Nothing Special   »   [go: up one dir, main page]

JPH11210448A - Internal combustion engine controller for hybrid vehicle - Google Patents

Internal combustion engine controller for hybrid vehicle

Info

Publication number
JPH11210448A
JPH11210448A JP1437198A JP1437198A JPH11210448A JP H11210448 A JPH11210448 A JP H11210448A JP 1437198 A JP1437198 A JP 1437198A JP 1437198 A JP1437198 A JP 1437198A JP H11210448 A JPH11210448 A JP H11210448A
Authority
JP
Japan
Prior art keywords
temperature
internal combustion
combustion engine
exhaust gas
ecu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1437198A
Other languages
Japanese (ja)
Other versions
JP3376902B2 (en
Inventor
Masakiyo Kojima
正清 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP01437198A priority Critical patent/JP3376902B2/en
Publication of JPH11210448A publication Critical patent/JPH11210448A/en
Application granted granted Critical
Publication of JP3376902B2 publication Critical patent/JP3376902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Temperature (AREA)

Abstract

PROBLEM TO BE SOLVED: To securely prevent worsening of exhaust emission by providing a temperature hold means holding a temperature of an exhaust air purifying part for purifying exhaust air from an internal combustion engine above a function activation temperature. SOLUTION: This hybrid engine has a power distribution mechanism 4 distributing rotation force of an output shaft 1a of an internal combustion engine 1 to a power generator 3 and a rotary shaft 2a of an electric motor 2. Moreover, it is provided with an inverter 5 which selectively applies power generated by the power generator 3 to the electric motor 2 and a battery 6 or condensed power of the battery 6 to the electric motor 2. In this case, an exhaust air purifying catalyst 14 as an exhaust air purifying part is provided on the halfway of an exhaust pipe 13 to hold a temperature of the exhaust air purifying catalyst 14 above a function activation temperature at all times irrespective whether the internal combustion engine is in an operation state or a non-operation state. That is, a catalyst temperature sensor 15 is provided to operate a heating means so that a temperature of the exhaust air purifying catalyst 14 is held above the function activation temperature when the temperature detected by the sensor 15 is dropping.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関と電動機
との2つの駆動源を有するハイブリット車の内燃機関を
制御する技術に関する。
The present invention relates to a technique for controlling an internal combustion engine of a hybrid vehicle having two driving sources, an internal combustion engine and an electric motor.

【0002】[0002]

【従来の技術】近年、自動車等では、内燃機関の燃料消
費量の低減と内燃機関から排出される排気の清浄化が要
求されており、このような要求に対して、内燃機関と電
動機との2つの駆動源を備えたハイブリット車の開発が
進められている。
2. Description of the Related Art In recent years, automobiles and the like have been required to reduce fuel consumption of an internal combustion engine and to purify exhaust gas discharged from the internal combustion engine. The development of a hybrid vehicle having two drive sources is underway.

【0003】上記したようなハイブリット車としては、
内燃機関と、内燃機関の駆動力で駆動される発電機と、
発電機により発電された電力を蓄えるバッテリと、発電
機あるいはバッテリの電力で駆動される電動機と、内燃
機関の駆動力を発電機と車輪とに選択的に分配する動力
分配機構とを備え、要求される駆動力とバッテリの蓄電
量とに応じて内燃機関の始動と停止を制御するものが知
られている。
[0003] As a hybrid vehicle as described above,
An internal combustion engine, a generator driven by the driving force of the internal combustion engine,
A battery that stores power generated by the generator, a motor driven by the power of the generator or the battery, and a power distribution mechanism that selectively distributes the driving force of the internal combustion engine to the generator and the wheels. There is known an apparatus that controls start and stop of an internal combustion engine in accordance with a driving force to be performed and a charged amount of a battery.

【0004】このハイブリット車は、車両の発進時や低
負荷時等は、内燃機関から発電機及び車輪への駆動力伝
達を遮断、あるいは内燃機関を停止させるとともに、バ
ッテリ電力を電動機に印加し、電動機の駆動力で車輪を
駆動する。
In this hybrid vehicle, when the vehicle starts or when the load is low, the transmission of the driving force from the internal combustion engine to the generator and the wheels is stopped or the internal combustion engine is stopped, and battery power is applied to the electric motor. The wheels are driven by the driving force of the electric motor.

【0005】続いて、前記ハイブリット車は、通常走行
時は、内燃機関を始動し、内燃機関の駆動力を発電機と
車輪との双方に分配するとともに、発電機で発生した電
力で電動機を駆動させ、電動機の駆動力を車輪に伝達す
る。この場合、ハイブリット車は、内燃機関及び電動機
の駆動力で走行することになる。
Subsequently, during normal running of the hybrid vehicle, the internal combustion engine is started, the driving force of the internal combustion engine is distributed to both the generator and the wheels, and the electric motor is driven by the electric power generated by the generator. Then, the driving force of the electric motor is transmitted to the wheels. In this case, the hybrid vehicle runs with the driving force of the internal combustion engine and the electric motor.

【0006】さらに、前記ハイブリット車は、加速時等
の高負荷時は、内燃機関を始動し、内燃機関の駆動力を
発電機と車輪とに分配するとともに、発電機で発生した
電力にバッテリ電力を加算した電力で電動機を駆動さ
せ、電動機の駆動力を車輪に伝達する。この場合は、ハ
イブリット車は、通常走行時と同様に内燃機関及び電動
機の駆動力で走行するが、電動機には、発電機の電力に
加えバッテリ電力が印加されるので、電動機の駆動力が
通常走行時より大きくなる。
Further, the hybrid vehicle starts the internal combustion engine under a high load such as during acceleration, distributes the driving force of the internal combustion engine to the generator and the wheels, and converts the electric power generated by the generator into battery power. The electric motor is driven by the electric power obtained by adding the above, and the driving force of the electric motor is transmitted to the wheels. In this case, the hybrid vehicle travels with the driving force of the internal combustion engine and the electric motor in the same manner as during normal traveling, but the electric motor is supplied with battery power in addition to the electric power of the generator. It becomes larger than when driving.

【0007】また、前記ハイブリット車は、車両の減速
時や制動時等は、内燃機関から発電機及び車輪への駆動
力伝達を遮断、あるいは内燃機関を停止させるととも
に、車輪の回転力を電動機に印加して回生発電を行い、
これにより得られた電力をバッテリに貯蓄する。
In the hybrid vehicle, when the vehicle is decelerated or braked, the transmission of the driving force from the internal combustion engine to the generator and the wheels is stopped or the internal combustion engine is stopped, and the rotational force of the wheels is transmitted to the electric motor. To generate regenerative power,
The obtained power is stored in the battery.

【0008】尚、バッテリの蓄電量が所定値を下回った
場合等は、ハイブリット車は、内燃機関を始動し、内燃
機関の駆動力を発電機と車輪とに分配するとともに、発
電機で発生した電力をバッテリと電動機とに分配し、バ
ッテリの充電を行う。
When the charged amount of the battery falls below a predetermined value or the like, the hybrid vehicle starts the internal combustion engine, distributes the driving force of the internal combustion engine to the generator and the wheels, and generates the driving force from the generator. The power is distributed to the battery and the electric motor, and the battery is charged.

【0009】このようなハイブリット車によれば、内燃
機関を効率的に運転させることができ、燃料消費率の大
幅な低減と、排気の少量化及び清浄化を図ることができ
る。ところで、上記したようなハイブリット車では、走
行条件により内燃機関の始動と停止が繰り返される場合
や、内燃機関が運転状態にあっても排気温度が低くなる
低負荷運転(例えば、アイドル運転)が長時間継続され
る場合等は、排気浄化触媒や空燃比センサ等の排気浄化
部品が活性化温度未満に低下し易い。そして、排気浄化
部品が活性化温度未満に低下した状態で内燃機関の運転
が行われると、排気浄化触媒が排気中のNOX、CO、
HC等を十分に浄化することができず、排気エミッショ
ンの悪化を招いてしまう。
According to such a hybrid vehicle, the internal combustion engine can be operated efficiently, and the fuel consumption rate can be significantly reduced, and the amount of exhaust gas can be reduced and purified. By the way, in the hybrid vehicle as described above, the case where the start and stop of the internal combustion engine are repeated depending on the driving conditions, or the low load operation (for example, the idling operation) in which the exhaust gas temperature becomes low even when the internal combustion engine is in operation, is long. For example, when the time is continued, the exhaust gas purifying components such as the exhaust gas purifying catalyst and the air-fuel ratio sensor tend to drop below the activation temperature. When the operation of the internal combustion engine is performed in a state where the exhaust gas purification component drops below the activation temperature, the exhaust purification catalyst NO X in the exhaust gas, CO,
HC and the like cannot be sufficiently purified, resulting in deterioration of exhaust emission.

【0010】このような問題を解決するものとして、特
開平5−328528号公報に記載されたハイブリット
車のエンジン駆動発電機の制御装置が知られている。こ
の装置は、排気浄化触媒や空燃比センサ等の排気浄化部
品が低温であるときに、内燃機関のエネルギ効率を悪化
させるべく機関出力や機関回転数を制御することによ
り、排気温度を高めるとともに、排気量を所定量まで増
加させ、排気浄化部品の暖機を早期に完了させ、排気エ
ミッションの悪化を抑制しようとするものである。
In order to solve such a problem, a control apparatus for an engine-driven generator of a hybrid vehicle disclosed in Japanese Patent Application Laid-Open No. 5-328528 is known. This device increases the exhaust temperature by controlling the engine output and the engine speed so as to deteriorate the energy efficiency of the internal combustion engine when the exhaust purification components such as the exhaust purification catalyst and the air-fuel ratio sensor are at a low temperature, The purpose is to increase the exhaust amount to a predetermined amount, complete the warm-up of the exhaust purification component early, and suppress deterioration of the exhaust emission.

【0011】[0011]

【発明が解決しようとする課題】上記したようなハイブ
リット車のエンジン駆動発電機の制御装置では、内燃機
関が始動されてから排気浄化部品が活性化するまでの間
は、排気浄化部品による排気中のNOX、CO、HC等
を浄化することができず、排気エミッションが悪化して
しまうという問題がある。
In the control device for an engine-driven generator of a hybrid vehicle as described above, during the period from the start of the internal combustion engine to the activation of the exhaust gas purification component, the exhaust gas generated by the exhaust gas purification component is activated. of NO X, CO, can not purify HC and the like, there is a problem that the exhaust emission is deteriorated.

【0012】本発明は、前記した問題点に鑑みてなされ
たものであり、内燃機関と電動機とを備えるハイブリッ
ト車において、排気浄化触媒等の排気浄化部品の温度を
常時機能活性温度以上に維持する技術を提供し、排気エ
ミッションの悪化を防止することを目的とする。
The present invention has been made in view of the above-mentioned problems, and in a hybrid vehicle including an internal combustion engine and an electric motor, the temperature of an exhaust purification component such as an exhaust purification catalyst is always maintained at a functional activation temperature or higher. The purpose of the present invention is to provide technology and prevent deterioration of exhaust emissions.

【0013】[0013]

【課題を解決するための手段】本発明は、前記課題を解
決するために以下のような手段を採用した。すなわち、
本発明に係るハイブリット車の内燃機関制御装置は、内
燃機関と、内燃機関により駆動される発電機と、発電機
にて発電された電力を蓄電する蓄電手段と、前記発電機
又は前記蓄電手段の電力で駆動される電動機と、車両の
運転状態と前記蓄電手段の状態との少なくとも一方に応
じて前記内燃機関を制御する機関制御手段と、を備えた
ハイブリット車の内燃機関制御装置であり、前記内燃機
関からの排気を浄化するための排気浄化部品の温度を機
能活性化温度以上に保つ温度保持手段を備えることを特
徴とする。
The present invention employs the following means in order to solve the above-mentioned problems. That is,
An internal combustion engine control device for a hybrid vehicle according to the present invention includes an internal combustion engine, a generator driven by the internal combustion engine, a power storage unit that stores power generated by the generator, and the power generator or the power storage unit. An electric motor driven by electric power, and an engine control means for controlling the internal combustion engine in accordance with at least one of a driving state of the vehicle and a state of the power storage means, an internal combustion engine control device for a hybrid vehicle, It is characterized by comprising temperature maintaining means for maintaining the temperature of an exhaust gas purification component for purifying exhaust gas from the internal combustion engine at a function activation temperature or higher.

【0014】このように構成されたハイブリット車の内
燃機関制御装置では、温度保持手段は、内燃機関が運転
状態にあるかあるいは運転停止状態にあるかに関わら
ず、排気浄化部品の温度を常に機能活性化温度以上に保
持する。
[0014] In the internal combustion engine control apparatus for a hybrid vehicle configured as described above, the temperature holding means always functions the temperature of the exhaust purification component regardless of whether the internal combustion engine is operating or stopped. Keep above activation temperature.

【0015】この場合、内燃機関の始動直後や、排気温
度が低くなる低負荷運転(例えば、アイドル運転)が長
時間継続した時等においても排気浄化部品が機能活性化
状態となり、内燃機関から排出される排気のエミッショ
ンが悪化することがない。
In this case, immediately after the internal combustion engine is started, or when a low-load operation (for example, an idling operation) in which the exhaust gas temperature becomes low continues for a long time, the exhaust gas purifying component is activated, and the exhaust gas is discharged from the internal combustion engine. The emission of exhaust gas does not deteriorate.

【0016】上記した温度保持手段は、排気浄化部品の
温度を検出する温度検出手段と、この温度検出手段によ
り検出された温度が低下傾向にあるとき、前記排気浄化
部品を機能活性化温度以上に保持すべく前記排気浄化部
品の温度を上昇させる温度上昇手段とを具備するように
してもよい。
The above-mentioned temperature holding means comprises a temperature detecting means for detecting the temperature of the exhaust gas purifying component, and when the temperature detected by the temperature detecting means tends to decrease, the temperature of the exhaust gas purifying component is raised to a function activation temperature or higher. Temperature maintaining means for raising the temperature of the exhaust gas purifying component to maintain the temperature may be provided.

【0017】すなわち、温度保持手段は、排気浄化部品
の温度を監視し、排気浄化部品の温度が低下傾向にある
と判定した場合は、排気浄化部品の温度が常に機能活性
化温度以上となるよう排気浄化部品の温度を上昇させる
ようにしてもよい。
That is, the temperature holding means monitors the temperature of the exhaust gas purifying component, and when it is determined that the temperature of the exhaust gas purifying component is decreasing, the temperature of the exhaust gas purifying component is always higher than the functional activation temperature. The temperature of the exhaust purification component may be increased.

【0018】その際、温度上昇手段は、機関制御手段を
介して前記内燃機関を強制始動させるものであってもよ
く、排気浄化部品を加熱する加熱手段であってもよい。
さらに、温度保持手段は、蓄電手段の蓄電量を検出する
蓄電量検出手段と、排気浄化部品の温度を検出する温度
検出手段と、蓄電手段に蓄電された電力で前記排気浄化
部品を加熱する加熱手段とを具備し、前記温度検出手段
により検出された温度が低下傾向にあり、前記蓄電量検
出手段により検出された蓄電量が所定値以上であれば、
前記加熱手段による排気浄化部品の加熱を行い、前記温
度検出手段により検出された温度が低下傾向にあり、前
記蓄電量検出手段により検出された蓄電量が所定値未満
であれば、前記機関制御手段を介して前記内燃機関の運
転状態を変更するようにしてもよい。
In this case, the temperature increasing means may be a means for forcibly starting the internal combustion engine via the engine control means, or a heating means for heating the exhaust purification parts.
Further, the temperature holding unit includes a storage amount detection unit that detects a storage amount of the storage unit, a temperature detection unit that detects a temperature of the exhaust purification unit, and a heating unit that heats the exhaust purification unit with the power stored in the storage unit. Means, the temperature detected by the temperature detection means is in a tendency to decrease, if the storage amount detected by the storage amount detection means is a predetermined value or more,
When the exhaust gas purification component is heated by the heating means, the temperature detected by the temperature detection means tends to decrease, and if the amount of power detected by the power storage amount detection means is less than a predetermined value, the engine control means The operating state of the internal combustion engine may be changed via the CPU.

【0019】すなわち、蓄電手段の蓄電量に余裕がある
場合は、加熱手段により排気浄化部品を加熱し、蓄電手
段の蓄電量に余裕がない場合は内燃機関の運転状態を変
更して排気浄化部品を機能活性化温度以上に保持するよ
うにしてもよい。
That is, when the amount of power stored in the power storage means has a margin, the exhaust gas purification component is heated by the heating means, and when the amount of power stored in the power storage means has no margin, the operating state of the internal combustion engine is changed to change the exhaust gas purification component. May be maintained at or above the function activation temperature.

【0020】ここで、排気浄化部品を機能活性化温度以
上に保持すべく内燃機関の運転状態を変更する方法とし
て、例えば、内燃機関が停止状態にあるときは内燃機関
を強制始動して排気の熱により排気浄化部品を機能活性
化温度以上に保持する方法、内燃機関が運転状態にある
ときは機関回転数や負荷の増加、あるいは点火時期の遅
角等の制御により排気温度を高めて排気浄化部品を機能
活性化温度以上に保持する方法等を例示することができ
る。
Here, as a method of changing the operating state of the internal combustion engine so as to maintain the exhaust purification component at or above the functional activation temperature, for example, when the internal combustion engine is stopped, the internal combustion engine is forcibly started and the exhaust gas is exhausted. Exhaust purification by increasing the exhaust temperature by controlling the exhaust gas purifying component by the heat above the function activation temperature, or by increasing the engine speed or load when the internal combustion engine is operating, or by retarding the ignition timing. A method of holding the component at or above the function activation temperature can be exemplified.

【0021】[0021]

【発明の実施の形態】以下、本発明にかかるハイブリッ
ト車の内燃機関制御装置の実施の形態について図面に基
づいて説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an internal combustion engine control apparatus for a hybrid vehicle according to an embodiment of the present invention.

【0022】図1は、本発明の内燃機関制御装置を適用
するハイブリット車のハイブリット機構の概略構成を示
す図である。前記ハイブリット機構は、内燃機関1と、
この内燃機関1の機関出力軸(クランクシャフト)1a
に接続され、機関出力軸1aの回転力を発電機3と電動
モータ2の回転軸2aとに分配する動力分配機構4と、
前記発電機3で発電された電力の電動モータ2やバッテ
リ6への印加、あるいはバッテリ6に蓄電された電力の
電動モータ2への印加を選択的に行うインバータ5と、
前記電動モータ2の回転軸2aの回転力を減速してドラ
イブシャフト8、9に伝達する減速機7と、前記ドライ
ブシャフト8、9に取り付けられる車輪10、11とを
備える。
FIG. 1 is a diagram showing a schematic configuration of a hybrid mechanism of a hybrid vehicle to which the internal combustion engine control device of the present invention is applied. The hybrid mechanism includes: an internal combustion engine 1;
Engine output shaft (crankshaft) 1a of the internal combustion engine 1
A power distribution mechanism 4 connected to the generator 3 and distributing the torque of the engine output shaft 1a to the generator 3 and the rotation shaft 2a of the electric motor 2;
An inverter 5 for selectively applying the electric power generated by the generator 3 to the electric motor 2 or the battery 6, or selectively applying the electric power stored in the battery 6 to the electric motor 2;
The electric motor 2 includes a speed reducer 7 that reduces the rotational force of the rotating shaft 2 a of the electric motor 2 and transmits the reduced rotational force to the drive shafts 8 and 9, and wheels 10 and 11 attached to the drive shafts 8 and 9.

【0023】そして、前記内燃機関1の各気筒29に
は、混合気を燃焼させるための点火栓25が取り付けら
れるとともに、排気枝管12及び吸気枝管20が接続さ
れる。前記排気枝管12は、排気管13に接続され、こ
の排気管13は、図示しないマフラーに接続される。そ
して、前記排気管13の途中には、排気浄化部品として
の排気浄化触媒14が設けられ、この排気浄化触媒14
より上流の排気管13には、排気管13内を流れる排気
ガスの空燃比に対応した電気信号を出力する空燃比セン
サ27が取り付けられる。
Each cylinder 29 of the internal combustion engine 1 is provided with an ignition plug 25 for burning an air-fuel mixture, and connected to the exhaust branch pipe 12 and the intake branch pipe 20. The exhaust branch pipe 12 is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected to a muffler (not shown). An exhaust gas purifying catalyst 14 is provided in the exhaust pipe 13 as an exhaust gas purifying part.
An air-fuel ratio sensor 27 that outputs an electric signal corresponding to the air-fuel ratio of the exhaust gas flowing in the exhaust pipe 13 is attached to the exhaust pipe 13 located further upstream.

【0024】前記排気浄化触媒14としては、例えば、
三元触媒やNOX浄化触媒等を用いることができる。例
えば、排気浄化触媒14として三元触媒を用いた場合、
この排気浄化触媒14は、所定温度(例えば300C
°)以上で活性化し、この排気浄化触媒14に流入する
排気の空燃比が理論空燃比であれば、排気中のHC及び
COを排気中のO2と反応させることによりH2O及びC
2へ酸化させると同時に、排気ガス中のNOXを排気中
のHC及びCOと反応させることによりH2O、CO2
2へ還元させることが可能である。
As the exhaust purification catalyst 14, for example,
It can be used three-way catalyst and NO X purification catalyst. For example, when a three-way catalyst is used as the exhaust purification catalyst 14,
The exhaust gas purification catalyst 14 has a predetermined temperature (for example, 300 C
If the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 14 is the stoichiometric air-fuel ratio, HC and CO in the exhaust gas are reacted with O 2 in the exhaust gas so that H 2 O and C are activated.
At the same time as oxidizing to O 2 , NO X in the exhaust gas is reacted with HC and CO in the exhaust gas to produce H 2 O, CO 2 ,
It can be reduced to N 2 .

【0025】尚、内燃機関1が希薄燃焼内燃機関、筒内
噴射型内燃機関、あるいはディーゼル機関の場合には、
排気浄化触媒14としてNOX吸蔵触媒やNOX選択還元
触媒等を用いてもよい。
When the internal combustion engine 1 is a lean burn internal combustion engine, a direct injection internal combustion engine, or a diesel engine,
As the exhaust purification catalyst 14, a NO X storage catalyst, a NO X selective reduction catalyst, or the like may be used.

【0026】続いて、前記排気浄化触媒14には、触媒
の床温に対応した電気信号を出力する触媒温度センサ1
5と、駆動電流の給電により前記排気浄化触媒14を加
熱する触媒用ヒータ30とが取り付けられる。
Subsequently, a catalyst temperature sensor 1 for outputting an electric signal corresponding to the bed temperature of the catalyst is provided to the exhaust purification catalyst 14.
5 and a catalyst heater 30 for heating the exhaust purification catalyst 14 by supplying a drive current.

【0027】前記空燃比センサ27は、例えば、ジルコ
ニア型酸素センサからなり、所定温度(例えば400C
°)以上で活性化して、排気の空燃比に対応した電圧を
出力する。
The air-fuel ratio sensor 27 is composed of, for example, a zirconia type oxygen sensor and has a predetermined temperature (for example, 400 ° C.).
°) Activate above to output a voltage corresponding to the air-fuel ratio of the exhaust.

【0028】前記空燃比センサ27には、センサ部の温
度に対応した電気信号を出力する空燃比センサ温度セン
サ28と、駆動電流の給電により前記センサ部を加熱す
る空燃比センサ用ヒータ31とが取り付けられる。尚、
前記空燃比センサ27の温度は、空燃比センサ用ヒータ
31の抵抗値から推定するようにしてもよい。
The air-fuel ratio sensor 27 includes an air-fuel ratio sensor temperature sensor 28 for outputting an electric signal corresponding to the temperature of the sensor section, and an air-fuel ratio sensor heater 31 for heating the sensor section by supplying a drive current. It is attached. still,
The temperature of the air-fuel ratio sensor 27 may be estimated from the resistance value of the heater 31 for the air-fuel ratio sensor.

【0029】前記触媒温度センサ15と前記空燃比セン
サ温度センサ28とは、本発明にかかる温度検出手段を
実現し、前記前記触媒用ヒータ30と前記空燃比センサ
用ヒータ31とは、本発明にかかる加熱手段を実現す
る。
The catalyst temperature sensor 15 and the air-fuel ratio sensor temperature sensor 28 realize the temperature detecting means according to the present invention, and the catalyst heater 30 and the air-fuel ratio sensor heater 31 correspond to the present invention. Such a heating means is realized.

【0030】一方、前記吸気枝管20は、サージタンク
21に接続され、このサージタンク21には、吸気管2
2が接続される。前記吸気枝管20の各枝管には、その
噴孔が各気筒29の吸気ポートに臨むよう燃料噴射弁2
6が取り付けられる。前記吸気管22の途中には、吸気
管22内を流れる空気流量を調節するスロットル弁19
とこのスロットル弁19を開閉駆動するモータ等から構
成されるアクチュエータ19aが設けられる。
On the other hand, the intake branch pipe 20 is connected to a surge tank 21.
2 are connected. Each branch pipe of the intake branch pipe 20 is provided with a fuel injection valve 2 such that its injection hole faces the intake port of each cylinder 29.
6 is attached. In the middle of the intake pipe 22, a throttle valve 19 for adjusting the flow rate of air flowing through the intake pipe 22 is provided.
And an actuator 19a composed of a motor for opening and closing the throttle valve 19 and the like.

【0031】続いて、前記動力分配機構4は、例えば、
遊星歯車(プラネタリギヤ)で構成され、前記遊星歯車
のプラネタリキャリヤの回転軸が機関出力軸1aと連結
され、前記プラネタリキャリヤの外側に配置されるリン
グギヤの回転軸が回転軸2aと連結され、次いで前記プ
ラネタリキャリヤの内側に配置されるサンギヤの回転軸
が発電機3に連結されるよう構成される。そして、前記
プラネタリキャリヤの回転力は、プラネタリキャリヤに
回転自在に支持されたピニオンギヤを介して、リングギ
ヤとサンギヤに伝達される。
Subsequently, the power distribution mechanism 4 is, for example,
The planetary gear is formed of a planetary gear, the planetary carrier of the planetary gear has a rotating shaft connected to the engine output shaft 1a, and a ring gear disposed outside the planetary carrier has a rotating shaft connected to the rotating shaft 2a. The rotation shaft of the sun gear disposed inside the planetary carrier is configured to be connected to the generator 3. The rotational force of the planetary carrier is transmitted to a ring gear and a sun gear via a pinion gear rotatably supported by the planetary carrier.

【0032】前記発電機3は、交流同期電動機等で構成
され、本発明にかかる発電手段を実現する。前記バッテ
リ6は、ニッケル水素バッテリセル等で構成され、本発
明にかかる蓄電手段を実現する。このバッテリ6には、
バッテリ6の充電量に対応した電気信号を出力するSO
Cメータ16が取り付けられる。このSOCメータ16
は、本発明にかかる蓄電量検出手段を実現する。
The generator 3 is constituted by an AC synchronous motor or the like, and realizes a power generating means according to the present invention. The battery 6 is configured by a nickel-metal hydride battery cell or the like, and implements a power storage unit according to the present invention. This battery 6 includes:
SO that outputs an electric signal corresponding to the charge amount of battery 6
The C meter 16 is attached. This SOC meter 16
Implements a charged amount detection unit according to the present invention.

【0033】前記電動モータ2は、交流同期電動機等で
構成され、本発明にかかる電動機を実現する。そして、
電動モータ2は、発電機3で発生した電力、あるいはバ
ッテリ6から出力される電力で回転軸2aを回転駆動す
る。さらに、電動モータ2は、車両の減速時に車輪1
0、11の回転力がドライブシャフト8、9及び減速機
7を介して回転軸2aに伝達されることを利用して回生
発電を行う。この回生発電により発電された電力は、イ
ンバータ5を介してバッテリ6に蓄電される。
The electric motor 2 is constituted by an AC synchronous motor or the like, and realizes the electric motor according to the present invention. And
The electric motor 2 rotationally drives the rotating shaft 2 a with the electric power generated by the generator 3 or the electric power output from the battery 6. In addition, the electric motor 2 operates the wheels 1 when the vehicle decelerates.
The regenerative power generation is performed using the fact that the torques of 0 and 11 are transmitted to the rotating shaft 2a via the drive shafts 8 and 9 and the speed reducer 7. The power generated by this regenerative power generation is stored in the battery 6 via the inverter 5.

【0034】前記インバータ5は、例えば、複数のパワ
ートランジスタを組み合わせて構成される電力変換装置
であり、パワートランジスタを制御することにより発電
機3で発生した電力のバッテリ6への印加と、発電機3
で発生した電力の電動モータ2への印加と、バッテリ6
に蓄電された電力の電動モータ2への印加と、電動モー
タ2で回生発電された電力のバッテリ6への印加とを選
択的に切り換える。
The inverter 5 is, for example, a power conversion device configured by combining a plurality of power transistors. The inverter 5 controls the power transistors to apply the power generated by the generator 3 to the battery 6, 3
Of the electric power generated in the electric motor 2 to the electric motor 2 and the battery 6
Between the electric power stored in the electric motor 2 and the electric power regenerated by the electric motor 2 to the battery 6.

【0035】ここで、前記発電機3で発電される電力は
交流であり、前記バッテリ6に蓄電される電力は直流で
あり、更に電動モータ2の駆動電力及び回生発電される
電力は交流であるため、前記インバータ5は、発電機3
で発電された交流電流を直流電流に変換した後にバッテ
リ6に印加し、バッテリ6に蓄電された直流電流を交流
電流に変換した後に電動モータ2に印加し、発電機3で
発電された交流電流を直流電流に変換した後にバッテリ
6に印加し、電動モータ2で回生発電された交流電流を
直流電流に変換した後にバッテリ6に印加する。
Here, the power generated by the generator 3 is AC, the power stored in the battery 6 is DC, and the driving power of the electric motor 2 and the power generated by regenerative power are AC. Therefore, the inverter 5 is connected to the generator 3
After converting the AC current generated by the DC current into a DC current, the DC current stored in the battery 6 is applied to the battery 6, the DC current stored in the battery 6 is converted into an AC current, then applied to the electric motor 2, and the AC current generated by the generator 3 Is converted to a DC current and then applied to the battery 6, and the AC current regenerated by the electric motor 2 is converted to a DC current and then applied to the battery 6.

【0036】また、前記内燃機関1には、冷却水の温度
に対応した電気信号を出力する水温センサ17や、機関
出力軸1aの回転数を検出するためのクランクポジショ
ンセンサ18等の各種センサが取り付けられる。
The internal combustion engine 1 includes various sensors such as a water temperature sensor 17 for outputting an electric signal corresponding to the temperature of the cooling water and a crank position sensor 18 for detecting the number of revolutions of the engine output shaft 1a. It is attached.

【0037】上記した触媒温度センサ15、水温センサ
17、クランクポジションセンサ18、空燃比センサ2
7、空燃比センサ温度センサ28は、本発明にかかる機
関制御手段を実現する内燃機関制御用電子制御ユニット
(E−ECU)23と電気配線を介して接続され、各セ
ンサの出力信号は、E−ECU23に入力される。ま
た、点火栓25、燃料噴射弁26、アクチュエータ19
a、触媒用ヒータ30、及び空燃比センサ用ヒータ31
も電気配線を介してE−ECU23に接続される。
The above-mentioned catalyst temperature sensor 15, water temperature sensor 17, crank position sensor 18, air-fuel ratio sensor 2
7. The air-fuel ratio sensor temperature sensor 28 is connected to an internal combustion engine control electronic control unit (E-ECU) 23 that implements the engine control means according to the present invention via electric wiring. -It is input to the ECU 23. Further, the ignition plug 25, the fuel injection valve 26, the actuator 19
a, catalyst heater 30, and air-fuel ratio sensor heater 31
Are also connected to the E-ECU 23 via electric wiring.

【0038】一方、前記電動モータ2、前記発電機3、
前記インバータ5、及び前記SOCメータ16は、前記
ハイブリット機構を統合的に制御する電子制御ユニット
(H−ECU)24と電気配線を介して接続される。
On the other hand, the electric motor 2, the generator 3,
The inverter 5 and the SOC meter 16 are connected via an electric wiring to an electronic control unit (H-ECU) 24 that integrally controls the hybrid mechanism.

【0039】前記E−ECU23は、前記各種センサか
らの出力信号をパラメータとして内燃機関1の運転状態
を判定し、その運転状態に応じて、点火時期、燃料噴射
時間(燃料噴射量)、燃料噴射時期、吸入空気量等を算
出する。そして、E−ECU23は、算出された点火時
期、燃料噴射時間、燃料噴射時期、吸入空気量等に基づ
いて点火栓25、燃料噴射弁26、あるいはアクチュエ
ータ19a等を制御する。
The E-ECU 23 determines the operating state of the internal combustion engine 1 using the output signals from the various sensors as parameters, and according to the operating state, ignition timing, fuel injection time (fuel injection amount), fuel injection The timing, intake air amount, etc. are calculated. The E-ECU 23 controls the ignition plug 25, the fuel injection valve 26, the actuator 19a, and the like based on the calculated ignition timing, fuel injection time, fuel injection timing, intake air amount, and the like.

【0040】前記燃料噴射弁26を制御する際、前記E
−ECU23は、空燃比センサ27の出力信号値を参照
し、排気浄化触媒14に流入する排気の空燃比が所望の
空燃比(例えば、理論空燃比)となるようフィードバッ
ク制御を行う。
When controlling the fuel injection valve 26, the E
-The ECU 23 refers to the output signal value of the air-fuel ratio sensor 27 and performs feedback control so that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 14 becomes a desired air-fuel ratio (for example, a stoichiometric air-fuel ratio).

【0041】一方、前記H−ECU24は、図示しない
アクセルペダルの踏み込み量とSOCメータ16の出力
信号等に基づいて、発電機3及びインバータ5を制御す
るとともに、前記E−ECU23を介して内燃機関1の
制御を行う。
On the other hand, the H-ECU 24 controls the generator 3 and the inverter 5 on the basis of the depression amount of an accelerator pedal (not shown) and the output signal of the SOC meter 16, and the internal combustion engine via the E-ECU 23. 1 is performed.

【0042】具体的には、H−ECU24は、車両の停
止時やアクセルペダルの踏み込み量が小さい時等の低負
荷時は、内燃機関1を始動させず、バッテリ6の電力を
電動モータ2に印加すべくインバータ5を制御する。こ
のとき、電動モータ2は、前記バッテリ6からの電力で
回転軸2aを回転させ、前記回転軸2aの回転力は、減
速機7及びドライブシャフト8、9を介して車輪10、
11へ伝達されるので、車両は、バッテリ6の電力のみ
を駆動源として走行することになる。
More specifically, the H-ECU 24 does not start the internal combustion engine 1 when the vehicle is stopped or when the load on the accelerator pedal is small, such as when the depression amount of the accelerator pedal is small, and supplies the electric power of the battery 6 to the electric motor 2. The inverter 5 is controlled to apply the voltage. At this time, the electric motor 2 rotates the rotating shaft 2 a with the electric power from the battery 6, and the rotating force of the rotating shaft 2 a is transmitted to the wheels 10,
11, the vehicle travels using only the power of the battery 6 as a drive source.

【0043】その際、H−ECU24は、SOCメータ
16の出力信号値を常時監視しており、前記出力信号値
が所定値を下回ると、E−ECU23を介して内燃機関
1を始動させるとともに、発電機3及びインバータ5を
制御して、内燃機関1から出力される駆動力を動力分配
機構4にて発電機3と回転軸2aとに分配させ、次いで
発電機3で発生した電力をバッテリ6と電動モータ2と
に分配させる。
At this time, the H-ECU 24 constantly monitors the output signal value of the SOC meter 16, and when the output signal value falls below a predetermined value, starts the internal combustion engine 1 via the E-ECU 23, By controlling the generator 3 and the inverter 5, the driving force output from the internal combustion engine 1 is distributed to the generator 3 and the rotating shaft 2 a by the power distribution mechanism 4, and the electric power generated by the generator 3 is And the electric motor 2.

【0044】この場合、前記電動モータ2の回転軸2a
は、前記動力分配機構4により分配された駆動力と電動
モータ2の駆動力とを加算した駆動力で回転されるの
で、車両は、内燃機関1から出力される駆動力の一部
と、その残りの駆動力で発電された電力の一部とで走行
することになる。
In this case, the rotating shaft 2a of the electric motor 2
Is rotated by the driving force obtained by adding the driving force distributed by the power distribution mechanism 4 and the driving force of the electric motor 2, so that the vehicle has a part of the driving force output from the internal combustion engine 1 and The vehicle travels with a part of the electric power generated by the remaining driving force.

【0045】その後、前記SOCメータ16の出力信号
が所定の充電レベルに達すると、H−ECU24は、内
燃機関1を停止すべくE−ECU23を制御するととも
に、バッテリ6の電力で電動モータ2を駆動させるべく
インバータ5を制御する。
Thereafter, when the output signal of the SOC meter 16 reaches a predetermined charge level, the H-ECU 24 controls the E-ECU 23 to stop the internal combustion engine 1 and controls the electric motor 2 with the electric power of the battery 6. The inverter 5 is controlled to be driven.

【0046】次に、車両が通常走行状態にあるときは、
H−ECU24は、バッテリ6の電力を使用せずに、内
燃機関1の駆動力(動力分配機構4において回転軸2a
に分配された駆動力と、動力分配機構4において発電機
3へ分配された駆動力で発電された電力とを含む。以
下、内燃機関駆動力と称する)のみで車両を走行させ
る。
Next, when the vehicle is in a normal running state,
The H-ECU 24 uses the driving force of the internal combustion engine 1 (the rotation shaft 2a in the power distribution mechanism 4) without using the electric power of the battery 6.
And the power generated by the driving force distributed to the generator 3 in the power distribution mechanism 4. The vehicle is run only with the internal combustion engine driving force).

【0047】その際、H−ECU24は、アクセルペダ
ルの踏み込み量等に基づいて運転者が要求する駆動力
(以下、要求駆動力と称する)を算出し、次いで前記要
求駆動力を実現するために必要な内燃機関駆動力(以
下、機関要求駆動力)を算出する。そして、H−ECU
24は、算出した機関要求駆動力をE−ECU23へ送
信する。
At this time, the H-ECU 24 calculates a driving force required by the driver (hereinafter, referred to as a required driving force) based on the depression amount of the accelerator pedal and the like, and then implements the required driving force. A necessary internal combustion engine driving force (hereinafter, required engine driving force) is calculated. And H-ECU
24 transmits the calculated engine required driving force to the E-ECU 23.

【0048】ここで、H−ECU24からE−ECU2
3へ送信される機関要求駆動力は、内燃機関1の吸入空
気量と機関回転数をパラメータとする値であり、H−E
CU24は、吸入空気量と機関回転数と内燃機関駆動力
との関係を示すマップを有し、このマップから所望の内
燃機関駆動力に対応した吸入空気量と機関回転数とを特
定し、特定した吸入空気量と機関回転数とを機関要求駆
動力としてE−ECU23へ送信する。
Here, the H-ECU 24 to the E-ECU 2
The engine required driving force transmitted to the engine 3 is a value having the intake air amount of the internal combustion engine 1 and the engine speed as parameters, and HE
The CU 24 has a map indicating the relationship between the amount of intake air, the engine speed, and the driving force of the internal combustion engine. The map identifies the amount of intake air and the engine speed corresponding to the desired driving force of the internal combustion engine from this map. The obtained intake air amount and the engine speed are transmitted to the E-ECU 23 as the required engine driving force.

【0049】そして、E−ECU23は、H−ECU2
4から指定された吸入空気量及び機関回転数に従って、
アクチュエータ19、点火栓25、あるいは燃料噴射弁
26等を制御し、実際の内燃機関駆動力を機関要求駆動
力に一致させる。
The E-ECU 23 is connected to the H-ECU 2
According to the intake air amount and engine speed specified from 4,
The actuator 19, the spark plug 25, the fuel injection valve 26, and the like are controlled so that the actual driving force of the internal combustion engine matches the required driving force of the engine.

【0050】また、車両の加速時等のようにアクセルペ
ダルの踏み込み量が急激に増加した時は、H−ECU2
4は、前記アクセルペダルの踏み込み量から要求駆動力
を算出するとともに、内燃機関1の運転状態と電動モー
タ2の回転数とバッテリ6の蓄電量(SOCメータ16
の出力信号値)とから、ハイブリット機構全体で発生可
能な総駆動力を算出する。
When the amount of depression of the accelerator pedal suddenly increases, such as when the vehicle is accelerating, the H-ECU 2
4 calculates the required driving force from the depression amount of the accelerator pedal, and also calculates the operating state of the internal combustion engine 1, the rotation speed of the electric motor 2, and the stored amount of the battery 6 (the SOC meter 16).
From the output signal value), the total driving force that can be generated in the entire hybrid mechanism is calculated.

【0051】続いて、H−ECU24は、前記要求駆動
力と前記総駆動力とを比較し、前記要求駆動力が前記総
駆動力以下であれば、バッテリ6から電動モータ2へ印
加すべき電力量を算出する。そして、H−ECU24
は、算出した電力量をバッテリ6から電動モータ2へ印
加すべくインバータ5を制御する。この場合、車両は、
バッテリ6の電力で駆動された電動モータ2が出力する
駆動力(以下、バッテリ駆動力と称する)と内燃機関駆
動力とを加算した駆動力で走行することになる。
Subsequently, the H-ECU 24 compares the required driving force with the total driving force, and if the required driving force is equal to or less than the total driving force, the electric power to be applied from the battery 6 to the electric motor 2. Calculate the amount. Then, the H-ECU 24
Controls the inverter 5 to apply the calculated amount of power from the battery 6 to the electric motor 2. In this case, the vehicle
The vehicle travels with a driving force obtained by adding a driving force (hereinafter, referred to as a battery driving force) output from the electric motor 2 driven by the electric power of the battery 6 and an internal combustion engine driving force.

【0052】また、前記要求駆動力が前記総駆動力より
大きい場合は、H−ECU24は、内燃機関駆動力を増
加させるべくE−ECU23を制御するとともに、バッ
テリ6から出力可能な最大電力を電動モータ2に印加す
べくインバータ5を制御し、総駆動力を増加させる。
When the required driving force is larger than the total driving force, the H-ECU 24 controls the E-ECU 23 to increase the driving force of the internal combustion engine and controls the maximum power that can be output from the battery 6 by the electric motor. The inverter 5 is controlled so as to be applied to the motor 2 to increase the total driving force.

【0053】次に、E−ECU23は、図示しないイグ
ニッションスイッチがオン状態にある場合(内燃機関1
が運転停止状態にある時も含む)は、所定時間毎に空燃
比センサ温度センサ28の出力信号値Aと触媒温度セン
サ15の出力信号値Bを入力し、前記出力信号値Aが第
1の所定温度T1未満に低下したか否か、及び前記出力
信号値Bが第2の所定温度T2未満に低下したか否かを
判別する。
Next, the E-ECU 23 operates when the ignition switch (not shown) is in the ON state (the internal combustion engine 1).
Is in operation stop state), the output signal value A of the air-fuel ratio sensor temperature sensor 28 and the output signal value B of the catalyst temperature sensor 15 are input at predetermined time intervals, and the output signal value A is the first signal value. It is determined whether the temperature has dropped below the predetermined temperature T1 and whether the output signal value B has dropped below the second predetermined temperature T2.

【0054】前記第1の所定温度T1は、空燃比センサ
27の活性化温度より所定量高い温度であり、前記第2
の所定温度T2は、排気浄化触媒14の活性化温度より
所定量高い温度である。
The first predetermined temperature T 1 is a temperature higher than the activation temperature of the air-fuel ratio sensor 27 by a predetermined amount, and
The predetermined temperature T2 is a temperature that is higher than the activation temperature of the exhaust purification catalyst 14 by a predetermined amount.

【0055】そして、E−ECU23は、前記出力信号
値Aが前記第1の所定温度T1未満、およびまたは前記
出力信号値Bが前記第2の所定温度T2未満に低下した
と判定した場合は、排気浄化触媒14およびまたは空燃
比センサ27の温度を活性化温度以上に保持するため
に、活性化制御実行許可要求をH−ECU24へ送信す
る。
When the E-ECU 23 determines that the output signal value A is lower than the first predetermined temperature T1 and / or that the output signal value B is lower than the second predetermined temperature T2, In order to maintain the temperature of the exhaust purification catalyst 14 and / or the air-fuel ratio sensor 27 at or above the activation temperature, an activation control execution permission request is transmitted to the H-ECU 24.

【0056】前記E−ECU23からの活性化制御実行
許可要求を受信したH−ECU24は、内燃機関1が運
転停止状態にあるか、あるいは運転状態にあるかを判別
する。前記H−ECU24は、内燃機関1が運転停止状
態にあると判定した場合は、SOCメータ16の出力信
号値を入力し、SOCメータ16の出力信号値が所定値
以上であるか否か、すなわち、空燃比センサ用ヒータ3
1およびまたは触媒用ヒータ30へ駆動電流を供給可能
な電力がバッテリ6に蓄電されているか否かを判別す
る。
The H-ECU 24, which has received the activation control execution permission request from the E-ECU 23, determines whether the internal combustion engine 1 is in an operation stop state or an operation state. When the H-ECU 24 determines that the internal combustion engine 1 is in the operation stop state, the H-ECU 24 inputs the output signal value of the SOC meter 16 and determines whether or not the output signal value of the SOC meter 16 is equal to or more than a predetermined value. , Air-fuel ratio sensor heater 3
It is determined whether or not 1 and / or electric power capable of supplying a drive current to the catalyst heater 30 is stored in the battery 6.

【0057】前記SOCメータ16の出力信号値が所定
値以上であると判定した場合、H−ECU24は、前記
E−ECU23に対し、空燃比センサ用ヒータ31およ
びまたは触媒用ヒータ30による排気浄化触媒14ある
いは空燃比センサ27の加熱制御の実行を許可する。こ
のとき、E−ECU23は、前記空燃比センサ用ヒータ
31およびまたは前記触媒用ヒータ30にバッテリ6の
出力電流を印加し、排気浄化触媒14の温度を第1の所
定温度T1以上、およびまたは空燃比センサ27の温度
を第2の所定温度T2以上に上昇させる。
If the H-ECU 24 determines that the output signal value of the SOC meter 16 is equal to or greater than a predetermined value, the H-ECU 24 instructs the E-ECU 23 to use the heater 31 for the air-fuel ratio sensor and / or the heater 30 for the catalyst. 14 or execution of the heating control of the air-fuel ratio sensor 27 is permitted. At this time, the E-ECU 23 applies the output current of the battery 6 to the heater 31 for the air-fuel ratio sensor and / or the heater 30 for the catalyst, and raises the temperature of the exhaust purification catalyst 14 to a first predetermined temperature T1 or more and / or The temperature of the fuel ratio sensor 27 is raised to a second predetermined temperature T2 or higher.

【0058】また、前記SOCメータ16の出力信号値
が所定値未満であると判定した場合は、H−ECU24
は、E−ECU23に対し、内燃機関1の始動による活
性化制御の実行を許可する。この場合、E−ECU23
は、内燃機関1を強制始動し、内燃機関1からの排気の
熱により、排気浄化触媒14の温度を第1の所定温度T
1以上およびまたは空燃比センサ27の温度を第2の所
定温度T2以上に上昇させる。
If it is determined that the output signal value of the SOC meter 16 is less than a predetermined value, the H-ECU 24
Permits the E-ECU 23 to execute the activation control by starting the internal combustion engine 1. In this case, the E-ECU 23
Starts the internal combustion engine 1 and raises the temperature of the exhaust purification catalyst 14 to a first predetermined temperature T by the heat of the exhaust gas from the internal combustion engine 1.
The temperature of the air-fuel ratio sensor 27 is raised to a second predetermined temperature T2 or higher.

【0059】一方、H−ECU24は、内燃機関1が運
転状態にあると判定した場合は、SOCメータ16の出
力信号値を入力し、バッテリ6が充電可能な状態にある
か否かを判別する。
On the other hand, if the H-ECU 24 determines that the internal combustion engine 1 is operating, it inputs the output signal value of the SOC meter 16 and determines whether the battery 6 is in a chargeable state. .

【0060】前記バッテリ6が充電可能な状態にあると
判定した場合は、H−ECU24は、E−ECU23に
対し、内燃機関1の出力増加による活性化制御の実行を
許可する。その際、H−ECU24は、E−ECU23
に対し、内燃機関1の吸入空気量や機関回転数等をパラ
メータとする機関要求駆動力を送信する。
When it is determined that the battery 6 is in a chargeable state, the H-ECU 24 permits the E-ECU 23 to execute the activation control by increasing the output of the internal combustion engine 1. At this time, the H-ECU 24 is
In response to the request, an engine required driving force having the intake air amount of the internal combustion engine 1, the engine speed, and the like as parameters is transmitted.

【0061】このとき、E−ECU23は、H−ECU
24からの機関要求駆動力を実現すべく、アクチュエー
タ19、点火栓25、あるいは燃料噴射弁26等を制御
し、内燃機関1の出力を増加させる。この結果、内燃機
関1からの排気の温度が上昇するとともに排気の量が増
加し、排気浄化触媒14の温度が第1の所定温度以上T
1以上、およびまたは空燃比センサ27の温度が第2の
温度T2以上に昇温する。
At this time, the E-ECU 23 is
In order to realize the required engine driving force from the engine 24, the actuator 19, the spark plug 25, the fuel injection valve 26, and the like are controlled to increase the output of the internal combustion engine 1. As a result, the temperature of the exhaust gas from the internal combustion engine 1 increases and the amount of the exhaust gas increases, and the temperature of the exhaust purification catalyst 14 becomes equal to or higher than the first predetermined temperature T.
The temperature of the air-fuel ratio sensor 27 rises to the second temperature T2 or more.

【0062】また、前記バッテリ6が充電不可能な状態
にあると判定した場合、すなわち前記バッテリ6に十分
な電力が充電されていると判定した場合は、H−ECU
24は、E−ECU23に対し、空燃比センサ用ヒータ
31およびまたは触媒用ヒータ30による活性化制御の
実行を許可する。このとき、E−ECU23は、前記空
燃比センサ用ヒータ31およびまたは前記触媒用ヒータ
30にバッテリ6の出力電流を印加し、排気浄化触媒1
4の温度を第1の所定温度T1以上、およびまたは空燃
比センサ27の温度を第2の所定温度T2以上に上昇さ
せる。
If it is determined that the battery 6 is in a state where charging is impossible, that is, if it is determined that the battery 6 is charged with sufficient power, the H-ECU
24 permits the E-ECU 23 to execute the activation control by the heater 31 for the air-fuel ratio sensor and / or the heater 30 for the catalyst. At this time, the E-ECU 23 applies the output current of the battery 6 to the air-fuel ratio sensor heater 31 and / or the catalyst heater 30, and
4 is raised to a first predetermined temperature T1 or higher and / or the temperature of the air-fuel ratio sensor 27 is raised to a second predetermined temperature T2 or higher.

【0063】つまり、E−ECU23及びH−ECU2
4は、内燃機関1が運転状態にあるかあるいは運転停止
状態にあるかに関わらず、バッテリ6の充電量に余裕が
ある場合は、空燃比センサ用ヒータ31およびまたは触
媒用ヒータ30により排気浄化部品を機能活性化温度以
上に保持する。一方、E−ECU23及びH−ECU2
4は、バッテリ6の充電量に余裕がなく且つ内燃機関1
が運転停止状態にある場合は、内燃機関1を強制始動さ
せて、内燃機関1からの排気の熱で排気浄化部品を機能
活性化温度以上に保持し、バッテリ6の充電量に余裕が
なく且つ内燃機関1が運転状態にある場合は、機関回転
数や機関負荷の増加制御、アイドルアップ制御、あるい
は点火時期の遅角制御等を行うことにより、内燃機関1
からの排気の温度を高め、排気浄化部品を機能活性化温
度以上に保持する。
That is, the E-ECU 23 and the H-ECU 2
4, regardless of whether the internal combustion engine 1 is in the operating state or the operation stopping state, when the charge amount of the battery 6 has a margin, the exhaust gas purification is performed by the air-fuel ratio sensor heater 31 and / or the catalyst heater 30. Keep the parts above the functional activation temperature. On the other hand, the E-ECU 23 and the H-ECU 2
4 indicates that the charge amount of the battery 6 is insufficient and the internal combustion engine 1
Is in an operation stop state, the internal combustion engine 1 is forcibly started, the exhaust gas purifying component is maintained at the function activation temperature or more by the heat of the exhaust gas from the internal combustion engine 1, the charge amount of the battery 6 is not sufficient, and When the internal combustion engine 1 is in the operating state, the internal combustion engine 1 is controlled by increasing the engine speed or the engine load, performing idle-up control, or retarding the ignition timing.
The temperature of the exhaust gas from the exhaust gas is increased, and the exhaust gas purification component is maintained at a temperature above the functional activation temperature.

【0064】上記したようにE−ECU23及びH−E
CU24が触媒温度センサ15や空燃比センサ温度セン
サ28の出力信号に基づいて、内燃機関1、触媒用ヒー
タ30、あるいは空燃比センサ用ヒータ31を制御する
ことにより、本発明にかかる温度保持手段が実現され
る。
As described above, the E-ECU 23 and the HE
The CU 24 controls the internal combustion engine 1, the heater 30 for the catalyst, or the heater 31 for the air-fuel ratio sensor based on the output signals of the catalyst temperature sensor 15 and the air-fuel ratio sensor temperature sensor 28. Is achieved.

【0065】以下、本実施の形態の作用及び効果につい
て述べる。E−ECU23は、所定時間毎に図2に示す
ような活性化制御ルーチンを実行する。
The operation and effect of this embodiment will be described below. The E-ECU 23 executes an activation control routine as shown in FIG. 2 every predetermined time.

【0066】前記活性化制御ルーチンにおいて、E−E
CU23は、先ずS201において、空燃比センサ温度
センサ28の出力信号Aを入力する。続いて、E−EC
U23は、S202において、触媒温度センサ15の出
力信号Bを入力する。
In the activation control routine, EE
First, in S201, the CU 23 inputs the output signal A of the air-fuel ratio sensor temperature sensor 28. Then, E-EC
U23 inputs the output signal B of the catalyst temperature sensor 15 in S202.

【0067】そして、E−ECU23は、S203へ進
み、前記出力信号値Aが第1の所定温度T1より高く、
且つ前記出力信号値Bが第2の所定温度T2より高いか
否かを判別する。
Then, the E-ECU 23 proceeds to S203, where the output signal value A is higher than the first predetermined temperature T1, and
Further, it is determined whether or not the output signal value B is higher than a second predetermined temperature T2.

【0068】前記S203において前記出力信号値Aが
第1の所定温度T1より高く、且つ前記出力信号値Bが
第2の所定温度T2より高いと判定した場合は、E−E
CU23は、本ルーチンの実行を終了する。
If it is determined in S203 that the output signal value A is higher than the first predetermined temperature T1 and the output signal value B is higher than the second predetermined temperature T2, EE
The CU 23 ends the execution of this routine.

【0069】一方、前記S203において前記出力信号
値Aが第1の所定温度T1以下、およびまたは前記出力
信号値Bが第2の所定温度T2以下であると判定した場
合は、E−ECU23は、S204へ進み、活性化制御
実行許可要求信号をH−ECU24へ送信する。
On the other hand, if it is determined in S203 that the output signal value A is equal to or lower than the first predetermined temperature T1 and / or that the output signal value B is equal to or lower than the second predetermined temperature T2, the E-ECU 23 Proceeding to S204, an activation control execution permission request signal is transmitted to the H-ECU 24.

【0070】前記E−ECU23からの活性化制御実行
許可要求信号を受信したH−ECU24は、図3に示す
ような活性化制御判定ルーチンを実行する。この活性化
制御判定ルーチンにおいて、H−ECU24は、先ずS
301にてE−ECU23からの活性化制御実行許可要
求信号を受信し、次いでS302にて内燃機関1が運転
停止状態にあるか否かを判別する。
The H-ECU 24 that has received the activation control execution permission request signal from the E-ECU 23 executes an activation control determination routine as shown in FIG. In this activation control determination routine, the H-ECU 24 first
At 301, an activation control execution permission request signal from the E-ECU 23 is received, and then at S302, it is determined whether or not the internal combustion engine 1 is in an operation stop state.

【0071】前記S302において内燃機関1が運転停
止状態にあると判定した場合は、H−ECU24は、S
303へ進み、SOCメータ16の出力信号値(バッテ
リ充電量)を入力する。そして、H−ECU24は、S
304へ進み、SOCメータ16の出力信号値が所定値
より大きいか否か、すなわちバッテリ6が十分に充電さ
れているか否かを判別する。
If it is determined in step S302 that the internal combustion engine 1 is in the operation stop state, the H-ECU 24 proceeds to step S302.
Proceeding to 303, the output signal value (battery charge amount) of the SOC meter 16 is input. Then, the H-ECU 24 calculates S
Proceeding to 304, it is determined whether or not the output signal value of the SOC meter 16 is larger than a predetermined value, that is, whether or not the battery 6 is sufficiently charged.

【0072】前記S304においてSOCメータ16の
出力信号値が所定値より大きいと判定した場合は、H−
ECU24は、S305へ進み、触媒用ヒータ30およ
びまたは空燃比センサ用ヒータ31の通電制御を許可す
る信号をE−ECU23へ送信する。
If it is determined in step S304 that the output signal value of the SOC meter 16 is larger than the predetermined value, H-
The ECU 24 proceeds to S305 and transmits to the E-ECU 23 a signal permitting the energization control of the catalyst heater 30 and / or the air-fuel ratio sensor heater 31.

【0073】この場合、E−ECU23は、図2の活性
化制御ルーチンのS205において触媒用ヒータ30お
よびまたは空燃比センサ用ヒータ31の通電制御実行許
可信号を受信することになる。そして、E−ECU23
は、S206において、触媒用ヒータ30およびまたは
空燃比センサ用ヒータ31にバッテリ6の出力電流を印
加する。
In this case, the E-ECU 23 receives an energization control execution permission signal for the catalyst heater 30 and / or the air-fuel ratio sensor heater 31 in S205 of the activation control routine of FIG. And the E-ECU 23
Applies the output current of the battery 6 to the catalyst heater 30 and / or the air-fuel ratio sensor heater 31 in S206.

【0074】バッテリ6からの出力電流が印加された触
媒用ヒータ30およびまたは空燃比センサ用ヒータ31
は、排気浄化触媒14およびまたは空燃比センサ27を
加熱し、排気浄化触媒14を第1の所定温度T1より高
い温度、および空燃比センサ27を第2の所定温度T2
より高い温度まで昇温させる。
The catalyst heater 30 and / or the air-fuel ratio sensor heater 31 to which the output current from the battery 6 is applied
Heats the exhaust purification catalyst 14 and / or the air-fuel ratio sensor 27, sets the exhaust purification catalyst 14 to a temperature higher than the first predetermined temperature T1, and sets the air-fuel ratio sensor 27 to the second predetermined temperature T2.
Raise the temperature to a higher temperature.

【0075】一方、前記S304においてSOCメータ
16の出力信号値が所定値以下であると判定した場合
は、H−ECU24は、S306へ進み、内燃機関1の
始動制御を許可する信号をE−ECU23へ送信する。
On the other hand, if the H-ECU 24 determines in S304 that the output signal value of the SOC meter 16 is equal to or less than the predetermined value, the H-ECU 24 proceeds to S306 and outputs a signal for permitting the start control of the internal combustion engine 1 to the E-ECU 23. Send to

【0076】この場合、E−ECU23は、図2の活性
化制御ルーチンのS205において内燃機関1の始動制
御実行許可信号を受信することになる。そして、E−E
CU23は、S206において、内燃機関1を始動さ
せ、内燃機関1から排出される排気の熱により排気浄化
触媒14を第1の所定温度T1より高い温度、及び空燃
比センサ27を第2の所定温度T2より高い温度まで昇
温させる。
In this case, the E-ECU 23 receives the start control execution permission signal of the internal combustion engine 1 in S205 of the activation control routine of FIG. And EE
In step S206, the CU 23 starts the internal combustion engine 1, sets the exhaust purification catalyst 14 to a temperature higher than the first predetermined temperature T1 by the heat of the exhaust gas discharged from the internal combustion engine 1, and sets the air-fuel ratio sensor 27 to the second predetermined temperature. Raise the temperature to a temperature higher than T2.

【0077】尚、上記したように内燃機関1の始動制御
を実行する際、内燃機関1から出力される駆動力を主と
してバッテリ6の充電に利用しつつ、バッテリ6の出力
電流を触媒用ヒータ30およびまたは空燃比センサ用ヒ
ータ31に印加して、排気熱による加熱とヒータ30、
31による加熱とを並行して行うようにしてもよい。
When the start control of the internal combustion engine 1 is performed as described above, the driving current output from the internal combustion engine 1 is mainly used for charging the battery 6 and the output current of the battery 6 is used for the catalyst heater 30. And / or heating to the air-fuel ratio sensor heater 31, heating by the exhaust heat and the heater 30,
The heating by 31 may be performed in parallel.

【0078】次に、前記S302において内燃機関1が
運転状態にあると判定した場合は、H−ECU24は、
S307へ進み、SOCメータ16の出力信号値(バッ
テリ充電量)を入力する。そして、H−ECU24は、
S308へ進み、前記バッテリ充電量に基づいてバッテ
リ6が充電可能であるか否かを判別する。
Next, when it is determined in S302 that the internal combustion engine 1 is in the operating state, the H-ECU 24
Proceeding to S307, the output signal value (battery charge) of the SOC meter 16 is input. Then, the H-ECU 24
Proceeding to S308, it is determined whether or not the battery 6 can be charged based on the battery charge amount.

【0079】前記S308においてバッテリ6が充電可
能であると判定した場合は、H−ECU24は、S30
9へ進み、機関出力増加制御(例えば、機関回転数の増
加制御、機関負荷の増加制御、アイドルアップ制御、あ
るいは点火時期の遅角制御等)を許可する信号をE−E
CU23へ送信する。その際、H−ECU24は、内燃
機関1から出力される駆動力を指定する情報(機関要求
駆動力)を、前記機関出力増加制御許可信号とともに送
信する。
If it is determined in step S308 that the battery 6 can be charged, the H-ECU 24 proceeds to step S30.
9, a signal for permitting the engine output increase control (for example, the engine speed increase control, the engine load increase control, the idle-up control, or the ignition timing retard control, etc.) is issued.
Send to CU23. At that time, the H-ECU 24 transmits information specifying the driving force output from the internal combustion engine 1 (engine required driving force) together with the engine output increase control permission signal.

【0080】この場合、E−ECU23は、図2の活性
化制御ルーチンのS205において内燃機関1の機関出
力増加制御実行許可信号と機関要求駆動力情報とを受信
することになる。そして、E−ECU23は、S206
において、実際の内燃機関駆動力を前記機関要求駆動力
に一致させるべく、アクチュエータ19a、燃料噴射弁
26、あるいは点火栓25等を制御し、内燃機関1から
出力される駆動力を増加させる。
In this case, the E-ECU 23 receives the engine output increase control execution permission signal of the internal combustion engine 1 and the engine required driving force information in S205 of the activation control routine of FIG. Then, the E-ECU 23 determines in S206
In step (1), the actuator 19a, the fuel injection valve 26, the spark plug 25, and the like are controlled to increase the driving force output from the internal combustion engine 1 so that the actual driving force of the internal combustion engine matches the required driving force of the engine.

【0081】この結果、内燃機関1から排出される排気
の温度が上昇すると同時に、排気の量が増加するので、
排気浄化触媒14が第1の所定温度T1より高い温度ま
で昇温すると同時に、空燃比センサ27が第2の所定温
度T2より高い温度まで昇温する。
As a result, the temperature of the exhaust gas discharged from the internal combustion engine 1 increases, and at the same time, the amount of the exhaust gas increases.
At the same time as the temperature of the exhaust purification catalyst 14 rises to a temperature higher than the first predetermined temperature T1, the temperature of the air-fuel ratio sensor 27 rises to a temperature higher than the second predetermined temperature T2.

【0082】尚、上記したように機関出力増加制御を実
行する際、内燃機関1の駆動力の一部を利用してバッテ
リ6の充電を行いつつ、バッテリ6の出力電流を触媒用
ヒータ30や空燃比センサ用ヒータ31に印加して、排
気熱による加熱とヒータ30、31による加熱とを並行
して行うようにしてもよい。
When the engine output increase control is executed as described above, the battery 6 is charged by using a part of the driving force of the internal combustion engine 1 and the output current of the battery 6 is controlled by the catalyst heater 30 or the like. The heating by the exhaust heat and the heating by the heaters 30 and 31 may be applied in parallel to the heater 31 for the air-fuel ratio sensor.

【0083】一方、前記S308においてバッテリ6が
充電不可能であると判定した場合、つまりバッテリ6が
十分に充電されていると判定した場合は、H−ECU2
4は、S305へ進み、触媒用ヒータ30およびまたは
空燃比センサ用ヒータ31の通電制御を許可する信号を
E−ECU23へ送信する。
On the other hand, when it is determined in S308 that the battery 6 cannot be charged, that is, when it is determined that the battery 6 is sufficiently charged, the H-ECU 2
4 proceeds to S305, and transmits a signal to the E-ECU 23 for permitting energization control of the catalyst heater 30 and / or the air-fuel ratio sensor heater 31.

【0084】そして、E−ECU23は、図2の活性化
制御ルーチンのS206において、触媒用ヒータ30お
よびまたは空燃比センサ用ヒータ31にバッテリ6の出
力電流を印加する。
Then, the E-ECU 23 applies the output current of the battery 6 to the catalyst heater 30 and / or the air-fuel ratio sensor heater 31 in S206 of the activation control routine of FIG.

【0085】この場合、排気浄化触媒14およびまたは
空燃比センサ27は、内燃機関1からの排気と触媒用ヒ
ータ30およびまたは空燃比センサ用ヒータ31とによ
って加熱されることになり、速やかに第1及び第2の所
定温度T1、T2により高い温度へ昇温する。
In this case, the exhaust gas purifying catalyst 14 and / or the air-fuel ratio sensor 27 are heated by the exhaust gas from the internal combustion engine 1 and the catalyst heater 30 and / or the air-fuel ratio sensor heater 31, so that the first Then, the temperature is raised to a higher temperature by the second predetermined temperatures T1 and T2.

【0086】以上述べたように、本実施の形態にかかる
内燃機関制御装置によれば、所定時間毎に排気浄化触媒
14及び空燃比センサ27の温度を監視し、排気浄化触
媒14と空燃比センサ27との少なくとも一方が各々の
活性化温度より高い温度域に設定された温度T1、T2未
満に低下した時点で、排気浄化触媒14およびまたは空
燃比センサ27を加熱するので、排気浄化触媒14及び
空燃比センサ27が常に活性化温度以上に保たれること
になる。
As described above, according to the internal combustion engine control apparatus of this embodiment, the temperatures of the exhaust purification catalyst 14 and the air-fuel ratio sensor 27 are monitored at predetermined time intervals, and the exhaust purification catalyst 14 and the air-fuel ratio sensor are monitored. 27, the exhaust purification catalyst 14 and / or the air-fuel ratio sensor 27 are heated when the temperature falls below the temperatures T1 and T2 set in the temperature range higher than the respective activation temperatures. The air-fuel ratio sensor 27 is always kept at the activation temperature or higher.

【0087】この結果、内燃機関1の始動直後であって
も空燃比センサ27及び排気浄化触媒14が活性化した
状態となり、空燃比センサ27の出力信号値に基づいた
正確な空燃比フィードバック制御を行うことができ、排
気浄化触媒14に流入する排気の空燃比が所望の空燃比
となり、排気エミッションが悪化することがない。
As a result, even immediately after the start of the internal combustion engine 1, the air-fuel ratio sensor 27 and the exhaust purification catalyst 14 are in an activated state, and accurate air-fuel ratio feedback control based on the output signal value of the air-fuel ratio sensor 27 is performed. As a result, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 14 becomes the desired air-fuel ratio, and the exhaust emission does not deteriorate.

【0088】尚、本実施の形態では、本発明を適用する
ハイブリット機構として、内燃機関と電動モータとを動
力分割機構を介して組み合わせたハイブリット機構を例
に挙げたが、これに限られるものではなく、例えば、内
燃機関と電動モータとを直列に配置したシリーズ型ハイ
ブリット機構、あるいは内燃機関と電動モータとを並列
に配置したパラレル型ハイブリット機構等でもよく、要
は、車両運転中に内燃機関の始動と停止が繰り返される
ハイブリット機構、もしくは内燃機関が一定の負荷で連
続的に運転されるハイブリット機構であればよい。
In the present embodiment, a hybrid mechanism in which an internal combustion engine and an electric motor are combined via a power split mechanism has been described as an example of a hybrid mechanism to which the present invention is applied. However, the present invention is not limited to this. Instead, for example, a series-type hybrid mechanism in which an internal combustion engine and an electric motor are arranged in series, or a parallel-type hybrid mechanism in which an internal combustion engine and an electric motor are arranged in parallel may be used. Any hybrid mechanism in which start and stop are repeated or a hybrid mechanism in which the internal combustion engine is continuously operated with a constant load may be used.

【0089】[0089]

【発明の効果】本発明に係るハイブリット車の内燃機関
制御装置では、内燃機関の排気浄化部品を常に機能活性
化温度以上に保持するため、内燃機関の始動直後等であ
っても、排気浄化部品が排気の浄化を行うことができ、
排気エミッションが悪化することがない。
In the control apparatus for an internal combustion engine of a hybrid vehicle according to the present invention, the exhaust purification parts of the internal combustion engine are always maintained at a temperature higher than the function activation temperature. Can purify the exhaust,
Exhaust emissions do not deteriorate.

【0090】また、ハイブリット車の内燃機関制御装置
が温度検出手段と温度上昇手段とを備える場合は、温度
検出手段により検出された温度が低下傾向にあるとき、
すなわち排気浄化部品の温度が機能活性化温度より低く
なる傾向にあるときは、排気浄化部品の温度が機能活性
化温度より低くなる前に温度上昇手段により排気浄化部
品の温度が上昇させられるため、排気エミッションの悪
化を抑制することができる。
In the case where the internal combustion engine control device of the hybrid vehicle includes the temperature detecting means and the temperature increasing means, when the temperature detected by the temperature detecting means tends to decrease,
That is, when the temperature of the exhaust purification component tends to be lower than the function activation temperature, the temperature of the exhaust purification component is increased by the temperature increasing means before the temperature of the exhaust purification component becomes lower than the function activation temperature, Exhaust emission deterioration can be suppressed.

【0091】さらに、ハイブリット車の内燃機関制御装
置が蓄電量検出手段と温度検出手段と加熱手段とを具備
する場合は、蓄電手段の蓄電量に余裕がある場合は、内
燃機関の運転状態を変更することなく排気浄化部品の温
度を上昇させることができ、内燃機関の燃料消費率を抑
制しつつ排気エミッションの悪化を抑制することが可能
となる。
Further, when the internal combustion engine control device of the hybrid vehicle includes the charged amount detecting means, the temperature detecting means, and the heating means, the operation state of the internal combustion engine is changed when the charged amount of the charged power means has a margin. Therefore, the temperature of the exhaust purification component can be increased without causing the exhaust gas emission component to deteriorate while suppressing the fuel consumption rate of the internal combustion engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかる内燃機関制御装置を適用する
ハイブリット車のハイブリット機構の概略構成図
FIG. 1 is a schematic configuration diagram of a hybrid mechanism of a hybrid vehicle to which an internal combustion engine control device according to the present invention is applied.

【図2】 活性化制御ルーチンを示すフローチャート図FIG. 2 is a flowchart showing an activation control routine.

【図3】 活性化制御判定ルーチンを示すフローチャー
ト図
FIG. 3 is a flowchart illustrating an activation control determination routine;

【符号の説明】[Explanation of symbols]

1・・・内燃機関 2・・・電動モータ 3・・・発電機 4・・・動力分配機構 5・・・インバータ 6・・・バッテリ 7・・・減速機 14・・排気浄化触媒 15・・触媒温度センサ 16・・SOCメータ 23・・E−ECU 24・・H−ECU 27・・空燃比センサ 28・・空燃比センサ温度センサ 30・・触媒用ヒータ 31・・空燃比センサ用ヒータ DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Electric motor 3 ... Generator 4 ... Power distribution mechanism 5 ... Inverter 6 ... Battery 7 ... Reduction gear 14. Exhaust purification catalyst 15 ... Catalyst temperature sensor 16 SOC meter 23 E-ECU 24 H-ECU 27 Air-fuel ratio sensor 28 Air-fuel ratio sensor temperature sensor 30 Heater for catalyst 31 Heater for air-fuel ratio sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G05D 23/00 G05D 23/00 D ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI G05D 23/00 G05D 23/00 D

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関と、内燃機関により駆動される
発電機と、発電機にて発電された電力を蓄電する蓄電手
段と、前記発電機又は前記蓄電手段の電力で駆動される
電動機と、車両の運転状態と前記蓄電手段の状態との少
なくとも一方に応じて前記内燃機関を制御する機関制御
手段と、を備えたハイブリット車の内燃機関制御装置で
あり、 前記内燃機関からの排気を浄化するための排気浄化部品
の温度を機能活性化温度以上に保つ温度保持手段を備え
ることを特徴とするハイブリット車の内燃機関制御装
置。
An internal combustion engine, a generator driven by the internal combustion engine, a power storage means for storing power generated by the generator, and a motor driven by the power of the generator or the power storage means; An engine control unit for a hybrid vehicle, comprising: an engine control unit that controls the internal combustion engine according to at least one of a vehicle operating state and a state of the power storage unit, and purifies exhaust gas from the internal combustion engine. An internal combustion engine control device for a hybrid vehicle, comprising: a temperature maintaining unit that maintains a temperature of an exhaust purification component at a temperature equal to or higher than a functional activation temperature.
【請求項2】 前記温度保持手段は、前記排気浄化部品
の温度を検出する温度検出手段と、 前記温度検出手段により検出された温度が低下傾向にあ
るとき、前記排気浄化部品を機能活性化温度以上に保持
すべく前記排気浄化部品の温度を上昇させる温度上昇手
段とを具備する請求項1記載のハイブリット車の内燃機
関制御装置。
2. The temperature holding means comprises: a temperature detecting means for detecting a temperature of the exhaust gas purifying component; and a temperature for activating the exhaust gas purifying component when the temperature detected by the temperature detecting means tends to decrease. 2. The internal combustion engine control apparatus for a hybrid vehicle according to claim 1, further comprising a temperature increasing unit configured to increase a temperature of the exhaust gas purification component so as to maintain the temperature.
【請求項3】 前記温度上昇手段は、前記機関制御手段
を介して前記内燃機関を強制始動させることを特徴とす
る請求項2記載のハイブリット車の内燃機関制御装置。
3. The internal combustion engine control apparatus for a hybrid vehicle according to claim 2, wherein said temperature increasing means forcibly starts said internal combustion engine via said engine control means.
【請求項4】 前記温度上昇手段は、前記排気浄化部品
を加熱する加熱手段であることを特徴とする請求項2記
載のハイブリット車の内燃機関制御装置。
4. An internal combustion engine control apparatus for a hybrid vehicle according to claim 2, wherein said temperature increasing means is heating means for heating said exhaust gas purifying component.
【請求項5】 前記温度保持手段は、前記蓄電手段の蓄
電量を検出する蓄電量検出手段と、 前記排気浄化部品の温度を検出する温度検出手段と、 前記蓄電手段に蓄電された電力で前記排気浄化部品を加
熱する加熱手段とを具備し、 前記温度検出手段により検出された温度が低下傾向にあ
り、前記蓄電量検出手段により検出された蓄電量が所定
値以上であれば、前記加熱手段による排気浄化部品の加
熱を行い、 前記温度検出手段により検出された温度が低下傾向にあ
り、前記蓄電量検出手段により検出された蓄電量が所定
値未満であれば、前記機関制御手段を介して前記内燃機
関の運転状態を変更することを特徴とする請求項1記載
のハイブリット車の内燃機関制御装置。
5. The temperature holding unit includes: a storage amount detection unit configured to detect a storage amount of the storage unit; a temperature detection unit configured to detect a temperature of the exhaust gas purification component; Heating means for heating the exhaust gas purifying component, wherein the temperature detected by the temperature detecting means tends to decrease, and if the charged amount detected by the charged amount detecting means is equal to or more than a predetermined value, the heating means By heating the exhaust gas purifying component according to the above, if the temperature detected by the temperature detecting means is in a tendency to decrease, and if the amount of stored power detected by the charged amount detecting means is less than a predetermined value, through the engine control means The internal combustion engine control apparatus for a hybrid vehicle according to claim 1, wherein an operation state of the internal combustion engine is changed.
JP01437198A 1998-01-27 1998-01-27 Internal combustion engine control device for hybrid vehicle Expired - Fee Related JP3376902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01437198A JP3376902B2 (en) 1998-01-27 1998-01-27 Internal combustion engine control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01437198A JP3376902B2 (en) 1998-01-27 1998-01-27 Internal combustion engine control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JPH11210448A true JPH11210448A (en) 1999-08-03
JP3376902B2 JP3376902B2 (en) 2003-02-17

Family

ID=11859201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01437198A Expired - Fee Related JP3376902B2 (en) 1998-01-27 1998-01-27 Internal combustion engine control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP3376902B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1085177A2 (en) * 1999-09-20 2001-03-21 Toyota Jidosha Kabushiki Kaisha Regenerative catalytic apparatus in hybrid vehicle
US6520160B2 (en) 2000-04-21 2003-02-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control unit for, and method of controlling a hybrid vehicle
US6615578B2 (en) 2001-01-16 2003-09-09 Toyota Jidosha Kabushiki Kaisha HC-discharge suppressing device for vehicle and operational method of suppressing discharge of HC
US6829887B2 (en) 2001-01-16 2004-12-14 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling vehicle so as to purify exhaust emission from engine
US6892541B2 (en) 2002-03-12 2005-05-17 Toyota Jidosha Kabushiki Kaisha Vehicle control device and control method of the same
JP2008100570A (en) * 2006-10-18 2008-05-01 Mazda Motor Corp Controller of hybrid vehicle equipped with dual-fuel engine
JP2008183923A (en) * 2007-01-26 2008-08-14 Nissan Motor Co Ltd Vehicular power supply device
DE102009003469A1 (en) 2008-02-22 2009-09-03 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Anomaly determination device for an electrically heatable catalyst
JP2009281867A (en) * 2008-05-22 2009-12-03 Autonetworks Technologies Ltd Heater control device for sensor
JP2010213405A (en) * 2009-03-09 2010-09-24 Aisin Aw Co Ltd Temperature adjusting device, temperature adjusting method and temperature adjusting program
JP2011032890A (en) * 2009-07-30 2011-02-17 Honda Motor Co Ltd Control device for vehicle
WO2011070664A1 (en) * 2009-12-10 2011-06-16 トヨタ自動車 株式会社 Control device for internal combustion engine
WO2011111176A1 (en) 2010-03-10 2011-09-15 トヨタ自動車株式会社 Vehicle and method for electrifying catalyst device
JP2014134187A (en) * 2013-01-14 2014-07-24 Denso Corp Electric heating catalyst warming-up control device
JP2018096224A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230219557A1 (en) * 2020-05-18 2023-07-13 Nissan Motor Co., Ltd. Hybrid vehicle control method and hybrid vehicle control device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1085177A2 (en) * 1999-09-20 2001-03-21 Toyota Jidosha Kabushiki Kaisha Regenerative catalytic apparatus in hybrid vehicle
EP1085177A3 (en) * 1999-09-20 2003-10-01 Toyota Jidosha Kabushiki Kaisha Regenerative catalytic apparatus in hybrid vehicle
US6718758B1 (en) 1999-09-20 2004-04-13 Toyota Jidosha Kabushiki Kaisha Regenerative catalytic apparatus in hybrid vehicle
US6520160B2 (en) 2000-04-21 2003-02-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control unit for, and method of controlling a hybrid vehicle
US6615578B2 (en) 2001-01-16 2003-09-09 Toyota Jidosha Kabushiki Kaisha HC-discharge suppressing device for vehicle and operational method of suppressing discharge of HC
US6829887B2 (en) 2001-01-16 2004-12-14 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling vehicle so as to purify exhaust emission from engine
US6892541B2 (en) 2002-03-12 2005-05-17 Toyota Jidosha Kabushiki Kaisha Vehicle control device and control method of the same
JP2008100570A (en) * 2006-10-18 2008-05-01 Mazda Motor Corp Controller of hybrid vehicle equipped with dual-fuel engine
JP4508178B2 (en) * 2006-10-18 2010-07-21 マツダ株式会社 Control device for hybrid vehicle equipped with dual fuel engine
JP2008183923A (en) * 2007-01-26 2008-08-14 Nissan Motor Co Ltd Vehicular power supply device
DE102009003469A1 (en) 2008-02-22 2009-09-03 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Anomaly determination device for an electrically heatable catalyst
DE102009003469B4 (en) * 2008-02-22 2012-08-09 Toyota Jidosha K.K. Anomaly determination device for an electrically heatable catalyst
US8438836B2 (en) 2008-02-22 2013-05-14 Toyota Jidosha Kabushiki Kaisha Abnormality determination apparatus for electrically heated catalyst
JP2009281867A (en) * 2008-05-22 2009-12-03 Autonetworks Technologies Ltd Heater control device for sensor
JP2010213405A (en) * 2009-03-09 2010-09-24 Aisin Aw Co Ltd Temperature adjusting device, temperature adjusting method and temperature adjusting program
JP2011032890A (en) * 2009-07-30 2011-02-17 Honda Motor Co Ltd Control device for vehicle
WO2011070664A1 (en) * 2009-12-10 2011-06-16 トヨタ自動車 株式会社 Control device for internal combustion engine
WO2011111176A1 (en) 2010-03-10 2011-09-15 トヨタ自動車株式会社 Vehicle and method for electrifying catalyst device
US8660730B2 (en) 2010-03-10 2014-02-25 Toyota Jidosha Kabushiki Kaisha Vehicle and method for energizing catalyst device
JP2014134187A (en) * 2013-01-14 2014-07-24 Denso Corp Electric heating catalyst warming-up control device
JP2018096224A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
US10371029B2 (en) 2016-12-09 2019-08-06 Toyota Jidasha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine

Also Published As

Publication number Publication date
JP3376902B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP3374734B2 (en) Internal combustion engine control device for hybrid vehicle
JP3578044B2 (en) Internal combustion engine control device for hybrid vehicle
JP4175371B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, ITS CONTROL METHOD, AND POWER OUTPUT DEVICE
JP4321520B2 (en) POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4175370B2 (en) Hybrid vehicle and control method thereof
JP4850801B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING INTERNAL COMBUSTION ENGINE DEVICE
JP4513751B2 (en) Hybrid vehicle and control method thereof
JP3956548B2 (en) Thermal storage catalyst device in hybrid vehicle
JP4306719B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, POWER OUTPUT DEVICE EQUIPPED WITH THE SAME, VEHICLE MOUNTING THE SAME, METHOD FOR CONTROLLING INTERNAL COMBUSTION ENGINE DEVICE
JP3376902B2 (en) Internal combustion engine control device for hybrid vehicle
JP4165597B2 (en) POWER OUTPUT DEVICE, INTERNAL COMBUSTION ENGINE DEVICE, CONTROL METHOD THEREOF, AND VEHICLE
JPH10288028A (en) Operation control device for hybrid vehicle
JP4876953B2 (en) Vehicle and control method thereof
JP4085996B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP3732395B2 (en) Vehicle control device
JP4196960B2 (en) Power output apparatus, automobile equipped with the same, and control method therefor
JP2008189267A (en) Hybrid vehicle and its control method
JP2007120382A (en) Power output device, method for controlling the same and vehicle
JP3576969B2 (en) Vehicle control device
JP3470681B2 (en) Internal combustion engine control device for hybrid vehicle
JP2009274628A (en) Hybrid vehicle and its control method
JP4311414B2 (en) Vehicle and control method thereof
JP4306685B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, POWER OUTPUT DEVICE, INTERNAL COMBUSTION ENGINE STOP METHOD, AND INTERNAL COMBUSTION ENGINE DEVICE CONTROL METHOD
JP2007283899A (en) Internal combustion engine device, its control method, and vehicle
JP4229116B2 (en) Hybrid vehicle and control method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees