JPH11197159A - Operation supporting system - Google Patents
Operation supporting systemInfo
- Publication number
- JPH11197159A JPH11197159A JP449898A JP449898A JPH11197159A JP H11197159 A JPH11197159 A JP H11197159A JP 449898 A JP449898 A JP 449898A JP 449898 A JP449898 A JP 449898A JP H11197159 A JPH11197159 A JP H11197159A
- Authority
- JP
- Japan
- Prior art keywords
- surgical
- data
- simulation
- patient
- surgery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004088 simulation Methods 0.000 claims abstract description 51
- 238000011156 evaluation Methods 0.000 claims abstract description 13
- 238000001356 surgical procedure Methods 0.000 claims description 55
- 238000013459 approach Methods 0.000 claims description 10
- 206010002091 Anaesthesia Diseases 0.000 claims description 7
- 230000037005 anaesthesia Effects 0.000 claims description 7
- 230000002612 cardiopulmonary effect Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 10
- 210000004204 blood vessel Anatomy 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 210000000013 bile duct Anatomy 0.000 description 4
- 238000002192 cholecystectomy Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000002792 vascular Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 238000013189 cholangiography Methods 0.000 description 2
- 210000001953 common bile duct Anatomy 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000000232 gallbladder Anatomy 0.000 description 2
- 210000002767 hepatic artery Anatomy 0.000 description 2
- 238000002350 laparotomy Methods 0.000 description 2
- 238000002432 robotic surgery Methods 0.000 description 2
- 208000005189 Embolism Diseases 0.000 description 1
- 101100347655 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) NAB3 gene Proteins 0.000 description 1
- 208000009443 Vascular Malformations Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000010876 biochemical test Methods 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000001883 cholelithiasis Diseases 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 210000001145 finger joint Anatomy 0.000 description 1
- 208000001130 gallstones Diseases 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007102 metabolic function Effects 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004202 respiratory function Effects 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
Landscapes
- Image Processing (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Image Analysis (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は,医療行為における
主に外科的治療の計画及び実施を支援する手術支援シス
テムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surgical operation support system which mainly supports planning and execution of surgical treatment in medical practice.
【0002】[0002]
【従来の技術】社会の高齢化が進む中,医療の現場では
いかに患者の生活の質を落とさずに治療効果を上げるか
が重要な課題となっている。外科領域では,術前に最適
な術式やアプローチ方向等を決める術前計画と,術中に
術野周辺の状況と患部と手術器具との関係を把握して計
画どおりに手術を行う術中誘導の2点が特に重要であ
る。 術前計画において,医師は患者の状態に基づき様
々な術式やアプローチを想定して手術の計画を立てる。
この際,様々な選択肢を仮想的に試行することができれ
ば,より信頼性の高い計画を立てることが可能となる。
これを手術シミュレーションと呼ぶ。例えば,日本ME
学会雑誌BME,Vol.11,No.8(199
7),pp.18−23に記載されている「高次元画像
による手術シミュレーション」のように,X線CTやM
RI等の医用3次元画像等から仮想空間に臓器等のモデ
ルを作成し,術前に最適アプローチ方向や内視鏡の視野
予測等の計算を行い,バーチャルリアリティ(仮想現実
感)の技術等で医師に分かりやすく提示することが行わ
れてきた。2. Description of the Related Art With the aging of society, it has become an important issue in the field of medical care how to improve the treatment effect without lowering the quality of life of patients. In the field of surgery, a preoperative plan that determines the optimal surgical procedure and approach direction before surgery, and an intraoperative guide to grasp the situation around the surgical field and the relationship between the affected area and surgical instruments during surgery and perform surgery as planned. Two points are particularly important. In preoperative planning, a physician plans an operation based on various surgical procedures and approaches based on the patient's condition.
At this time, if various options can be virtually tried, a more reliable plan can be made.
This is called an operation simulation. For example, Japan ME
Academic Journal BME, Vol. 11, No. 8 (199
7), p. As described in “Surgical simulation using high-dimensional images” described in 18-23, X-ray CT and M
Creates a model of an organ or the like in a virtual space from a medical three-dimensional image such as RI, calculates the optimal approach direction and endoscope visual field prediction before surgery, and uses technologies such as virtual reality (virtual reality). It has been practiced to present it to doctors in an easy-to-understand manner.
【0003】一方,術中誘導において,安全確実に目標
部位へアプローチするためには,医師が患部周囲の状態
や患部と手術器具との位置関係等を常に把握している必
要がある。この位置関係をセンサ等で計測してリアルタ
イムで医師に提示することにより,計画どおりの正確な
手術が可能となる。これを手術ナビゲーションと呼ぶ。
この分野では,例えば,定位脳手術という術式におい
て,センサ等で手術器具の位置と方向を測定し,穿刺針
の先端位置を術前画像の上に示すという研究が主に行わ
れてきた。また,日本ME学会雑誌BME,Vol.1
1,No.8(1997),pp.3−8に記載されて
いる「三次元画像ナビゲーション(Volumegra
ph)」のように,術前画像より再構成した病変部の3
次元画像を,ハーフミラーを用いて患者頭部に重ね合わ
せて見せるという,オーグメンテッドリアリティ(拡張
現実感)の技術を利用した試みもなされてきた。On the other hand, in order to safely and reliably approach a target site during intraoperative guidance, it is necessary for a doctor to always grasp the condition around the affected part, the positional relationship between the affected part and a surgical instrument, and the like. By measuring this positional relationship with a sensor or the like and presenting it to the physician in real time, an accurate operation as planned can be performed. This is called surgical navigation.
In this field, for example, in an operation called stereotactic brain surgery, research has mainly been conducted on measuring the position and direction of a surgical instrument with a sensor or the like and displaying the tip position of a puncture needle on a preoperative image. Also, the ME Society of Japan Magazine BME, Vol. 1
1, No. 8 (1997) pp. 3-8 "3D image navigation (Volumegra
ph) ”, 3 of the lesions reconstructed from preoperative images
Attempts have also been made to use augmented reality (augmented reality) technology, which shows a two-dimensional image superimposed on the patient's head using a half mirror.
【0004】[0004]
【発明が解決しようとする課題】第一に,上記の例を含
む公知技術では,手術シミュレーションと手術ナビゲー
ションは別個になされてきた。例えば,手術シミュレー
ションでどんなに最適な手術計画ができたとしても,そ
れを実施する際の誘導が全くない手術であったり,完全
に別個のナビゲーションシステムであったりしたため,
手術シミュレーションで立案された計画のとおりに実行
することは困難であった。一方,手術ナビゲーションで
どんなに正確に術者の誘導ができるとしても,もし手術
計画に誤りがあったり,患者の予期せぬ急変があったり
した場合には,誘導を断念せざるを得ない。従来の手術
ナビゲーションは,計画が絶対に正しいという前提で誘
導しているため,その前提が崩れた場合でもその教訓を
次回の手術計画に直接生かすことが困難であるという問
題があった。First, in the prior art including the above example, the surgical simulation and the surgical navigation have been performed separately. For example, no matter how optimal an operation plan could be made in a surgery simulation, it was a surgery without any guidance in performing it, or it was a completely separate navigation system,
It was difficult to perform as planned in the surgical simulation. On the other hand, no matter how accurately the surgical navigation can guide the operator, if the surgical plan is incorrect or the patient suddenly changes unexpectedly, the guide must be abandoned. The conventional surgical navigation guides on the assumption that the plan is absolutely correct, so that even if the assumption is broken, there is a problem that it is difficult to directly apply the lesson to the next surgical plan.
【0005】第二に,上記の例を含む公知技術では,手
術シミュレーションで利用する患者・患部のモデルは,
医用画像から得た形状情報と,力学特性に基づき計算し
た力学的情報,すなわち物理的なモデルが利用されてい
た。従って,手術シミュレーションも,穿刺方向決定や
臓器変形予測等の物理的なものに留まっており,手術に
伴う血流量の変化や,最適麻酔量等の機能的な予測に基
づいた手術計画は困難であるという問題があった。[0005] Second, in the known techniques including the above example, a model of a patient / affected part used in a surgical simulation is:
Shape information obtained from medical images and mechanical information calculated based on mechanical characteristics, that is, physical models have been used. Therefore, surgery simulations are limited to physical ones such as determination of puncture direction and prediction of organ deformation, and it is difficult to plan surgery based on changes in blood flow due to surgery and functional predictions such as optimal anesthesia volume. There was a problem.
【0006】第三に,上記の例を含む公知技術では,手
術シミュレーションのユーザインタフェースと手術ナビ
ゲーションのユーザインタフェースが別個のものであっ
たため,術中の操作そのものを術前に訓練するのは困難
であるという問題があった。Third, in the prior art including the above-described example, since the user interface of the surgery simulation and the user interface of the surgery navigation are separate, it is difficult to train the intraoperative operation itself before the operation. There was a problem.
【0007】本願発明の目的は,上記従来技術の課題を
解決し,手術シミュレーションと手術ナビゲーションを
一貫して運用でき手術計画と介入誘導を高度化できる手
術支援システムを提供することにある。[0007] It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a surgery support system capable of operating surgery simulation and surgery navigation consistently and enhancing surgery planning and intervention guidance.
【0008】[0008]
【課題を解決するための手段】本発明の手術支援システ
ムでは,画像や検査結果等の術前患者データを入力とし
て,医師の介入に対するシミュレーションを行って,最
適手術条件や最適アプローチ等の手術計画データを出力
する手術シミュレーション機能と,画像や測定値等の術
中患者データや,医師の介入に対する術中誘導を行っ
て,採用した手術条件や実際のアプローチ等の手術評価
データを出力する手術ナビゲーション機能とを有し,手
術シミュレーションの出力である手術計画データを手術
ナビゲーションの入力の一部として利用し,手術ナビゲ
ーションで得られた手術評価データを次回以降の手術シ
ミュレーションの入力の一部として利用することに特徴
があり,患者の形状や力学特性等の物理情報だけではな
く,心肺機能情報や麻酔反応情報等の機能情報も含めた
仮想患者モデルを使用し,手術シミュレーションと手術
ナビゲーションの各段階で利用するユーザインタフェー
スを共通化しておく。In the operation support system of the present invention, a simulation for intervention by a doctor is performed by using preoperative patient data such as images and test results as input, and an operation plan such as an optimum operation condition and an optimum approach is performed. A surgical simulation function that outputs data, a surgical navigation function that outputs intraoperative patient data such as images and measured values, and intraoperative guidance for physician intervention, and outputs surgical evaluation data such as adopted surgical conditions and actual approaches. The operation plan data, which is the output of the operation simulation, is used as part of the operation navigation input, and the operation evaluation data obtained by the operation navigation is used as part of the input of the operation simulation for the next and subsequent operations. It has characteristics, not only physical information such as patient shape and mechanical characteristics, but also cardiopulmonary function information and Using the virtual patient model, including the function information such as the good response information, keep common user interface to be used in each stage of surgical navigation and surgical simulation.
【0009】本願発明では,手術シミュレーションと手
術ナビゲーションを一貫して運用でき,手術計画と介入
誘導を高度化でき,手術計画通りの介入誘導と手術結果
に基づいて適切な手術計画が可能になる。According to the present invention, the operation simulation and the operation navigation can be operated consistently, the operation plan and the intervention guidance can be advanced, and the appropriate operation plan can be performed based on the operation guidance and the operation result according to the operation plan.
【0010】[0010]
【発明の実施の形態】本発明の手術支援システム1を,
図1を用いて説明する。手術支援システム1では,術前
画像や術前検査結果等の術前患者データ41を入力とし
て,手術における医師6の介入に対する結果を予測する
仮想患者を構築する仮想患者構築処理101を行う。次
いで,仮想的な医師の介入である仮想介入データ42を
入力として,仮想患者の情報に基づいて結果予測を行い
患者予測データ43を出力する手術シミュレーション実
施処理102を行う。ここで得られた仮想介入データ4
2と患者予測データ43の組から,最適な仮想介入デー
タ42の組み合わせを選定する手術計画立案処理103
を行う。最終的には,構築した仮想患者の情報と,例え
ば,最適手術条件や最適アプローチ等の最適仮想介入デ
ータ42の組とを,手術計画データ2として出力する。
これが手術支援システム1における手術シミュレーショ
ン機能11である。DESCRIPTION OF THE PREFERRED EMBODIMENTS An operation support system 1 according to the present invention
This will be described with reference to FIG. The surgery support system 1 performs a virtual patient construction process 101 for constructing a virtual patient for predicting a result of intervention of the doctor 6 in surgery by using preoperative patient data 41 such as a preoperative image and a preoperative examination result. Next, an operation simulation execution process 102 is performed in which the virtual intervention data 42, which is an intervention of a virtual doctor, is input, the result is predicted based on the information of the virtual patient, and the patient prediction data 43 is output. Virtual intervention data 4 obtained here
Surgery planning process 103 for selecting the optimal combination of virtual intervention data 42 from the set of patient prediction data 43
I do. Finally, the constructed virtual patient information and the set of the optimal virtual intervention data 42 such as the optimal operation conditions and the optimal approach are output as the operation plan data 2.
This is the operation simulation function 11 in the operation support system 1.
【0011】また,手術支援システム1は,術中画像や
術中測定値等の術中患者データ44と,前述の手術計画
データ2とを入力として,術前情報で構築された仮想患
者のデータを現実の患者5に近づける仮想患者修正処理
104を行う。次いで,実際に医師6が患者に対して行
う介入行為45をセンサや画像認識等で計測して得られ
た,例えば,穿刺針の先端位置及び方向等の医師介入デ
ータ46と,前述の患者術中データ44を入力として,
医師6の介入行為45が計画どおり進むよう誘導するた
めの介入誘導データ47を出力する手術ナビゲーション
実施処理105を行う。ここで得られた術中データ44
と医師介入データ46と介入誘導データ47を解析する
手術結果評価処理106を行う。最終的には,修正した
仮想患者の情報と,例えば,実際に採用して奏効した介
入行為45や,採用したのに予想した効果が得られなか
った介入行為45や,患者の予期せぬ反応のため採用で
きなかった介入行為45等を抽出した,患者術中データ
44と医師介入データ46との組とを,手術評価データ
3として出力する。これが手術ナビゲーション機能12
である。The surgery support system 1 receives intraoperative patient data 44 such as an intraoperative image and an intraoperative measured value and the above-mentioned operation plan data 2 and inputs the data of the virtual patient constructed by the preoperative information into an actual operation. A virtual patient correction process 104 for approaching the patient 5 is performed. Next, doctor intervention data 46 such as, for example, the tip position and direction of the puncture needle, obtained by measuring the intervention action 45 actually performed by the doctor 6 on the patient by a sensor, image recognition, and the like, and the above-mentioned patient operation With data 44 as input,
A surgical navigation execution process 105 for outputting intervention guidance data 47 for guiding the intervention action 45 of the doctor 6 to proceed as planned is performed. Intraoperative data 44 obtained here
Then, a surgical result evaluation process 106 for analyzing the doctor intervention data 46 and the intervention guidance data 47 is performed. Eventually, the corrected virtual patient information and the intervention action 45 that was actually adopted and worked, the intervention action 45 that was adopted but the expected effect was not obtained, and the unexpected reaction of the patient Then, a set of the patient's intraoperative data 44 and the doctor's intervention data 46, which extracted the intervention actions 45 and the like that could not be adopted, is output as the surgery evaluation data 3. This is the surgical navigation function 12
It is.
【0012】更に,手術評価データ3を手術シミュレー
ション機能11の入力として,仮想患者構築処理に使用
するものとする。Further, it is assumed that the operation evaluation data 3 is used as input to the operation simulation function 11 for virtual patient construction processing.
【0013】以上のように,手術シミュレーション機能
11の出力である手術計画データ2を手術ナビゲーショ
ン機能12の入力として,手術ナビゲーション機能12
の出力である手術評価データ3を手術シミュレーション
機能11の入力として,相互に利用することにより,手
術シミュレーションで立案した手術計画のとおりに的確
な手術ナビゲーションをすることを可能とし,かつ手術
ナビゲーションの結果得られた手術評価を生かしてより
信頼性の高い手術シミュレーションをすることを可能と
した。As described above, the operation plan data 2 which is the output of the operation simulation function 11 is used as the input of the operation navigation function 12 and the operation navigation function 12 is used.
The operation evaluation data 3 which is the output of the operation simulation is used as an input of the operation simulation function 11 and thereby, it is possible to perform an accurate operation navigation according to the operation plan drafted by the operation simulation, and to obtain the operation navigation result. Making use of the obtained surgical evaluation, it has become possible to perform a more reliable surgical simulation.
【0014】また,手術支援システム1において,患者
5の形状や力学特性等の物理的情報だけではなく,心肺
機能情報や麻酔反応情報等の機能情報も含めた仮想患者
を構築して利用することことにより,手術に伴う血流量
の変化や,最適麻酔量等の機能的な情報に基づいた手術
シミュレーションや手術ナビゲーションを可能とした。Further, in the surgery support system 1, it is possible to construct and use a virtual patient including not only physical information such as the shape and mechanical characteristics of the patient 5 but also functional information such as cardiopulmonary function information and anesthesia reaction information. This enabled surgery simulation and surgical navigation based on functional information such as changes in blood flow due to surgery and optimal anesthesia volume.
【0015】更に,上記した手術支援システムにおい
て,手術シミュレーションと手術ナビゲーションの各段
階で利用する入出力手段13におけるユーザインタフェ
ースを共通化することにより,手術本番さながらの手術
シミュレーションによる実践的な手技訓練や,訓練さな
がらの手術ナビゲーションによる迅速確実な介入誘導を
可能とした。また,手術支援システム1での各機能1
1,12における各処理101,102,103,及
び,各処理106,105,104は,実際には共通の
処理手段14によって実行され,記憶手段15も各機能
11,12において共通に使用される。Further, in the above-mentioned operation support system, the user interface of the input / output means 13 used in each stage of the operation simulation and the operation navigation is made common, so that the practical operation training by the operation simulation similar to the operation operation can be performed. In addition, it was possible to promptly and reliably guide intervention through surgical navigation while training. In addition, each function 1 in the surgery support system 1
Each of the processes 101, 102, 103 and each of the processes 106, 105, 104 in the steps 1 and 12 are actually executed by the common processing unit 14, and the storage unit 15 is also commonly used in the functions 11 and 12. .
【0016】次に,侵襲が少ない優れた術式として近年
急速に発展した腹腔鏡下胆嚢摘出術への適用を例にとり
説明する。腹腔鏡を用いた胆嚢摘出では,(1)穿刺孔
を正しく位置決めする,(2)胆嚢胆管合流部の胆管走
行を3次元的に把握する,(3)肝動脈等の大血管を避
ける,等の課題があり,誤って総胆管や肝動脈を傷つけ
たら直ちに開腹して処置をする必要がある。これらの課
題をクリアするため,以下の方法で支援することを考え
る。Next, an example of application to laparoscopic cholecystectomy, which has been rapidly developed in recent years, as an excellent invasive technique with little invasion will be described. In laparoscopic cholecystectomy, (1) correctly position the puncture, (2) grasp the bile duct running at the junction of the gallbladder and bile duct in three dimensions, (3) avoid large vessels such as the hepatic artery, etc. If the common bile duct or hepatic artery is accidentally injured, it is necessary to immediately open the laparotomy. To solve these issues, consider using the following methods.
【0017】図2に,手術支援システムの構成例の一つ
を示す。本例では,統合処理装置141に,直接または
ローカルエリアネットワーク1001やインターネット
1002を介して間接に接続された仮想患者データベー
ス用記憶装置151と入力インタフェースと出力インタ
フェースとから構成される。入力インタフェースとして
は,位置・角度センサ付きの手術用データグローブ13
1や,センサ付きの腹腔鏡132や,手術器具133等
を利用する。この場合に入力されるデータは,医師の手
の位置及び角度,指の各関節の動き,手術器具の位置・
角度・操作状態等がある。出力インタフェースとして
は,2次元又は3次元の大型ディスプレイ134や,セ
ンサ付きのHMD(ヘッドマウントディスプレイ)13
5等を利用する。HMD135は位置や角度等をシステ
ムに入力する機能も同時に持つ。この場合に出力される
データは,手術シミュレーション時には仮想患者のデー
タに基づく画像や数値等の各種情報,手術ナビゲーショ
ン時には仮想患者のデータと実際の患者の術中データの
両方に基づく各種情報等がある。FIG. 2 shows an example of the configuration of the surgery support system. In this example, the integrated processing device 141 is configured by a virtual patient database storage device 151 connected directly or indirectly via the local area network 1001 or the Internet 1002, and an input interface and an output interface. The input interface is a surgical data glove 13 with a position / angle sensor.
1, a laparoscope 132 with a sensor, a surgical instrument 133, and the like. In this case, the input data includes the position and angle of the physician's hand, the movement of each finger joint, the position and
There are angles and operation states. As an output interface, a large two-dimensional or three-dimensional display 134, an HMD (head mounted display) 13 with a sensor,
Use 5 etc. The HMD 135 also has a function of inputting a position, an angle, and the like to the system. The data output in this case includes various information such as images and numerical values based on the virtual patient data during the surgery simulation, and various information based on both the virtual patient data and the actual intraoperative data during the surgery navigation.
【0018】術前にはMRI・CT画像にて術野付近の
一般臓器及び血管を,DIC−CT(胆管造影断層撮
影),DIC(胆管造影)透視像にて胆管の走行をそれ
ぞれ取得する。また生化学検査やシミュレーション用の
専門の検査を行って得られた機能モデルのパラメータを
用いて,仮想患者のデータを構築する。人体のすべての
情報をモデル化するには技術的に困難であるが,循環機
能モデル・呼吸機能モデル・代謝機能モデル・麻酔機能
モデル等を組み合わせることで,比較的多様なシミュレ
ーションを行うことが可能となる。また,従来の臓器形
状モデル等では,画像データからモデルを再構成するボ
トムアップ方式のモデル構築を行っていたが,本例で
は,標準的な仮想患者の総合モデルを用意しておき,画
像データや検査データ等に基づき標準モデルのパラメー
タを変えることによって対象患者に対応した仮想患者を
作るトップダウン方式のモデル構築を行っても良い。Before the operation, the general organs and blood vessels near the operation field are acquired by MRI / CT images, and the running of the bile duct is acquired by DIC-CT (cholangiography) and DIC (cholangiography) fluoroscopic images. Also, virtual patient data is constructed using the parameters of the functional model obtained by performing specialized tests for biochemical tests and simulations. Although it is technically difficult to model all information of the human body, relatively various simulations can be performed by combining circulatory function models, respiratory function models, metabolic function models, anesthesia function models, etc. Becomes Also, in the conventional organ shape model, etc., a bottom-up model construction that reconstructs the model from image data was performed, but in this example, a standard comprehensive model of a virtual patient is prepared and the image data A top-down model construction for creating a virtual patient corresponding to the target patient by changing the parameters of the standard model based on the test data and the test data may be performed.
【0019】準備が整ったら,手術シミュレーションを
行うが,まず3次元画像を表示して医師が術野を把握し
ている間,コンピュータが最適穿刺方向を自動算出し,
最終決定は医師が下す。また,手術シミュレーションに
は最適麻酔量等の算出機能を持たせ,麻酔計画もほぼ自
動で行えるようにする。術前計画の総まとめとして,本
番と同じ器具を用いて仮想手術のリハーサルを行い,問
題点を洗い出す。When the preparation is completed, a surgical simulation is performed. First, while a three-dimensional image is displayed and the doctor grasps the operation field, the computer automatically calculates the optimal puncture direction.
The final decision is made by the doctor. In addition, the operation simulation is provided with a function for calculating the optimal amount of anesthesia and the like, so that anesthesia planning can be performed almost automatically. As a summary of the preoperative plan, rehearsals for virtual surgery are performed using the same instruments as in the actual operation, and problems are identified.
【0020】ここで図3を用いて,術中のナビゲーショ
ンの例を説明する。図3(a)に示す従来の腹腔鏡の表
示画面71は視野(丸い視野)が狭く,特に総胆管と胆
嚢胆管の誤認等の恐れがあった。そこで術前に構築した
仮想患者の形状モデルを腹腔鏡画像にマッチングさせ,
図3(b)に示すように,視野範囲外の三次元映像を補
完して大型3次元ディスプレイの表示画面72のように
術者に提供する。また臓器表面だけではなく,臓器内部
の血管や胆石等を表示し,更に重要血管等の名前を文字
表示することにより,死角を減らし,血管等を誤って傷
つけることも避けることができる。文字表示にはアシス
ト機能を付加し,標的部位を提示したり,ミス防止の警
告を発するようにしておくことも効果がある。Here, an example of intraoperative navigation will be described with reference to FIG. The display screen 71 of the conventional laparoscope shown in FIG. 3A has a narrow visual field (round visual field), and there is a risk of erroneous recognition of the common bile duct and the gallbladder bile duct. Therefore, the shape model of the virtual patient constructed before surgery was matched with the laparoscopic image,
As shown in FIG. 3B, a 3D image outside the visual field range is complemented and provided to the operator as a display screen 72 of a large 3D display. In addition to displaying not only the surface of the organ but also blood vessels and gallstones inside the organ and displaying the names of important blood vessels and the like in letters, it is possible to reduce blind spots and avoid injuries to blood vessels and the like. It is also effective to add an assist function to the character display so as to present the target site or to issue a warning to prevent mistakes.
【0021】手術評価データは手術シミュレーションに
フィードバックされ,症例を重ねれば重ねるほど信頼度
の高い仮想患者を構築でき,より適切な術前計画とより
正確な術後予測,より現実に近いシミュレーションとよ
り的確なナビゲーションが可能となる。The surgical evaluation data is fed back to the surgical simulation, and the more the cases are repeated, the more reliable the virtual patient can be constructed, the more appropriate the preoperative plan, the more accurate the postoperative prediction, and the more realistic simulation. More accurate navigation becomes possible.
【0022】次に,本発明の第二の実施例として,血管
にカテーテルを挿入して塞栓や血管奇形等を治療する血
管カテーテル治療への適用を,図4を用いて説明する。
術前には造影画像やMRI等の画像をもとに,手術シミ
ュレーション機能を利用して最適アプローチ経路を決定
する。術中は,カテーテル先端の位置を各種センサやX
線透視画像等で検出し,大型3次元ディスプレイの表示
画面81に,人体マップ画面812,813を用いて現
在のカーナビゲーションシステムのように誘導データを
提示する。内視鏡一体型のカテーテルを導入すれば,術
中に内視鏡画像を見ながらの挿入が可能となり,術中画
像を画像認識させたりすることにより,どの方向に進む
べきかを誘導画面811のように表示画面81に挿入し
て文字や音声で提示する方式も可能である。Next, as a second embodiment of the present invention, application to a vascular catheter treatment for treating an embolus or a vascular malformation by inserting a catheter into a blood vessel will be described with reference to FIG.
Prior to the operation, an optimal approach route is determined using a surgical simulation function based on images such as contrast images and MRI. During the operation, the position of the catheter tip is
It is detected by a fluoroscopic image or the like, and guidance data is presented on a display screen 81 of a large three-dimensional display using a human body map screen 812, 813 like a current car navigation system. By introducing an endoscope-integrated catheter, insertion while viewing the endoscopic image is possible during the operation, and by recognizing the image during the operation, it is possible to determine which direction to proceed, as in the guidance screen 811. In addition, it is also possible to use a method in which the information is inserted into the display screen 81 and presented by characters or voice.
【0023】本システムは,術式に応じてユーザインタ
フェースを切替えることにより,低侵襲手術だけではな
く,開腹・開頭する一般の術式にも問題なく適用でき
る。本発明の第3の実施例として,図5に一般術式に適
用した例を示す。医師6・助手60は透過型のHMD1
35を装着する。HMD135の位置・角度から患者/
患部との相対位置を計算し,患者/患部と仮想患者のデ
ータを重ねて提示する。例えば,開腹する前に,患部の
位置や付近の大血管の位置関係を3次元的に把握するこ
とが可能となる。The present system can be applied not only to minimally invasive surgery but also to general laparotomy and craniotomy procedures by switching the user interface according to the procedure. FIG. 5 shows a third embodiment of the present invention applied to a general surgical procedure. Physician 6 / assistant 60 is a transmissive HMD1
35 is attached. From the position and angle of the HMD135,
The relative position with respect to the affected part is calculated, and the data of the patient / affected part and the virtual patient are overlaid and presented. For example, before the abdomen is opened, it is possible to three-dimensionally grasp the position of the affected part and the positional relationship of the nearby large blood vessels.
【0024】手には手術用のデータグローブ131を装
着し,手の位置・角度と指の動きをモニタする。使用す
る手術器具もセンサを備え,危険な動作には警告を出す
ようにする。A surgical data glove 131 is attached to the hand, and the position and angle of the hand and the movement of the finger are monitored. Surgical instruments used should also be equipped with sensors to warn of dangerous movements.
【0025】図5は現実の患者5がいる手術本番の光景
であるが,まったく同じ機器構成で仮想患者だけを対象
とした手術シミュレーションも可能である。医師6の手
の動きや手術器具の動きに応じて仮想患者も皮膚が切開
され患部が露出し,止血を行わなければ出血多量で血圧
が下がる等,手術シミュレーションで患者の反応を忠実
に予測表現させることにより,医師6にとって仮想手術
と現実の手術の差異は著しく小さくなる。したがって,
本番さながらの仮想手術による綿密な計画,仮想手術さ
ながらの本番による迅速な実施が可能となる。FIG. 5 is a view of the actual operation in which the actual patient 5 has the patient 5, but an operation simulation for only the virtual patient with the exact same device configuration is also possible. The virtual patient faithfully predicts and responds to the patient's response in the surgical simulation, such as incision of the skin of the virtual patient in response to the movement of the hand of the doctor 6 and the movement of the surgical instrument, exposing the affected area, and reducing blood pressure due to a large amount of bleeding if hemostasis is not performed. By doing so, the difference between the virtual operation and the actual operation is significantly reduced for the doctor 6. Therefore,
A thorough planning by virtual surgery like a real operation, and quick implementation by a real operation like a virtual operation are possible.
【0026】なお,本システムの手術シミュレーション
機能は,遠隔地間で手術等の事前打ち合わせを行うテレ
カンファレンスや,学生や研修医等の訓練・教育にも活
用できる。また,手術ナビゲーション機能は,人間の手
ではアクセスできない部位や,微細な処置等を専用のロ
ボットを用いて行うロボット手術の管理や,更にそれを
遠隔地間で行う遠隔手術にも有用である。The operation simulation function of the present system can be used for a teleconference in which a pre-arrangement of operations and the like is performed between remote locations, and for training and education of students, trainees, and the like. The surgical navigation function is also useful for managing parts that cannot be accessed by human hands, for robotic surgery in which minute treatments and the like are performed using a dedicated robot, and for remote surgery that performs such operations between remote locations.
【0027】更に,本発明の手術支援システムは,外科
領域以外にも発展する可能性を持つ。仮想患者の機能モ
デルの部分を充実させれば,内科領域,薬学領域にも本
システムは適用可能であり,外科に限定されない総合的
な医療支援システムへと発展させることが可能である。Further, the operation support system according to the present invention has a possibility to be developed outside the surgical field. If the function model of the virtual patient is enhanced, this system can be applied to the internal medicine and pharmaceutical fields, and can be developed into a comprehensive medical support system not limited to surgery.
【0028】一方,本システムはゲームやテーマパーク
等のエンターテイメントへの適用も容易である。高齢化
が進む現在,医療や保健に対する関心は非常な勢いで高
まっており,皆が楽しみながら正しい医学知識を学ぶこ
とができれば,大きな社会貢献にもつながる。On the other hand, the present system can be easily applied to entertainment such as games and theme parks. With the aging of society, interest in healthcare and healthcare is increasing at a very high rate. If everyone can learn the correct medical knowledge while having fun, it will contribute to a great social contribution.
【0029】[0029]
【発明の効果】本発明の手術支援システムでは,手術シ
ミュレーションで得られた手術計画データを手術ナビゲ
ーションに利用することによって,計画のとおりに的確
に介入誘導することができ,更に,手術ナビゲーション
で得られた手術評価データを手術シミュレーションに利
用することによって,より適切な術前計画を立てること
ができ,症例を重ねてこれを繰り返すことにより,手術
の計画・実行ともに安全・確実・迅速な高度なものにな
っていくという著しい効果がある。According to the operation support system of the present invention, by using the operation plan data obtained by the operation simulation for the operation navigation, it is possible to guide the intervention exactly as planned, and further to obtain the operation navigation. By using the obtained surgery evaluation data for surgery simulation, a more appropriate preoperative plan can be made. By repeating this process repeatedly, the planning and execution of surgery can be performed safely, reliably and promptly with advanced advanced techniques. There is a remarkable effect of becoming something.
【0030】また,患者・患部の物理的情報だけではな
く機能的な情報も含めた仮想患者モデルを構築すること
により,機能的な手術シミュレーションを行うことがで
き,更に,内科領域・薬学領域にも適用できるという著
しい効果がある。Further, by constructing a virtual patient model including not only physical information of a patient / affected part but also functional information, a functional surgery simulation can be performed. There is a remarkable effect that can be applied.
【0031】更に,手術シミュレーションと手術ナビゲ
ーションとで共通したユーザインタフェースを採用する
ことにより,手術本番さながらの手術シミュレーション
による実践的な手技訓練や,訓練さながらの手術ナビゲ
ーションによる迅速確実な介入誘導が可能になるという
著しい効果がある。Further, by adopting a user interface common to the operation simulation and the operation navigation, it is possible to perform practical skill training by operation simulation as if performing actual operation and prompt and reliable intervention guidance by operation navigation while performing operation. Has a remarkable effect.
【0032】なお,本システムはテレカンファレンスや
訓練・教育,ロボット手術や遠隔手術にも有用であるほ
か,ゲームやテーマパーク等のエンターテイメントへの
適用も容易であるという,広く深い可能性を内包してい
る。The present system is useful for teleconferences, training and education, robotic surgery and telesurgery, and has a wide and deep potential of being easily applied to entertainment such as games and theme parks. ing.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の手術支援システムの基本構成及び基本
機能を説明する概念図。FIG. 1 is a conceptual diagram illustrating a basic configuration and a basic function of a surgery support system according to the present invention.
【図2】本発明の手術支援システムの実施例の構成例を
示す図。FIG. 2 is a diagram showing a configuration example of an embodiment of a surgery support system of the present invention.
【図3】本発明の手術支援システムを腹腔鏡胆嚢摘出術
に適用した例を説明する図。FIG. 3 is a diagram illustrating an example in which the surgery support system of the present invention is applied to laparoscopic cholecystectomy.
【図4】本発明の手術支援システムを血管カテーテル治
療に適用した例を説明する図。FIG. 4 is a diagram illustrating an example in which the surgery support system of the present invention is applied to vascular catheter treatment.
【図5】本発明の手術支援システムを一般術式に適用し
た例を説明する図。FIG. 5 is a view for explaining an example in which the surgery support system of the present invention is applied to a general operation method.
1…手術支援システム,2…手術計画データ,3…手術
評価データ,5…患者,6…医師,11…手術シミュレ
ーション機能,12…手術ナビゲーション機能,13…
入出力手段,14…処理手段,15…記憶手段,41…
術前患者データ,42…仮想介入データ,43…患者予
測データ,44…患者術中データ,45…医師介入行
為,46…医師介入データ,47…介入誘導データ,6
0…助手,71…従来の腹腔鏡の表示画面,72…腹腔
鏡下胆嚢摘出術への適用例における大型3次元ディスプ
レイの表示画面,81…血管カテーテル治療への適用例
における大型3次元ディスプレイの表示画面,101…
仮想患者構築処理,102…手術シミュレーション実施
処理,103…手術計画立案処理,104…仮想患者修
正処理,105…手術ナビゲーション実施処理,106
…手術結果評価処理,131…位置・角度センサ付き手
術用データグローブ,132…位置・角度センサ付きス
テレオ腹腔鏡,133…位置・角度センサ付き鉗子,1
34…大型3次元ディスプレイ,135…位置・角度セ
ンサ付き透過率可変型液晶ステレオHMD,141…統
合制御処理装置,151…仮想患者データベース用記憶
装置,811…術中画像を利用した誘導画面,812…
人体マップを利用した誘導画面,813…カテーテル先
端部分の拡大画面,1001…ローカルエリアネットワ
ーク,1002…インターネット。DESCRIPTION OF SYMBOLS 1 ... Surgery support system, 2 ... Surgery plan data, 3 ... Surgery evaluation data, 5 ... Patient, 6 ... Doctor, 11 ... Surgery simulation function, 12 ... Surgery navigation function, 13 ...
Input / output means, 14 processing means, 15 storage means, 41 ...
Preoperative patient data, 42 ... virtual intervention data, 43 ... patient prediction data, 44 ... patient intraoperative data, 45 ... doctor intervention data, 46 ... doctor intervention data, 47 ... intervention guidance data, 6
0: assistant, 71: display screen of conventional laparoscope, 72: display screen of large three-dimensional display in application to laparoscopic cholecystectomy, 81: display of large three-dimensional display in application to vascular catheter treatment Display screen, 101 ...
Virtual patient construction processing, 102: Surgery simulation execution processing, 103: Surgery planning processing, 104: Virtual patient correction processing, 105: Surgery navigation execution processing, 106
... Surgical result evaluation processing, 131 ... Surgical data glove with position / angle sensor, 132 ... Stereolaparoscopy with position / angle sensor, 133 ... Forceps with position / angle sensor, 1
34 ... Large three-dimensional display, 135 ... Transmissive liquid crystal stereo HMD with position / angle sensor, 141 ... Integrated control processor, 151 ... Storage device for virtual patient database, 811 ... Guidance screen using intraoperative image, 812 ...
Guidance screen using human body map, 813: Enlarged screen of catheter tip, 1001: Local area network, 1002: Internet.
Claims (3)
として,医師の介入に対するシミュレーションを行っ
て,最適手術条件や最適アプローチ等の手術計画データ
を出力する手術シミュレーション機能と,画像や測定値
等の術中患者データや,医師の介入に対する術中誘導を
行って,採用した手術条件や実際のアプローチ等の手術
評価データを出力する手術ナビゲーション機能とを有
し,手術シミュレーションの出力である手術計画データ
を手術ナビゲーションの入力の一部として利用し,手術
ナビゲーションで得られた手術評価データを次回以降の
手術シミュレーションの入力の一部として利用すること
を特徴とする手術支援システム。1. An operation simulation function for performing simulation for intervention of a physician by using preoperative patient data such as images and examination results as input and outputting operation plan data such as optimal operation conditions and an optimal approach, and an image and measurement function It has a surgical navigation function that outputs intraoperative patient data such as values and intraoperative guidance for doctor intervention, and outputs surgical evaluation data such as adopted surgical conditions and actual approaches. A surgery support system characterized in that data is used as a part of an input for a surgical navigation, and surgical evaluation data obtained by the surgical navigation is used as a part of an input for a subsequent surgical simulation.
者の形状や力学特性等の物理情報だけではなく,心肺機
能情報や麻酔反応情報等の機能情報も含めた仮想患者モ
デルを使用することを特徴とする手術支援システム。2. The operation support system according to claim 1, wherein a virtual patient model including not only physical information such as the shape and mechanical characteristics of the patient but also functional information such as cardiopulmonary function information and anesthesia response information is used. Characterized surgery support system.
ムにおいて,手術シミュレーションと手術ナビゲーショ
ンの各段階で利用するユーザインタフェースを共通化し
た手術支援システム。3. The operation support system according to claim 1, wherein a user interface used in each stage of operation simulation and operation navigation is shared.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP449898A JPH11197159A (en) | 1998-01-13 | 1998-01-13 | Operation supporting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP449898A JPH11197159A (en) | 1998-01-13 | 1998-01-13 | Operation supporting system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11197159A true JPH11197159A (en) | 1999-07-27 |
Family
ID=11585739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP449898A Pending JPH11197159A (en) | 1998-01-13 | 1998-01-13 | Operation supporting system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11197159A (en) |
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001137259A (en) * | 1999-09-07 | 2001-05-22 | Carl Zeiss:Fa | Image-aided subject processing apparatus |
JP2002143179A (en) * | 2000-08-18 | 2002-05-21 | Biosense Inc | Rendering of diagnostic image data in three-dimensional map |
WO2002054309A1 (en) * | 2000-12-28 | 2002-07-11 | Atsushi Takahashi | Remote internet technical guidance/education distribution system using practitioner's vision, and guidance system using communication network |
JP2003339725A (en) * | 2002-05-22 | 2003-12-02 | Mitsubishi Heavy Ind Ltd | Fracture reintegration induction apparatus and method |
WO2004086335A1 (en) * | 2003-03-26 | 2004-10-07 | National Institute Of Advanced Industrial Science And Technology | Training system |
JP2004530485A (en) * | 2001-06-13 | 2004-10-07 | ヴォリューム・インタラクションズ・プライヴェート・リミテッド | Guide systems and probes therefor |
JP2004533863A (en) * | 2001-02-13 | 2004-11-11 | メディガイド リミテッド | Medical imaging and navigation system |
JP2004348091A (en) * | 2003-03-26 | 2004-12-09 | National Institute Of Advanced Industrial & Technology | Entity model and operation support system using the same |
JP2005500096A (en) * | 2001-06-13 | 2005-01-06 | ヴォリューム・インタラクションズ・プライヴェート・リミテッド | Guide system |
JP2005077831A (en) * | 2003-09-01 | 2005-03-24 | Olympus Corp | Industrial endoscope and inspection method using same |
JP2005515017A (en) * | 2002-01-16 | 2005-05-26 | オーソソフト インク | Method and apparatus for reconstructing a bone surface during surgery |
WO2005093687A1 (en) | 2004-03-26 | 2005-10-06 | Atsushi Takahashi | 3d entity digital magnifying glass system having 3d visual instruction function |
JP2005287893A (en) * | 2004-04-01 | 2005-10-20 | Olympus Corp | Maneuver support system |
JP2007038005A (en) * | 2005-08-02 | 2007-02-15 | Biosense Webster Inc | Guided procedures for treating atrial fibrillation |
JP2007044509A (en) * | 2005-08-02 | 2007-02-22 | Biosense Webster Inc | Simulation of invasive procedure |
JP2007061603A (en) * | 2005-07-15 | 2007-03-15 | Depuy Products Inc | System and method for providing orthopedic surgical information to surgeon |
JP2008514334A (en) * | 2004-09-30 | 2008-05-08 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | A decision support system for clinical guidelines that navigates clinical guidelines by different extraction levels |
JP2008173159A (en) * | 2007-01-16 | 2008-07-31 | Hitachi Medical Corp | Surgery supporting system |
JP2009515602A (en) * | 2005-11-14 | 2009-04-16 | イマージョン コーポレイション | System and method for editing a model of a physical system for simulation |
JP2009543611A (en) * | 2006-07-12 | 2009-12-10 | メディカル サイバーワールド、インコーポレイテッド | Computerized medical training system |
US7697973B2 (en) | 1999-05-18 | 2010-04-13 | MediGuide, Ltd. | Medical imaging and navigation system |
CN103929625A (en) * | 2014-04-30 | 2014-07-16 | 朱成 | Head-mounted wireless receiving virtual display operation teaching system |
JP2015515023A (en) * | 2012-04-19 | 2015-05-21 | レールダル メディカル エーエス | Medical procedure training system |
JP2015100437A (en) * | 2013-11-22 | 2015-06-04 | 京セラメディカル株式会社 | Navigation system for surgical operation |
JP2015128669A (en) * | 2015-03-13 | 2015-07-16 | 三菱プレシジョン株式会社 | Living body data model creation method and device, living body data model data structure, living body data model data storage device, three dimensional data model load distribution method, and device |
JP2015524704A (en) * | 2012-08-07 | 2015-08-27 | コビディエン エルピー | Microwave ablation catheter and method of using the same |
JP2015188566A (en) * | 2014-03-28 | 2015-11-02 | セイコーエプソン株式会社 | Information processing device, information processing method, and information processing system |
KR20150138645A (en) | 2014-06-02 | 2015-12-10 | 조선대학교산학협력단 | Medical image and information real time interaction transfer and remote assist system |
JP2016165468A (en) * | 2016-03-29 | 2016-09-15 | 三菱プレシジョン株式会社 | Biological data model creation method and device therefor |
JP2016165467A (en) * | 2016-03-29 | 2016-09-15 | 三菱プレシジョン株式会社 | Living body data model creation method and device thereof |
US9572519B2 (en) | 1999-05-18 | 2017-02-21 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
JP2017134170A (en) * | 2016-01-26 | 2017-08-03 | 大日本印刷株式会社 | Model and model projection system |
WO2019106884A1 (en) * | 2017-11-30 | 2019-06-06 | テルモ株式会社 | Assist system, assist method, and assist program |
JP2019528503A (en) * | 2016-06-23 | 2019-10-10 | スリーエム イノベイティブ プロパティズ カンパニー | Personal protective equipment (PPE) with analysis stream processing for safety event detection |
US10542332B2 (en) | 2016-06-23 | 2020-01-21 | 3M Innovative Properties Company | Personal protective equipment (PPE) with analytical stream processing for safety event detection |
JP2020505686A (en) * | 2017-01-17 | 2020-02-20 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Augmented reality for predictive workflow in the operating room |
US10575579B2 (en) | 2016-06-23 | 2020-03-03 | 3M Innovative Properties Company | Personal protective equipment system with sensor module for a protective head top |
US10610708B2 (en) | 2016-06-23 | 2020-04-07 | 3M Innovative Properties Company | Indicating hazardous exposure in a supplied air respirator system |
JP2020515891A (en) * | 2017-03-24 | 2020-05-28 | サージカル シアター エルエルシー | System and method for training and collaboration in a virtual environment |
JP2020537205A (en) * | 2017-08-23 | 2020-12-17 | ザ ジェネラル ホスピタル コーポレーション ドゥーイング ビジネス アズ マサチューセッツ ジェネラル ホスピタル | Surgical decision support using a decision theory model |
JP2021509310A (en) * | 2017-12-28 | 2021-03-25 | エシコン エルエルシーEthicon LLC | Adaptive control program update for surgical devices |
US11023818B2 (en) | 2016-06-23 | 2021-06-01 | 3M Innovative Properties Company | Personal protective equipment system having analytics engine with integrated monitoring, alerting, and predictive safety event avoidance |
US11055648B2 (en) | 2006-05-25 | 2021-07-06 | DePuy Synthes Products, Inc. | Method and system for managing inventories of orthopaedic implants |
JP2021520551A (en) * | 2018-04-27 | 2021-08-19 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Presentation of augmented reality associated with the patient's medical condition and / or treatment |
JP2021531504A (en) * | 2018-07-18 | 2021-11-18 | シミュレーテッド イナニメイト モデルズ エルエルシー | Surgical training equipment, methods and systems |
JP2023001290A (en) * | 2017-01-11 | 2023-01-04 | マジック リープ, インコーポレイテッド | medical assistant |
US11701185B2 (en) | 2017-12-28 | 2023-07-18 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11701139B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11751958B2 (en) | 2017-12-28 | 2023-09-12 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11775682B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11779337B2 (en) | 2017-12-28 | 2023-10-10 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11793537B2 (en) | 2017-10-30 | 2023-10-24 | Cilag Gmbh International | Surgical instrument comprising an adaptive electrical system |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11839396B2 (en) | 2018-03-08 | 2023-12-12 | Cilag Gmbh International | Fine dissection mode for tissue classification |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11864845B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Sterile field interactive control displays |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US11890065B2 (en) | 2017-12-28 | 2024-02-06 | Cilag Gmbh International | Surgical system to limit displacement |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11903587B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Adjustment to the surgical stapling control based on situational awareness |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11925350B2 (en) | 2019-02-19 | 2024-03-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11931027B2 (en) | 2018-03-28 | 2024-03-19 | Cilag Gmbh Interntional | Surgical instrument comprising an adaptive control system |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11986185B2 (en) | 2018-03-28 | 2024-05-21 | Cilag Gmbh International | Methods for controlling a surgical stapler |
US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US12009095B2 (en) | 2017-12-28 | 2024-06-11 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
US12035983B2 (en) | 2017-10-30 | 2024-07-16 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US12042207B2 (en) | 2017-12-28 | 2024-07-23 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US12048496B2 (en) | 2017-12-28 | 2024-07-30 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US12059218B2 (en) | 2017-10-30 | 2024-08-13 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US12059169B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US12076010B2 (en) | 2017-12-28 | 2024-09-03 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
US12133709B2 (en) | 2023-05-04 | 2024-11-05 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
-
1998
- 1998-01-13 JP JP449898A patent/JPH11197159A/en active Pending
Cited By (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9956049B2 (en) | 1999-05-18 | 2018-05-01 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US7697973B2 (en) | 1999-05-18 | 2010-04-13 | MediGuide, Ltd. | Medical imaging and navigation system |
US9572519B2 (en) | 1999-05-18 | 2017-02-21 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US10251712B2 (en) | 1999-05-18 | 2019-04-09 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
JP2001137259A (en) * | 1999-09-07 | 2001-05-22 | Carl Zeiss:Fa | Image-aided subject processing apparatus |
JP2002143179A (en) * | 2000-08-18 | 2002-05-21 | Biosense Inc | Rendering of diagnostic image data in three-dimensional map |
WO2002054309A1 (en) * | 2000-12-28 | 2002-07-11 | Atsushi Takahashi | Remote internet technical guidance/education distribution system using practitioner's vision, and guidance system using communication network |
JP2002207832A (en) * | 2000-12-28 | 2002-07-26 | Atsushi Takahashi | Distribution system of internet technology instruction education, and instruction system using communication network |
CN100432982C (en) * | 2000-12-28 | 2008-11-12 | 高桥淳 | Remote internet technical guidance/education distribution system using practitioner's vision, and guidance system using communication network |
JP2009018184A (en) * | 2001-02-13 | 2009-01-29 | Mediguide Ltd | Medical imaging and navigation system |
JP2004533863A (en) * | 2001-02-13 | 2004-11-11 | メディガイド リミテッド | Medical imaging and navigation system |
JP2004530485A (en) * | 2001-06-13 | 2004-10-07 | ヴォリューム・インタラクションズ・プライヴェート・リミテッド | Guide systems and probes therefor |
JP2005500096A (en) * | 2001-06-13 | 2005-01-06 | ヴォリューム・インタラクションズ・プライヴェート・リミテッド | Guide system |
JP2005515017A (en) * | 2002-01-16 | 2005-05-26 | オーソソフト インク | Method and apparatus for reconstructing a bone surface during surgery |
JP2003339725A (en) * | 2002-05-22 | 2003-12-02 | Mitsubishi Heavy Ind Ltd | Fracture reintegration induction apparatus and method |
JP2004348091A (en) * | 2003-03-26 | 2004-12-09 | National Institute Of Advanced Industrial & Technology | Entity model and operation support system using the same |
WO2004086335A1 (en) * | 2003-03-26 | 2004-10-07 | National Institute Of Advanced Industrial Science And Technology | Training system |
JP2005077831A (en) * | 2003-09-01 | 2005-03-24 | Olympus Corp | Industrial endoscope and inspection method using same |
WO2005093687A1 (en) | 2004-03-26 | 2005-10-06 | Atsushi Takahashi | 3d entity digital magnifying glass system having 3d visual instruction function |
EP1739642A1 (en) * | 2004-03-26 | 2007-01-03 | Atsushi Takahashi | 3d entity digital magnifying glass system having 3d visual instruction function |
AU2005225878B2 (en) * | 2004-03-26 | 2009-09-10 | Atsushi Takahashi | 3D entity digital magnifying glass system having 3D visual instruction function |
EP1739642A4 (en) * | 2004-03-26 | 2010-04-14 | Atsushi Takahashi | 3d entity digital magnifying glass system having 3d visual instruction function |
JP2005287893A (en) * | 2004-04-01 | 2005-10-20 | Olympus Corp | Maneuver support system |
JP4493383B2 (en) * | 2004-04-01 | 2010-06-30 | オリンパス株式会社 | Procedure support system |
JP2008514334A (en) * | 2004-09-30 | 2008-05-08 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | A decision support system for clinical guidelines that navigates clinical guidelines by different extraction levels |
JP2007061603A (en) * | 2005-07-15 | 2007-03-15 | Depuy Products Inc | System and method for providing orthopedic surgical information to surgeon |
JP2007044509A (en) * | 2005-08-02 | 2007-02-22 | Biosense Webster Inc | Simulation of invasive procedure |
JP2007038005A (en) * | 2005-08-02 | 2007-02-15 | Biosense Webster Inc | Guided procedures for treating atrial fibrillation |
JP2009515602A (en) * | 2005-11-14 | 2009-04-16 | イマージョン コーポレイション | System and method for editing a model of a physical system for simulation |
US8639485B2 (en) | 2005-11-14 | 2014-01-28 | Immersion Medical, Inc. | Systems and methods for editing a model of a physical system for a simulation |
JP2012230394A (en) * | 2005-11-14 | 2012-11-22 | Immersion Corp | Systems and methods for editing model of physical system for simulation |
US11055648B2 (en) | 2006-05-25 | 2021-07-06 | DePuy Synthes Products, Inc. | Method and system for managing inventories of orthopaedic implants |
US11068822B2 (en) | 2006-05-25 | 2021-07-20 | DePuy Synthes Products, Inc. | System and method for performing a computer assisted orthopaedic surgical procedure |
US11928625B2 (en) | 2006-05-25 | 2024-03-12 | DePuy Synthes Products, Inc. | System and method for performing a computer assisted orthopaedic surgical procedure |
JP2009543611A (en) * | 2006-07-12 | 2009-12-10 | メディカル サイバーワールド、インコーポレイテッド | Computerized medical training system |
JP2008173159A (en) * | 2007-01-16 | 2008-07-31 | Hitachi Medical Corp | Surgery supporting system |
JP2015515023A (en) * | 2012-04-19 | 2015-05-21 | レールダル メディカル エーエス | Medical procedure training system |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
JP2015524704A (en) * | 2012-08-07 | 2015-08-27 | コビディエン エルピー | Microwave ablation catheter and method of using the same |
JP2015100437A (en) * | 2013-11-22 | 2015-06-04 | 京セラメディカル株式会社 | Navigation system for surgical operation |
JP2015188566A (en) * | 2014-03-28 | 2015-11-02 | セイコーエプソン株式会社 | Information processing device, information processing method, and information processing system |
CN103929625A (en) * | 2014-04-30 | 2014-07-16 | 朱成 | Head-mounted wireless receiving virtual display operation teaching system |
KR20150138645A (en) | 2014-06-02 | 2015-12-10 | 조선대학교산학협력단 | Medical image and information real time interaction transfer and remote assist system |
JP2015128669A (en) * | 2015-03-13 | 2015-07-16 | 三菱プレシジョン株式会社 | Living body data model creation method and device, living body data model data structure, living body data model data storage device, three dimensional data model load distribution method, and device |
JP2017134170A (en) * | 2016-01-26 | 2017-08-03 | 大日本印刷株式会社 | Model and model projection system |
JP2016165468A (en) * | 2016-03-29 | 2016-09-15 | 三菱プレシジョン株式会社 | Biological data model creation method and device therefor |
JP2016165467A (en) * | 2016-03-29 | 2016-09-15 | 三菱プレシジョン株式会社 | Living body data model creation method and device thereof |
US10542332B2 (en) | 2016-06-23 | 2020-01-21 | 3M Innovative Properties Company | Personal protective equipment (PPE) with analytical stream processing for safety event detection |
US10575579B2 (en) | 2016-06-23 | 2020-03-03 | 3M Innovative Properties Company | Personal protective equipment system with sensor module for a protective head top |
US10610708B2 (en) | 2016-06-23 | 2020-04-07 | 3M Innovative Properties Company | Indicating hazardous exposure in a supplied air respirator system |
US11979696B2 (en) | 2016-06-23 | 2024-05-07 | 3M Innovative Properties Company | Personal protective equipment (PPE) with analytical stream processing for safety event detection |
US11689833B2 (en) | 2016-06-23 | 2023-06-27 | 3M Innovative Properties Company | Personal protective equipment (PPE) with analytical stream processing for safety event detection |
US11343598B2 (en) | 2016-06-23 | 2022-05-24 | 3M Innovative Properties Company | Personal protective equipment (PPE) with analytical stream processing for safety event detection |
US11023818B2 (en) | 2016-06-23 | 2021-06-01 | 3M Innovative Properties Company | Personal protective equipment system having analytics engine with integrated monitoring, alerting, and predictive safety event avoidance |
US11039652B2 (en) | 2016-06-23 | 2021-06-22 | 3M Innovative Properties Company | Sensor module for a protective head top |
JP2019528503A (en) * | 2016-06-23 | 2019-10-10 | スリーエム イノベイティブ プロパティズ カンパニー | Personal protective equipment (PPE) with analysis stream processing for safety event detection |
US12080393B2 (en) | 2017-01-11 | 2024-09-03 | Magic Leap, Inc. | Medical assistant |
JP2023001290A (en) * | 2017-01-11 | 2023-01-04 | マジック リープ, インコーポレイテッド | medical assistant |
JP2020505686A (en) * | 2017-01-17 | 2020-02-20 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Augmented reality for predictive workflow in the operating room |
JP2020515891A (en) * | 2017-03-24 | 2020-05-28 | サージカル シアター エルエルシー | System and method for training and collaboration in a virtual environment |
JP2020537205A (en) * | 2017-08-23 | 2020-12-17 | ザ ジェネラル ホスピタル コーポレーション ドゥーイング ビジネス アズ マサチューセッツ ジェネラル ホスピタル | Surgical decision support using a decision theory model |
US12035983B2 (en) | 2017-10-30 | 2024-07-16 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11925373B2 (en) | 2017-10-30 | 2024-03-12 | Cilag Gmbh International | Surgical suturing instrument comprising a non-circular needle |
US12121255B2 (en) | 2017-10-30 | 2024-10-22 | Cilag Gmbh International | Electrical power output control based on mechanical forces |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US12059218B2 (en) | 2017-10-30 | 2024-08-13 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11819231B2 (en) | 2017-10-30 | 2023-11-21 | Cilag Gmbh International | Adaptive control programs for a surgical system comprising more than one type of cartridge |
US11793537B2 (en) | 2017-10-30 | 2023-10-24 | Cilag Gmbh International | Surgical instrument comprising an adaptive electrical system |
US11529204B2 (en) | 2017-11-30 | 2022-12-20 | Terumo Kabushiki Kaisha | Support system, support method, and support program |
WO2019106884A1 (en) * | 2017-11-30 | 2019-06-06 | テルモ株式会社 | Assist system, assist method, and assist program |
JPWO2019106884A1 (en) * | 2017-11-30 | 2020-11-26 | テルモ株式会社 | Support systems, support methods, and support programs |
US11903587B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Adjustment to the surgical stapling control based on situational awareness |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
JP2021509310A (en) * | 2017-12-28 | 2021-03-25 | エシコン エルエルシーEthicon LLC | Adaptive control program update for surgical devices |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11864845B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Sterile field interactive control displays |
US11779337B2 (en) | 2017-12-28 | 2023-10-10 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11890065B2 (en) | 2017-12-28 | 2024-02-06 | Cilag Gmbh International | Surgical system to limit displacement |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11775682B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11918302B2 (en) | 2017-12-28 | 2024-03-05 | Cilag Gmbh International | Sterile field interactive control displays |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11751958B2 (en) | 2017-12-28 | 2023-09-12 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US12096985B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US12076010B2 (en) | 2017-12-28 | 2024-09-03 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US12059169B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US12059124B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US12009095B2 (en) | 2017-12-28 | 2024-06-11 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
US11701185B2 (en) | 2017-12-28 | 2023-07-18 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US12042207B2 (en) | 2017-12-28 | 2024-07-23 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US12048496B2 (en) | 2017-12-28 | 2024-07-30 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US12053159B2 (en) | 2017-12-28 | 2024-08-06 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
US11701139B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US12121256B2 (en) | 2018-03-08 | 2024-10-22 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11844545B2 (en) | 2018-03-08 | 2023-12-19 | Cilag Gmbh International | Calcified vessel identification |
US11839396B2 (en) | 2018-03-08 | 2023-12-12 | Cilag Gmbh International | Fine dissection mode for tissue classification |
US11986185B2 (en) | 2018-03-28 | 2024-05-21 | Cilag Gmbh International | Methods for controlling a surgical stapler |
US11931027B2 (en) | 2018-03-28 | 2024-03-19 | Cilag Gmbh Interntional | Surgical instrument comprising an adaptive control system |
JP2021520551A (en) * | 2018-04-27 | 2021-08-19 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Presentation of augmented reality associated with the patient's medical condition and / or treatment |
JP2021531504A (en) * | 2018-07-18 | 2021-11-18 | シミュレーテッド イナニメイト モデルズ エルエルシー | Surgical training equipment, methods and systems |
US11925350B2 (en) | 2019-02-19 | 2024-03-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US12133773B2 (en) | 2021-03-05 | 2024-11-05 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US12133709B2 (en) | 2023-05-04 | 2024-11-05 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11197159A (en) | Operation supporting system | |
JP7308936B2 (en) | indicator system | |
Satava | Surgical education and surgical simulation | |
JP2021112588A (en) | Guidewire navigation for sinuplasty | |
JP7188970B2 (en) | ROBOT SURGERY ASSISTANCE DEVICE, OPERATION METHOD OF ROBOT SURGERY ASSISTANCE DEVICE, AND PROGRAM | |
CN107847274B (en) | Method and apparatus for providing updated patient images during robotic surgery | |
JP2000189441A (en) | Medical technical apparatus | |
WO2014077732A1 (en) | Hybrid laparoscopic simulator | |
Lamata et al. | Augmented reality for minimally invasive surgery: overview and some recent advances | |
Suda | Transition from video-assisted thoracic surgery to robotic pulmonary surgery | |
JP7182126B2 (en) | Robotic surgery support device, robotic surgery support method, and program | |
US11660158B2 (en) | Enhanced haptic feedback system | |
Nwoye et al. | Artificial intelligence for emerging technology in surgery: Systematic review and validation | |
CN116313028A (en) | Medical assistance device, method, and computer-readable storage medium | |
Traub et al. | Advanced display and visualization concepts for image guided surgery | |
Penza et al. | The GPS for surgery: A user‐centered evaluation of a navigation system for laparoscopic surgery | |
Riener et al. | VR for medical training | |
Vajsbaher et al. | A multi-modal approach to cognitive training and assistance in minimally invasive surgery | |
Black et al. | Auditory support for navigated radiofrequency ablation. | |
Dankelman et al. | Engineering for patient safety: Issues in minimally invasive procedures | |
Bichlmeier et al. | Laparoscopic virtual mirror for understanding vessel structure evaluation study by twelve surgeons | |
US20220354579A1 (en) | Systems and methods for planning and simulation of minimally invasive therapy | |
CN115363773A (en) | Orthopedic surgery robot system based on optical positioning navigation and control method thereof | |
Shahidi et al. | White Paper: Challenges and Opportunities in Computer-Assisted Interventions: January 2001 | |
Westwood | Patient specific simulation and navigation of ventriculoscopic interventions |