal display device of Comparative Example 1 was driven under the condition that the effective value of the applied voltage in bright display was 4.7 V, as in Example 1. At this time, T on and T off were 95 ms and 21 ms, respectively. When the display state was observed, the brightness of the bright display was reduced to about half. Also, as in Comparative Example 1, a sharp decrease in sharpness was observed in an image having a sharp movement.
【0121】上記の比較例1,2から、開口部と非開口
部の液晶の配向方向を等しくすると、透過率の極大を与
える印加電圧は高くなり、かつ、TonとToffの差が増
大し、動画表示時の画像の鮮明度も低下することが分か
った。[0121] Comparative Examples 1 and 2 above, when equal the alignment direction of the liquid crystal of the opening and non-opening portion, the applied voltage giving a maximum transmittance is high, and the difference between the T on and T off is increased However, it was found that the sharpness of the image at the time of displaying a moving image also decreased.
【0122】[0122]
【発明の効果】本発明によれば、広視野角を特長とする
横電界方式の低駆動電圧化、動画表示の鮮明化等の優れ
た効果が得られる。According to the present invention, excellent effects such as a low driving voltage of a horizontal electric field method having a wide viewing angle and a clear display of a moving image can be obtained.
【図1】本発明の液晶表示装置の構造と液晶の配向方向
を示す模式断面図である。FIG. 1 is a schematic sectional view showing the structure of a liquid crystal display device of the present invention and the orientation direction of liquid crystal.
【図2】従来の液晶表示装置の構造と液晶の配向方向を
示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing a structure of a conventional liquid crystal display device and an alignment direction of liquid crystal.
【図3】本発明の液晶表示装置の1画素の構造を示す模
式図である。FIG. 3 is a schematic diagram showing a structure of one pixel of the liquid crystal display device of the present invention.
【図4】本発明の液晶表示装置の製法の一例を示す模式
断面図である。FIG. 4 is a schematic cross-sectional view showing one example of a method for manufacturing a liquid crystal display device of the present invention.
【図5】本発明の液晶表示装置の製法の一例を示す模式
断面図である。FIG. 5 is a schematic cross-sectional view showing one example of a method for manufacturing a liquid crystal display device of the present invention.
【図6】本発明の液晶表示装置の製法の一例を示す模式
断面図である。FIG. 6 is a schematic cross-sectional view showing one example of a method for manufacturing a liquid crystal display device of the present invention.
【図7】本発明の液晶表示装置の応答時間の駆動電圧依
存性を示す図である。FIG. 7 is a diagram showing the drive voltage dependence of the response time of the liquid crystal display device of the present invention.
【図8】本発明の液晶表示装置の透過率の駆動電圧依存
性を示す図である。FIG. 8 is a diagram showing the drive voltage dependence of the transmittance of the liquid crystal display device of the present invention.
【図9】本発明の液晶表示装置の製法の一例を示す模式
断面図である。FIG. 9 is a schematic cross-sectional view showing one example of a method for manufacturing a liquid crystal display device of the present invention.
1…共通電極、2…ゲート絶縁膜、3…信号電極、4…
画素電極、5…配向膜、7…基板、8…偏光板、9…電
界方向、11…偏光板透過軸方向、12…走査電極、1
3…アモルファスシリコン、14…薄膜トランジスタ、
15…非開口部の液晶の平均配向方向、16…開口部の
液晶の平均配向方向、21…非開口部の界面配向方向、
22…開口部の界面配向方向、23…配向膜、24,2
5…配向処理部、26,27…フォトマスク、30…ブ
ラックマトリクス。DESCRIPTION OF SYMBOLS 1 ... Common electrode, 2 ... Gate insulating film, 3 ... Signal electrode, 4 ...
Pixel electrode, 5: alignment film, 7: substrate, 8: polarizing plate, 9: electric field direction, 11: polarizing plate transmission axis direction, 12: scanning electrode, 1
3 ... amorphous silicon, 14 ... thin film transistor,
15: average orientation direction of liquid crystal in non-opening portion; 16: average orientation direction of liquid crystal in opening portion; 21: interface orientation direction of non-opening portion;
22: orientation direction of interface at opening, 23: orientation film, 24, 2
5: alignment processing unit, 26, 27: photomask, 30: black matrix.
Claims (6)
該一対の基板間に配置された液晶層と、前記一対の基板
の一方の基板上に形成され、該基板面に平行な電界を液
晶に印加するための電極群と、これらの電極群に接続さ
れた複数のアクティブ素子と、前記液晶と基板との間に
配置された配向層と、前記液晶層の配向状態に応じて光
学特性を変える光学手段を備え、一画素内に光を透過す
る開口部と光を透過しない非開口部とを有するアクティ
ブマトリクス型の液晶表示装置の、電圧を無印加状態に
おける前記液晶層の配向方向が、開口部と非開口部とで
異なることを特徴とする液晶表示装置。1. A pair of substrates, at least one of which is transparent;
A liquid crystal layer disposed between the pair of substrates, an electrode group formed on one of the pair of substrates and applying an electric field parallel to the substrate surface to the liquid crystal, and connected to the electrode groups; A plurality of active elements, an alignment layer disposed between the liquid crystal and the substrate, and an optical unit for changing optical characteristics according to an alignment state of the liquid crystal layer, and an aperture for transmitting light within one pixel. A liquid crystal display device of an active matrix type having a portion and a non-opening portion that does not transmit light, wherein the alignment direction of the liquid crystal layer in a state where no voltage is applied is different between the opening portion and the non-opening portion. Display device.
該一対の基板間に配置された液晶層と、前記一対の基板
の一方の基板上に形成され、該基板面に平行な電界を液
晶に印加するための電極群と、これらの電極群に接続さ
れた複数のアクティブ素子と、前記液晶と基板との間に
配置された配向層と、前記液晶層の配向状態に応じて光
学特性を変える光学手段を備え、一画素内に光を透過す
る開口部と光を透過しない非開口部とを有するアクティ
ブマトリクス型の液晶表示装置の、前記配向層は前記液
晶層と近接し、前記配向層と前記液晶層との界面におけ
る液晶の配向方向を界面配向方向とすると、該界面配向
方向が開口部と非開口部とで異なることを特徴とする液
晶表示装置。2. A pair of substrates at least one of which is transparent;
A liquid crystal layer disposed between the pair of substrates, an electrode group formed on one of the pair of substrates and applying an electric field parallel to the substrate surface to the liquid crystal, and connected to the electrode groups; A plurality of active elements, an alignment layer disposed between the liquid crystal and the substrate, and an optical unit for changing optical characteristics according to an alignment state of the liquid crystal layer, and an aperture for transmitting light within one pixel. A liquid crystal display device of an active matrix type having a portion and a non-opening portion that does not transmit light, wherein the alignment layer is close to the liquid crystal layer, and the alignment direction of the liquid crystal at the interface between the alignment layer and the liquid crystal layer is interface-aligned. The liquid crystal display device is characterized in that the interface orientation direction is different between the opening and the non-opening when the direction is defined as the direction.
で形成されている請求項1または2に記載の液晶表示装
置。3. The liquid crystal display device according to claim 1, wherein the alignment layer is formed of a photoreactive organic polymer film.
が、非開口部よりも開口部において大きくなるよう構成
されている請求項2に記載の液晶表示装置。4. The liquid crystal display device according to claim 2, wherein an angle between the interface orientation direction and the electric field direction is larger in the opening than in the non-opening.
方向との成す角が、45〜85度である請求項4に記載
の液晶表示装置。5. The liquid crystal display device according to claim 4, wherein the angle between the interface orientation direction and the electric field direction in the opening is 45 to 85 degrees.
該一対の基板間に配置された液晶層と、前記一対の基板
の一方の基板上に形成され、該基板面に平行な電界を液
晶に印加するための電極群と、これらの電極群に接続さ
れた複数のアクティブ素子と、前記液晶と基板との間に
配置された配向層と、前記液晶層の配向状態に応じて光
学特性を変える光学手段を備え、一画素内に光を透過す
る開口部と光を透過しない非開口部とを有するアクティ
ブマトリクス型の液晶表示装置の、前記配向層は前記液
晶層と近接し、前記配向層と前記液晶層との界面におけ
る液晶の配向方向を界面配向方向とすると、該界面配向
方向が開口部と非開口部とで異なる液晶表示装置の製法
において、 前記配向層を光重合型の光配向材料で形成し、前記開口
部(または非開口部)を遮光して直線偏光光を所定の角
度で照射することにより選択的に光重合して配向させ、
次いで前記非開口部(または開口部)に直線偏光光を所
定の角度で照射することにより光重合して配向させ、前
記開口部と非開口部の配向方向が所定の角度で互いに異
なるよう配向させることを特徴とする液晶表示装置の製
法。6. A pair of substrates, at least one of which is transparent,
A liquid crystal layer disposed between the pair of substrates, an electrode group formed on one of the pair of substrates and applying an electric field parallel to the substrate surface to the liquid crystal, and connected to the electrode groups; A plurality of active elements, an alignment layer disposed between the liquid crystal and the substrate, and an optical unit for changing optical characteristics according to an alignment state of the liquid crystal layer, and an aperture for transmitting light within one pixel. A liquid crystal display device of an active matrix type having a portion and a non-opening portion that does not transmit light, wherein the alignment layer is close to the liquid crystal layer, and the alignment direction of the liquid crystal at the interface between the alignment layer and the liquid crystal layer is interface-aligned. In a method for manufacturing a liquid crystal display device, in which the interface orientation direction is different between an opening and a non-opening, the orientation layer is formed of a photopolymerizable photo-alignment material, and the opening (or non-opening) is formed. Shield and illuminate linearly polarized light at a specified angle. By selectively photopolymerizing and orienting by irradiating,
Next, the non-opening (or the opening) is irradiated with linearly polarized light at a predetermined angle to be photopolymerized and oriented, and the orientations of the opening and the non-opening are different from each other at a predetermined angle. A method for manufacturing a liquid crystal display device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1240398A JP3715771B2 (en) | 1998-01-26 | 1998-01-26 | Liquid crystal display device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1240398A JP3715771B2 (en) | 1998-01-26 | 1998-01-26 | Liquid crystal display device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11212095A true JPH11212095A (en) | 1999-08-06 |
JP3715771B2 JP3715771B2 (en) | 2005-11-16 |
Family
ID=11804304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1240398A Expired - Fee Related JP3715771B2 (en) | 1998-01-26 | 1998-01-26 | Liquid crystal display device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3715771B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001026442A3 (en) * | 1999-10-12 | 2002-02-28 | Matsushita Electric Ind Co Ltd | Liquid crystal display element, optically anisotropic film, and methods for manufacturing them |
FR2872595A1 (en) * | 2004-06-30 | 2006-01-06 | Lg Philips Lcd Co Ltd | Liquid crystal display device for e.g. television set, has two orientation layers, where one layer is twisted around ninety degrees above pixel electrode, and other layer is twisted around one hundred and eighty degrees above slots |
KR100672637B1 (en) * | 2002-07-12 | 2007-01-23 | 엘지.필립스 엘시디 주식회사 | Liquid Crystal Display Device |
JP2007193085A (en) * | 2006-01-19 | 2007-08-02 | Japan Science & Technology Agency | Liquid crystal display element using nematic liquid crystal |
JP2009169427A (en) * | 2009-04-16 | 2009-07-30 | Sharp Corp | Liquid crystal display device |
KR101186009B1 (en) * | 2004-12-30 | 2012-09-25 | 엘지디스플레이 주식회사 | fabrication method for In-Plane Switching mode LCD and the alignment layer forming method |
JP2013088758A (en) * | 2011-10-21 | 2013-05-13 | Japan Display Central Co Ltd | Liquid crystal display device |
US9952468B2 (en) | 2014-09-15 | 2018-04-24 | Shanghai Tianma Micro-electronics Co., Ltd. | Display panel and method for manufacturing the same |
WO2020045548A1 (en) * | 2018-08-31 | 2020-03-05 | 日産化学株式会社 | Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element |
-
1998
- 1998-01-26 JP JP1240398A patent/JP3715771B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7307683B2 (en) | 1999-10-12 | 2007-12-11 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display element, optically anisotropic film, and production methods of the same |
US6982774B1 (en) | 1999-10-12 | 2006-01-03 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display element including an optically anisotropic film having at least two regions with different orientation anisotropies, and production methods of the same |
US7038750B2 (en) | 1999-10-12 | 2006-05-02 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display element, optically anisotropic film, and production methods of the same |
WO2001026442A3 (en) * | 1999-10-12 | 2002-02-28 | Matsushita Electric Ind Co Ltd | Liquid crystal display element, optically anisotropic film, and methods for manufacturing them |
KR100672637B1 (en) * | 2002-07-12 | 2007-01-23 | 엘지.필립스 엘시디 주식회사 | Liquid Crystal Display Device |
FR2872595A1 (en) * | 2004-06-30 | 2006-01-06 | Lg Philips Lcd Co Ltd | Liquid crystal display device for e.g. television set, has two orientation layers, where one layer is twisted around ninety degrees above pixel electrode, and other layer is twisted around one hundred and eighty degrees above slots |
US8284361B2 (en) | 2004-12-30 | 2012-10-09 | Lg Display Co., Ltd. | Method of fabricating an IPS mode LCD using both a rubbing process and a light irradiation process |
KR101186009B1 (en) * | 2004-12-30 | 2012-09-25 | 엘지디스플레이 주식회사 | fabrication method for In-Plane Switching mode LCD and the alignment layer forming method |
JP2007193085A (en) * | 2006-01-19 | 2007-08-02 | Japan Science & Technology Agency | Liquid crystal display element using nematic liquid crystal |
JP4637248B2 (en) * | 2009-04-16 | 2011-02-23 | シャープ株式会社 | Liquid crystal display device |
JP2009169427A (en) * | 2009-04-16 | 2009-07-30 | Sharp Corp | Liquid crystal display device |
JP2013088758A (en) * | 2011-10-21 | 2013-05-13 | Japan Display Central Co Ltd | Liquid crystal display device |
US9952468B2 (en) | 2014-09-15 | 2018-04-24 | Shanghai Tianma Micro-electronics Co., Ltd. | Display panel and method for manufacturing the same |
WO2020045548A1 (en) * | 2018-08-31 | 2020-03-05 | 日産化学株式会社 | Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element |
JPWO2020045548A1 (en) * | 2018-08-31 | 2021-08-26 | 日産化学株式会社 | Manufacturing method of liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element |
Also Published As
Publication number | Publication date |
---|---|
JP3715771B2 (en) | 2005-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2598943B1 (en) | Liquid crystal display and method for preparation thereof | |
US6958799B2 (en) | Liquid crystal display | |
CN100374923C (en) | Liquid crystal display device and manufacturing method therefor | |
US6184959B1 (en) | Liquid crystal display device having alignment film that provides alignment upon irradiation and manufacturing method the same | |
US8339556B2 (en) | Electro-optical device and display device with interdigital electrode portions on at least first and second substrates which are non-overlapping in a direction normal to the substrates | |
US8860920B2 (en) | Liquid-crystal display device and manufacturing method therefor | |
JP4460488B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JPH10186351A (en) | Liquid crystal display device | |
JP3982146B2 (en) | LIQUID CRYSTAL DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE USING THE SAME | |
JP2008158187A (en) | Liquid crystal display element and method of manufacturing the same | |
JP4156342B2 (en) | Liquid crystal display | |
JP2008158186A (en) | Method of manufacturing liquid crystal display device | |
JP3715771B2 (en) | Liquid crystal display device and manufacturing method thereof | |
US20090201453A1 (en) | Liquid crystal display panel and method of manufacturing the same | |
JPH08328007A (en) | Production of liquid crystal display device | |
WO2010131510A1 (en) | Liquid crystal display device | |
JP3404467B2 (en) | Liquid crystal display | |
JP2000214465A (en) | Liquid crystal device and electronic equipment | |
JP2778516B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JP2002202510A (en) | Liquid crystal display device and method of manufacturing for the same | |
JP3092899B2 (en) | Liquid crystal display device and method of manufacturing the same | |
JP3619007B2 (en) | Active matrix liquid crystal display device | |
JP3205502B2 (en) | Liquid crystal display | |
JPH11326912A (en) | Liquid crystal display device | |
JPH07318944A (en) | Liquid crystal display element and liquid crystal display device using this element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050719 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050826 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080902 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090902 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090902 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100902 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S631 | Written request for registration of reclamation of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313631 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 Free format text: JAPANESE INTERMEDIATE CODE: R313121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120902 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130902 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |