JPH11195824A - Magnetoresistance effect element and magnetoresistance effect type head - Google Patents
Magnetoresistance effect element and magnetoresistance effect type headInfo
- Publication number
- JPH11195824A JPH11195824A JP10015259A JP1525998A JPH11195824A JP H11195824 A JPH11195824 A JP H11195824A JP 10015259 A JP10015259 A JP 10015259A JP 1525998 A JP1525998 A JP 1525998A JP H11195824 A JPH11195824 A JP H11195824A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ferromagnetic layer
- ferromagnetic
- magnetization
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 title claims abstract description 34
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 218
- 230000005291 magnetic effect Effects 0.000 claims abstract description 159
- 230000005415 magnetization Effects 0.000 claims description 63
- 230000008878 coupling Effects 0.000 claims description 32
- 238000010168 coupling process Methods 0.000 claims description 32
- 238000005859 coupling reaction Methods 0.000 claims description 32
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 31
- 239000012212 insulator Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 13
- 239000000696 magnetic material Substances 0.000 claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims 1
- 230000004907 flux Effects 0.000 abstract description 24
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 348
- 239000010408 film Substances 0.000 description 39
- 239000010409 thin film Substances 0.000 description 26
- 239000000758 substrate Substances 0.000 description 16
- 238000001755 magnetron sputter deposition Methods 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 229910000914 Mn alloy Inorganic materials 0.000 description 8
- 229910003271 Ni-Fe Inorganic materials 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 229910000531 Co alloy Inorganic materials 0.000 description 6
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 230000005316 antiferromagnetic exchange Effects 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 229910000428 cobalt oxide Inorganic materials 0.000 description 4
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 229910001260 Pt alloy Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000001659 ion-beam spectroscopy Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910018979 CoPt Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910002546 FeCo Inorganic materials 0.000 description 2
- 239000002885 antiferromagnetic material Substances 0.000 description 2
- GUBSQCSIIDQXLB-UHFFFAOYSA-N cobalt platinum Chemical compound [Co].[Pt].[Pt].[Pt] GUBSQCSIIDQXLB-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- SHMWNGFNWYELHA-UHFFFAOYSA-N iridium manganese Chemical compound [Mn].[Ir] SHMWNGFNWYELHA-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 2
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910020707 Co—Pt Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009812 interlayer coupling reaction Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は高感度な磁気センサ
ー、超高密度記録に対応した磁気ヘッドなどに用いられ
る磁気抵抗素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-sensitivity magnetic sensor and a magnetoresistive element used for a magnetic head compatible with ultra-high density recording.
【0002】[0002]
【従来の技術】近年、磁気記録の高密度化に伴う、高感
度、高出力の磁気ヘッドや磁気センサーの需要が高ま
り、磁気抵抗効果素子の開発が盛んに進められた。磁気
抵抗効果素子は外部信号磁界に応じて抵抗が変化する素
子であり、例えばNiFe薄膜の異方性磁気抵抗効果を
利用した磁気センサー、磁気ヘッドが実用化されてい
る。2. Description of the Related Art In recent years, with the increase in density of magnetic recording, demand for magnetic heads and magnetic sensors with high sensitivity and high output has increased, and the development of magnetoresistive elements has been actively pursued. A magnetoresistive element is an element whose resistance changes in accordance with an external signal magnetic field. For example, a magnetic sensor and a magnetic head using an anisotropic magnetoresistance effect of a NiFe thin film have been put to practical use.
【0003】より高感度、高出力のセンサー、ヘッドを
得るには、より抵抗率変化の大きい磁気抵抗素子が必要
とされるが、最近、巨大磁気抵抗効果と呼ばれる現象が
発見された。最初に発見されたのは金属非磁性薄膜を介
して磁性薄膜を積層した人工格子型の磁気抵抗効果素子
であり、従来の磁気抵抗素子が2〜3%の抵抗変化率で
あったのに比べ数十%の抵抗変化率を有していた。とこ
ろが人工格子型の磁気抵抗素子は抵抗変化率は大きい
が、数kOeという大きな外部磁界を必要としたため磁気
センサーや磁気ヘッドとしては実用化されていない。[0003] To obtain a sensor and head with higher sensitivity and higher output, a magnetoresistive element having a larger change in resistivity is required. Recently, a phenomenon called giant magnetoresistance effect has been discovered. The first thing that was discovered was an artificial lattice type magnetoresistive element in which a magnetic thin film was laminated via a metal nonmagnetic thin film, compared with a conventional magnetoresistive element having a resistance change rate of 2-3%. The resistance change rate was several tens%. However, although the artificial lattice type magnetoresistive element has a large resistance change rate, it requires a large external magnetic field of several kOe, and thus has not been practically used as a magnetic sensor or a magnetic head.
【0004】その後小さな外部磁界に対しても大きな抵
抗変化率を示すスピンバルブ型と呼ばれる磁気抵抗効果
素子が開発された。図2は特開平6−60336号公報
に開示されているこのスピンバルブ型の磁気抵抗効果素
子の構造を示す断面図であり、基板20に第1の強磁性
薄膜層21、非磁性金属材料の薄膜層22、第2の強磁
性薄膜層23、交換バイアス材料の薄膜層24が積層さ
れている。第1の強磁性薄膜層21は外部信号磁界hに
応じて自由に磁化25が回転する。第2の強磁性薄膜2
3は隣接した反強磁性膜24と交換結合することによっ
て磁化26が固定された状態になっている。外部信号磁
界を受けると第1の強磁性薄膜層21の磁化25は回転
し、ピン止めされた第2の強磁性薄膜層23の磁化26
との角度が変化する。この磁化の角度差θの余弦cosθ
に比例して磁気抵抗は変化する。通常、外部信号磁界h
は0近傍での微少な変化をし、この変化に対して磁気抵
抗の変化が直線的になるように、外部信号磁界が印可さ
れない状態において第1の強磁性薄膜層21と第2の強
磁性薄膜層23の磁化は直交するように磁化されてい
る。[0004] Subsequently, a magnetoresistive element called a spin valve type exhibiting a large resistance change rate even with a small external magnetic field was developed. FIG. 2 is a sectional view showing the structure of this spin valve type magnetoresistive element disclosed in Japanese Patent Application Laid-Open No. 6-60336, in which a first ferromagnetic thin film layer 21 and a non-magnetic metal material A thin film layer 22, a second ferromagnetic thin film layer 23, and a thin film layer 24 of an exchange bias material are stacked. The magnetization 25 of the first ferromagnetic thin film layer 21 is freely rotated according to the external signal magnetic field h. Second ferromagnetic thin film 2
3 is in a state where the magnetization 26 is fixed by exchange coupling with the adjacent antiferromagnetic film 24. Upon receiving an external signal magnetic field, the magnetization 25 of the first ferromagnetic thin film layer 21 rotates, and the magnetization 26 of the pinned second ferromagnetic thin film layer 23
And the angle changes. The cosine cos θ of the angle difference θ of this magnetization
The magnetic resistance changes in proportion to. Usually, the external signal magnetic field h
Makes a small change in the vicinity of 0, and the first ferromagnetic thin film layer 21 and the second ferromagnetic The magnetization of the thin film layer 23 is magnetized so as to be orthogonal.
【0005】しかしながら特開平6−60336号公報
に開示された技術ではピン止めされた第2の強磁性薄膜
層23の端面にできる磁極から発生する漏洩磁束の一部
が第1の強磁性薄膜層21を通過し、この磁束によって
第1の強磁性薄膜層21が影響を受け、外部信号磁界に
対する磁気抵抗変化の直線性が損なわれたり、測定感度
を減少させるという問題があった。この漏洩磁束の問題
は第2の強磁性薄膜層23の磁化方向の長さ(素子高
さ)が長ければそれほど大きな問題とならないが、長さ
が短く磁極が接近すればするほど問題となる。したがっ
て上記漏洩磁束の問題は磁気抵抗効果素子が小さくなれ
ば小さくなるほど、顕著な問題となってくる。However, according to the technique disclosed in Japanese Patent Application Laid-Open No. 6-60336, a part of the leakage magnetic flux generated from the magnetic pole formed on the end face of the pinned second ferromagnetic thin film layer 23 is reduced to the first ferromagnetic thin film layer. 21, the magnetic flux affects the first ferromagnetic thin-film layer 21, and there is a problem that the linearity of a change in magnetoresistance with respect to an external signal magnetic field is impaired or the measurement sensitivity is reduced. The problem of the leakage magnetic flux is not so large as the length of the magnetization direction (element height) of the second ferromagnetic thin film layer 23 is longer, but becomes more problematic as the length is shorter and the magnetic poles are closer. Therefore, the problem of the leakage magnetic flux becomes more serious as the magnetoresistance effect element becomes smaller.
【0006】これを発展させた技術が特表平7−509
811号公報に開示されている。図3は特表平7−50
9811号公報に開示されている磁気抵抗効果素子の構
造を示す断面図である。層面において磁化されている測
定層32は中間層34を挟んでバイアス層36と隣接し
ている。バイアス層36の磁化MBが磁石層30の磁化
MAFと反平行になるよう、バイアス層36は結合層38
を介して磁石層30と反強磁性交換結合している。この
ためバイアス層36から発生する磁束はバイアス層36
と磁石層30との間で閉じ、測定層32への影響を及ぼ
すことを防ぐことができるとされている。特表平7−5
09811号公報では結合層38と磁石層30の具体的
な材料は明示されていないが、これらの層が全て導電性
材料からなると記されている。[0006] The technology that has developed this is disclosed in Japanese Patent Publication No. 7-509.
No. 811. Fig. 3 is a table of Japanese Patent Translation
It is sectional drawing which shows the structure of the magnetoresistive effect element disclosed by JP-A-9811. The measurement layer 32 magnetized on the layer surface is adjacent to the bias layer 36 with the intermediate layer 34 interposed therebetween. As the magnetization M B of the bias layer 36 is parallel to the anti-magnetization M AF magnet layer 30, bias layer 36 bonding layer 38
And anti-ferromagnetic exchange coupling with the magnet layer 30 via Therefore, the magnetic flux generated from the bias layer 36
It is said that it is possible to close between the magnetic layer and the magnet layer 30 to prevent the measurement layer 32 from being affected. Tokiohei 5-5
No. 09811, the specific materials of the coupling layer 38 and the magnet layer 30 are not specified, but it is described that these layers are all made of a conductive material.
【0007】[0007]
【発明が解決しようとする課題】ところがこのような構
成においてはバイアス層36と磁石層30の間の層間結
合は結合層38のnm以下の厚さの変化に対して反強磁性
交換結合になったり強磁性交換結になったりを繰り返
す、いわゆるRKKY振動を示すことが知られている。
したがってバイアス層36と磁石層30を反強磁性交換
結合させるためには、結合層38の厚さを極めて厳密に
制御する必要があった。また、このように非磁性層を介
して2つの強磁性層が反強磁性交換結合する(または強
磁性交換結合する)現象は、非磁性層の材料がCu,Au,A
g,Crなど一部の場合にのみ確認されているが全ての金属
に対して確認されているわけではない。However, in such a configuration, the interlayer coupling between the bias layer 36 and the magnet layer 30 becomes antiferromagnetic exchange coupling with respect to a change in the thickness of the coupling layer 38 of less than nm. It is known to exhibit a so-called RKKY oscillation that repeats the ferromagnetic exchange coupling.
Therefore, in order to perform antiferromagnetic exchange coupling between the bias layer 36 and the magnet layer 30, it is necessary to control the thickness of the coupling layer 38 very strictly. Also, the phenomenon that the two ferromagnetic layers are antiferromagnetically exchange-coupled (or ferromagnetically exchange-coupled) via the nonmagnetic layer is caused by the fact that the material of the nonmagnetic layer is Cu, Au, A
It was confirmed only in some cases such as g and Cr, but not for all metals.
【0008】また結合層および磁石層にも電流が流れて
しまう。磁気抵抗変化は測定層と中間層の界面、および
バイアス層と中間層の界面での電子の散乱のされ方が電
子スピンの方向によって異なることが原因である。した
がって結合層および磁石層に流れる電流は磁気抵抗効果
に寄与しないいわゆるシャント電流であり、実効的な抵
抗変化率を減少させ磁気抵抗効果素子の感度やSN比を
減少させるという問題があった。本発明は上記課題に鑑
みなされたものであり、外部信号磁界に対して直線性の
よい応答をし、感度の高い磁気抵抗素子を提供すること
を目的とする。Further, a current also flows through the coupling layer and the magnet layer. The change in magnetoresistance is caused by the way electrons are scattered at the interface between the measurement layer and the intermediate layer and at the interface between the bias layer and the intermediate layer depending on the direction of electron spin. Therefore, the current flowing through the coupling layer and the magnet layer is a so-called shunt current that does not contribute to the magnetoresistance effect, and has a problem that the effective resistance change rate is reduced and the sensitivity and SN ratio of the magnetoresistance effect element are reduced. The present invention has been made in view of the above problems, and has as its object to provide a highly sensitive magnetoresistive element that responds with good linearity to an external signal magnetic field.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
の第一の発明は、第1の非磁性層を介して隣接した第1
の強磁性層および第2の強磁性層と、第2の強磁性層
に、第2の非磁性層を介して隣接した第3の強磁性層か
らなり、第1の強磁性層の磁化容易軸と前記第2の強磁
性層の磁化容易軸がほぼ直交しており、前記第2の強磁
性層と前記第3の強磁性層が静磁結合することによって
第2の強磁性層の磁化が固定されていることを特徴とす
る磁気抵抗効果素子である。Means for Solving the Problems A first invention for solving the above-mentioned problems is a first invention in which a first nonmagnetic layer is disposed adjacent to a first nonmagnetic layer.
A second ferromagnetic layer, a second ferromagnetic layer, and a third ferromagnetic layer adjacent to the second ferromagnetic layer via a second non-magnetic layer. The axis and the easy axis of magnetization of the second ferromagnetic layer are substantially orthogonal to each other, and the second ferromagnetic layer and the third ferromagnetic layer are magnetostatically coupled to each other, so that the magnetization of the second ferromagnetic layer is Are fixed.
【0010】また第二の発明は第一の発明の磁気抵抗効
果素子の第3の強磁性層に反強磁性層を隣接させたこと
を特徴とする磁気抵抗効果素子である。According to a second aspect of the present invention, there is provided a magnetoresistive element having an antiferromagnetic layer adjacent to the third ferromagnetic layer of the magnetoresistive element of the first aspect.
【0011】第二の発明の特徴は第3の強磁性層の磁化
を反強磁性層との交換結合によって固定し、さらに第3
の強磁性層と第2の強磁性層の間の静磁結合によって第
2の強磁性層の磁化を固定することである。A feature of the second invention is that the magnetization of the third ferromagnetic layer is fixed by exchange coupling with the antiferromagnetic layer.
Is to fix the magnetization of the second ferromagnetic layer by magnetostatic coupling between the second ferromagnetic layer and the second ferromagnetic layer.
【0012】上記の第一、第二の発明において好ましく
は第2の非磁性層の比抵抗が少なくとも20μΩ・cm以上
であり、さらに好ましくは絶縁体である。ここで絶縁体
とは金属酸化物や金属窒化物などの比抵抗の極めて大き
な物質を指す。この絶縁体としては酸化シリコン、アル
ミナ、窒化シリコンなどが良好な薄膜が得られる点で好
ましい。層厚は薄すぎるとピンホールが生じやすく、厚
すぎると第2の強磁性層が第3の強磁性層よりも第1の
強磁性層と静磁結合しやすくなるので、1nm以上20nm以
下であることが好ましい。In the first and second aspects of the present invention, the second nonmagnetic layer preferably has a specific resistance of at least 20 μΩ · cm, and more preferably is an insulator. Here, the insulator refers to a substance having a very large specific resistance, such as a metal oxide or a metal nitride. As the insulator, silicon oxide, alumina, silicon nitride, or the like is preferable because a favorable thin film can be obtained. If the layer thickness is too thin, pinholes are likely to occur, and if it is too thick, the second ferromagnetic layer is more likely to be magnetostatically coupled to the first ferromagnetic layer than the third ferromagnetic layer. Preferably, there is.
【0013】また好ましくは第2の強磁性層と第3の強
磁性層を同一の材料かつ同一の層厚とする。Preferably, the second ferromagnetic layer and the third ferromagnetic layer have the same material and the same layer thickness.
【0014】次に第三の発明は、第1の非磁性層を介し
て隣接した第1の強磁性層と第2の強磁性層と、第2の
強磁性層に隣接した反強磁性層と、反強磁性層に、第2
の非磁性層を介して隣接した第3の強磁性層からなり、
第1の強磁性層の磁化容易軸と第2の強磁性層の磁化容
易軸がほぼ直交しており、反強磁性層によって第2の強
磁性層の磁化が固定されており、第3の強磁性層の磁化
は第2の強磁性層の磁化とほぼ反平行になっていること
を特徴とする磁気抵抗効果素子である。Next, a third invention relates to a first ferromagnetic layer and a second ferromagnetic layer adjacent via a first nonmagnetic layer, and an antiferromagnetic layer adjacent to the second ferromagnetic layer. And the second in the antiferromagnetic layer
A third ferromagnetic layer adjacent via a non-magnetic layer of
The easy axis of magnetization of the first ferromagnetic layer and the easy axis of magnetization of the second ferromagnetic layer are substantially orthogonal to each other, and the magnetization of the second ferromagnetic layer is fixed by the antiferromagnetic layer. The magnetoresistance effect element is characterized in that the magnetization of the ferromagnetic layer is substantially antiparallel to the magnetization of the second ferromagnetic layer.
【0015】好ましくは第2の非磁性層の比抵抗が少な
くとも20μΩ・cm以上であり、さらに好ましくは絶縁体
である。ここで絶縁体とは金属酸化物や金属窒化物など
の比抵抗の極めて大きな物質を指す。この絶縁体として
は酸化シリコン、アルミナ、窒化シリコンなどが良好な
薄膜が得られる点で好ましい。層厚は薄すぎるとピンホ
ールが生じやすく、厚すぎると第2の強磁性層が第3の
強磁性層よりも第1の強磁性層と静磁結合しやすくなる
ので、1nm以上20nm以下であることが好ましい。Preferably, the specific resistance of the second nonmagnetic layer is at least 20 μΩ · cm or more, and more preferably, it is an insulator. Here, the insulator refers to a substance having a very large specific resistance, such as a metal oxide or a metal nitride. As the insulator, silicon oxide, alumina, silicon nitride, or the like is preferable because a favorable thin film can be obtained. If the layer thickness is too thin, pinholes are likely to occur, and if it is too thick, the second ferromagnetic layer is more likely to be magnetostatically coupled to the first ferromagnetic layer than the third ferromagnetic layer. Preferably, there is.
【0016】第一、第二の発明に比べると、間に反強磁
性層があり、第2の強磁性層と第3の強磁性層の距離が
離れている。第三の発明の特徴は第2の強磁性層の磁化
の固定に反強磁性層との交換結合を使っている点であ
る。Compared with the first and second inventions, there is an antiferromagnetic layer between them, and the distance between the second and third ferromagnetic layers is farther apart. A feature of the third invention is that exchange coupling with the antiferromagnetic layer is used for fixing the magnetization of the second ferromagnetic layer.
【0017】また上記第一から第三の発明は第2の強磁
性層の磁化方向の長さが1μm以下、特に0.5μm以下
となるときに効果的である。これは磁化方向の長さが小
さくなるほど第2の強磁性層の端面に発生する磁極が接
近するためである。The first to third inventions are effective when the length of the second ferromagnetic layer in the direction of magnetization is 1 μm or less, particularly 0.5 μm or less. This is because the smaller the length of the magnetization direction, the closer the magnetic pole generated to the end face of the second ferromagnetic layer.
【0018】次に本発明の磁気抵抗効果型ヘッドは上記
構造の磁気抵抗効果素子を軟磁性材料からなるシールド
で挟み込んだ構造である。Next, the magnetoresistive head of the present invention has a structure in which the magnetoresistive element having the above structure is sandwiched between shields made of a soft magnetic material.
【0019】[0019]
【発明の実施の形態】以下本発明の磁気抵抗効果素子お
よび磁気抵抗効果型ヘッドを図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetoresistive element and a magnetoresistive head according to the present invention will be described below with reference to the drawings.
【0020】図1は本発明の第一の実施の形態である磁
気抵抗効果素子の構造を示す断面図である。基板6上に
第3の強磁性層5、第2の非磁性層4、第2の強磁性層
3、第1の非磁性層2、第1の強磁性層1が積層された
構造となっている。FIG. 1 is a sectional view showing the structure of a magnetoresistive element according to a first embodiment of the present invention. A structure in which a third ferromagnetic layer 5, a second nonmagnetic layer 4, a second ferromagnetic layer 3, a first nonmagnetic layer 2, and a first ferromagnetic layer 1 are stacked on a substrate 6 is formed. ing.
【0021】基板6にはガラス、シリコン、Al2O3と
TiCの焼結体などの非磁性材料で表面の平坦性のよい
ものを用いる。第1の強磁性層1は微少な外部信号磁界
に対して磁化が回転できるよう、保磁力が十分小さい、
いわゆる軟磁性材料が適している。例えばニッケル・鉄
合金やニッケル・鉄・コバルト合金などを用いることが
できる。第1の強磁性層1の厚さとしては1nm以上10nm
以下がよい。膜厚が厚いとシャント効果によりMR比が
低下するが薄すぎると軟磁気特性が悪くなる。The substrate 6 is made of a non-magnetic material such as glass, silicon, a sintered body of Al 2 O 3 and TiC, and has good surface flatness. The first ferromagnetic layer 1 has a sufficiently small coercive force so that the magnetization can be rotated with respect to a small external signal magnetic field.
So-called soft magnetic materials are suitable. For example, a nickel-iron alloy or a nickel-iron-cobalt alloy can be used. The thickness of the first ferromagnetic layer 1 is 1 nm or more and 10 nm
The following is good. When the film thickness is large, the MR ratio is reduced due to the shunt effect, but when it is too small, the soft magnetic characteristics deteriorate.
【0022】第1の非磁性層2は第1の強磁性層1と第
2の強磁性層3の間の交換結合をできるだけ小さくする
役割をしており、Cu,Ag,Au,Ruなどを用いることができ
るが特にCuが最も適している。非磁性層の厚さとして
は、交換結合を小さくするために、少なくとも1.5nm以
上、好ましくは1.8nm以上である。しかしながら厚すぎ
るとシャント効果によりMR比が低下するので10nm以
下、望ましくは3nm以下にする。The first non-magnetic layer 2 has a role of minimizing exchange coupling between the first ferromagnetic layer 1 and the second ferromagnetic layer 3 to minimize Cu, Ag, Au, Ru and the like. Although Cu can be used, Cu is most suitable. The thickness of the nonmagnetic layer is at least 1.5 nm or more, preferably 1.8 nm or more in order to reduce exchange coupling. However, if the thickness is too large, the shunt effect lowers the MR ratio, so the thickness is set to 10 nm or less, preferably 3 nm or less.
【0023】第1の強磁性層1,第2の強磁性層3、お
よび第3の強磁性層5はそれぞれ層面内に磁化されてい
る。第1の強磁性層1と第2の強磁性層3の磁化方向は
外部磁界の印可がない状態で互いにほぼ直交し、第2の
強磁性層3と第3の強磁性層5の磁化方向がほぼ反平行
になるようにする。これは例えば磁性層を成膜するとき
に磁化させたい方向に外部磁界を印可しながら成膜する
ことによって達成される。第2の強磁性層3と第3の強
磁性層5の磁化がほぼ反平行であれば第2の強磁性層3
からの漏洩磁束は第3の強磁性層5を介して閉じるよう
になり、漏洩磁束が第1の強磁性層1を介して閉じるの
を防ぐことができる。また第2の強磁性層3の磁化は外
部磁界に対してピン止めされていなければならないが、
これは第2の強磁性層3と第3の強磁性層5の間での静
磁結合によってなされる。第2の強磁性層3としてはFe
Ni、Co、FeNiCoなどが好ましい。厚さとしては1nm以上1
0nm以下が好ましい。また第3の強磁性層5としては外
部磁界によって磁化が回転しないよう第1の強磁性層に
比べ保磁力が高いことが好ましく、例えばCo、CoFe合
金、CoPt合金などが好ましい。The first ferromagnetic layer 1, the second ferromagnetic layer 3, and the third ferromagnetic layer 5 are each magnetized in the layer plane. The magnetization directions of the first ferromagnetic layer 1 and the second ferromagnetic layer 3 are substantially orthogonal to each other in the absence of an external magnetic field, and the magnetization directions of the second ferromagnetic layer 3 and the third ferromagnetic layer 5 Are almost anti-parallel. This can be achieved, for example, by forming a magnetic layer while applying an external magnetic field in a direction in which the magnetic layer is to be magnetized. If the magnetizations of the second ferromagnetic layer 3 and the third ferromagnetic layer 5 are substantially antiparallel, the second ferromagnetic layer 3
Leakage magnetic flux from the first ferromagnetic layer 5 is closed through the third ferromagnetic layer 5, and leakage magnetic flux can be prevented from closing through the first ferromagnetic layer 1. The magnetization of the second ferromagnetic layer 3 must be pinned to an external magnetic field,
This is achieved by magnetostatic coupling between the second ferromagnetic layer 3 and the third ferromagnetic layer 5. Fe is used as the second ferromagnetic layer 3
Ni, Co, FeNiCo and the like are preferable. 1 nm or more in thickness1
0 nm or less is preferable. The third ferromagnetic layer 5 preferably has a higher coercive force than the first ferromagnetic layer so that the magnetization is not rotated by an external magnetic field. For example, a Co, CoFe alloy, CoPt alloy, or the like is preferable.
【0024】なお磁化方向の制御は無磁界中で成膜した
のち、磁場中アニールを行ってもよい。For controlling the magnetization direction, annealing may be performed in a magnetic field after forming the film in a non-magnetic field.
【0025】なお、第3の強磁性層5または第2の強磁
性層3が磁束で飽和してしまうと、漏洩磁束の一部が第
1の強磁性層1まで到達する可能性が出てくる。したが
って第2の強磁性層3および第3の強磁性層5の飽和磁
束密度と膜厚は適当な値にしなければならい。より好ま
しいのは第3の強磁性層5と第2の強磁性層3の材料、
膜厚を一致させることである。このような場合それぞれ
の磁性層から発生する磁束は同程度と考えられるので設
計が容易になる。If the third ferromagnetic layer 5 or the second ferromagnetic layer 3 is saturated with magnetic flux, there is a possibility that a part of the leakage magnetic flux reaches the first ferromagnetic layer 1. come. Therefore, the saturation magnetic flux density and the film thickness of the second ferromagnetic layer 3 and the third ferromagnetic layer 5 must be set to appropriate values. More preferred are the materials of the third ferromagnetic layer 5 and the second ferromagnetic layer 3,
That is, the film thicknesses are matched. In such a case, the magnetic flux generated from each magnetic layer is considered to be substantially the same, so that the design becomes easy.
【0026】第2の非磁性層4は第2の強磁性層3と第
3の強磁性層5が交換結合してその磁化方向が平行にな
るのを防ぐ役割を持っている。導電性の非磁性層で第2
の強磁性層3と第3の強磁性層5を反強磁性交換結合さ
せて磁化方向を反平行にする場合には非磁性層の膜厚を
厳密に制御する必要があるが、本発明の第2の非磁性層
4は第2の強磁性層3と第3の強磁性層5の交換結合を
小さくするのが目的であるので膜厚制御はそれほど厳密
に行わずともよい。第2の非磁性層としてはシャント電
流を減らすという点から比抵抗が高い方が望ましい。例
えば20μΩ・cm以上が望ましく、さらに好ましくは
絶縁体である。交換結合を切るという点からも絶縁体が
好ましい。絶縁体としては酸化シリコン、アルミナ、窒
化シリコンなどが良好な薄膜が得られる点で好ましい。
また膜厚としては薄すぎるとピンホールができてしまう
ので1nm以上が好ましいが、あまり厚いと第2の強磁性
層3は第3の強磁性層5よりも第1の強磁性層1と静磁
結合してしまうので20nm以下が好ましい。より好ましく
は第1の非磁性層2の膜厚と同程度、もしくはそれ以下
である。The second nonmagnetic layer 4 has a role of preventing the second ferromagnetic layer 3 and the third ferromagnetic layer 5 from being exchange-coupled and their magnetization directions becoming parallel. Second conductive non-magnetic layer
When the ferromagnetic layer 3 and the third ferromagnetic layer 5 are subjected to antiferromagnetic exchange coupling to make the magnetization directions antiparallel, it is necessary to strictly control the thickness of the nonmagnetic layer. Since the purpose of the second nonmagnetic layer 4 is to reduce the exchange coupling between the second ferromagnetic layer 3 and the third ferromagnetic layer 5, the film thickness control does not have to be performed so strictly. The second non-magnetic layer preferably has a higher specific resistance from the viewpoint of reducing the shunt current. For example, it is preferably 20 μΩ · cm or more, and more preferably an insulator. An insulator is also preferable from the viewpoint of cutting off exchange coupling. As the insulator, silicon oxide, alumina, silicon nitride, or the like is preferable because a favorable thin film can be obtained.
If the film thickness is too small, a pinhole is formed, so that the thickness is preferably 1 nm or more. However, if the film thickness is too large, the second ferromagnetic layer 3 is more static than the third ferromagnetic layer 5. 20 nm or less is preferable because magnetic coupling occurs. More preferably, the thickness is equal to or less than the thickness of the first nonmagnetic layer 2.
【0027】またシャント電流を減少させるためには第
3の強磁性層5の比抵抗はできるだけ高い方が好まし
い。In order to reduce the shunt current, the specific resistance of the third ferromagnetic layer 5 is preferably as high as possible.
【0028】それぞれの磁性層および非磁性層の成膜に
はスパッタリング法などを用いることができる。図1に
は図示していないが、磁気抵抗効果素子に電流を流すた
めのリード層を設けてもよい。リード層としてはAuや
Cuなどの比抵抗の低い金属を用いる。The respective magnetic layers and non-magnetic layers can be formed by a sputtering method or the like. Although not shown in FIG. 1, a lead layer for passing a current to the magnetoresistance effect element may be provided. As the lead layer, a metal having a low specific resistance such as Au or Cu is used.
【0029】なお図1では基板6に下から、第3の強磁
性層5,第2の非磁性層4、第2の強磁性層3、第1の
非磁性層2、第1の強磁性層1と積層したが、逆に第1
の強磁性層1,第1の非磁性層2、第2の強磁性層3、
第2の非磁性層4、第3の強磁性層5の順に積層しても
よい。In FIG. 1, the third ferromagnetic layer 5, the second nonmagnetic layer 4, the second ferromagnetic layer 3, the first nonmagnetic layer 2, the first ferromagnetic layer It was laminated with layer 1, but on the contrary
, A first nonmagnetic layer 2, a second ferromagnetic layer 3,
The second nonmagnetic layer 4 and the third ferromagnetic layer 5 may be stacked in this order.
【0030】図7は本発明の第二の実施の形態である磁
気抵抗効果素子の構造を示す断面図である。基板77上
に反強磁性層76、第3の強磁性層75、第2の非磁性
層74、第2の強磁性層73、第1の非磁性層72、第
1の強磁性層71が積層された構造となっている。FIG. 7 is a sectional view showing the structure of a magnetoresistive element according to a second embodiment of the present invention. An antiferromagnetic layer 76, a third ferromagnetic layer 75, a second nonmagnetic layer 74, a second ferromagnetic layer 73, a first nonmagnetic layer 72, and a first ferromagnetic layer 71 are formed on a substrate 77. It has a laminated structure.
【0031】基板77にはガラス、シリコン、Al2O3
とTiCの焼結体などの非磁性材料で表面の平坦性のよ
いものを用いる。第1の強磁性層71は微少な外部信号
磁界に対して磁化が回転できるよう、保磁力が十分小さ
い、いわゆる軟磁性材料が適している。例えばNiFeやNi
FeCoなどを用いることができる。第1の強磁性層71の
厚さとしては1nm以上10nm以下がよい。膜厚が厚いとシ
ャント効果によりMR比が低下するが薄すぎると軟磁気
特性が悪くなる。Glass, silicon, Al 2 O 3
And a non-magnetic material such as a sintered body of TiC with good surface flatness is used. The first ferromagnetic layer 71 is preferably made of a so-called soft magnetic material having a sufficiently small coercive force so that the magnetization can be rotated by a small external signal magnetic field. For example, NiFe or Ni
FeCo or the like can be used. The thickness of the first ferromagnetic layer 71 is preferably 1 nm or more and 10 nm or less. When the film thickness is large, the MR ratio is reduced due to the shunt effect, but when it is too small, the soft magnetic characteristics deteriorate.
【0032】第1の非磁性層72は第1の強磁性層71
と第2の強磁性層73の間の交換結合をできるだけ小さ
くする役割をしており、Cu,Ag,Au,Ruなどを用いること
ができるが特にCuが最も適している。非磁性層の厚さと
しては、交換結合を小さくするために、少なくとも1.5n
m以上、好ましくは1.8nm以上である。しかしながら厚す
ぎるとシャント効果によりMR比が低下するので10nm以
下、望ましくは3nm以下にする。The first nonmagnetic layer 72 is a first ferromagnetic layer 71
It serves to minimize the exchange coupling between the second ferromagnetic layer 73 and Cu, Ag, Au, Ru, etc., but Cu is most suitable. The thickness of the non-magnetic layer should be at least 1.5 n in order to reduce exchange coupling.
m or more, preferably 1.8 nm or more. However, if the thickness is too large, the shunt effect lowers the MR ratio, so the thickness is set to 10 nm or less, preferably 3 nm or less.
【0033】第1の強磁性層71、第2の強磁性層7
3、第3の強磁性層75はそれぞれ層面内に磁化されて
いる。第1の強磁性層71と第2の強磁性層73の磁化
方向は外部磁界の印可がない状態で互いに直交し、第2
の強磁性層73と第3の強磁性層75の磁化方向はほぼ
反平行になるようにする。これは例えば磁性層を成膜す
るときに磁化させたい方向に外部磁界を印可しながら成
膜することによって達成される。第2の強磁性層73と
第3の強磁性層75の磁化がほぼ反平行であれば第2の
強磁性層73からの漏洩磁束が第3の強磁性層75を介
して閉じるようになり、漏洩磁束が第1の強磁性層71
を介して閉じるのを防ぐことができる。なお磁化方向の
制御は無磁界中で成膜したのち、磁場中アニールを行っ
てもよい。First ferromagnetic layer 71, second ferromagnetic layer 7
The third and third ferromagnetic layers 75 are each magnetized in the layer plane. The magnetization directions of the first ferromagnetic layer 71 and the second ferromagnetic layer 73 are orthogonal to each other without application of an external magnetic field,
The magnetization directions of the ferromagnetic layer 73 and the third ferromagnetic layer 75 are set to be approximately antiparallel. This can be achieved, for example, by forming a magnetic layer while applying an external magnetic field in a direction in which the magnetic layer is to be magnetized. If the magnetizations of the second ferromagnetic layer 73 and the third ferromagnetic layer 75 are substantially anti-parallel, the leakage magnetic flux from the second ferromagnetic layer 73 closes via the third ferromagnetic layer 75. , The leakage magnetic flux is reduced to the first ferromagnetic layer 71.
Closing can be prevented. The magnetization direction may be controlled by performing annealing in a magnetic field after forming the film in a non-magnetic field.
【0034】第2の強磁性層73としては鉄・ニッケル
合金、コバルト、鉄・ニッケル・コバルト合金などが好
ましい。厚さとしては1nm以上10nm以下が好ましい。ま
た第3の強磁性層75は反強磁性層76によって磁化が
ピン止めされているので自身の保磁力は小さくても良く
材料の選択範囲は第一の実施の形態に比べて広がる。例
えば鉄・ニッケル合金、コバルト、鉄・ニッケル・コバ
ルト合金、コバルト・白金合金などが好ましい。厚さと
しては1nm以上10nm以下が好ましい。The second ferromagnetic layer 73 is preferably made of iron / nickel alloy, cobalt, iron / nickel / cobalt alloy, or the like. The thickness is preferably 1 nm or more and 10 nm or less. Further, since the magnetization of the third ferromagnetic layer 75 is pinned by the antiferromagnetic layer 76, the coercive force of the third ferromagnetic layer 75 may be small, and the material selection range is wider than that of the first embodiment. For example, iron-nickel alloy, cobalt, iron-nickel-cobalt alloy, cobalt-platinum alloy, and the like are preferable. The thickness is preferably 1 nm or more and 10 nm or less.
【0035】また反強磁性層76は第3の強磁性層75
と交換結合し、第3の強磁性層75の磁化は外部磁界に
対してピン止めされる。さらに第3の強磁性層75と第
2の強磁性層73が静磁結合することによって第2の強
磁性層は外部磁界に対してピン止めされる。本実施の形
態の特徴は第3の強磁性層75の磁化を反強磁性層76
によってピン止めすることにある。反強磁性層76の材
料としては例えばイリジウム・マンガン合金、鉄・マン
ガン合金、ニッケル・マンガン合金,白金パラジウム・
マンガン合金や酸化ニッケル,酸化コバルト,α-Fe2O3な
どが好ましい。シャント電流を減らすという点では酸化
ニッケル、酸化コバルト、α-Fe2O3などの酸化物反強磁
性体が望ましい。層厚としては10nm以上50nm以下が好ま
しい。The antiferromagnetic layer 76 is the third ferromagnetic layer 75
And the magnetization of the third ferromagnetic layer 75 is pinned to an external magnetic field. Further, the third ferromagnetic layer 75 and the second ferromagnetic layer 73 are magnetostatically coupled, so that the second ferromagnetic layer is pinned against an external magnetic field. The feature of this embodiment is that the magnetization of the third ferromagnetic layer 75 is
Is to pin. Examples of the material of the antiferromagnetic layer 76 include an iridium-manganese alloy, an iron-manganese alloy, a nickel-manganese alloy, and platinum-palladium.
Manganese alloys, nickel oxide, cobalt oxide, α-Fe 2 O 3 and the like are preferred. From the viewpoint of reducing the shunt current, an oxide antiferromagnetic material such as nickel oxide, cobalt oxide, and α-Fe 2 O 3 is preferable. The layer thickness is preferably from 10 nm to 50 nm.
【0036】なお、第3の強磁性層75または第2の強
磁性層73が磁束で飽和してしまうと、漏洩磁束の一部
が第1の強磁性層71まで到達する可能性が出てくる。
したがって第2の強磁性層73および第3の強磁性層7
5の飽和磁束密度と膜厚は適当な値にしなければなら
い。より好ましいのは第3の強磁性層75と第2の強磁
性層73の材料、膜厚を一致させることである。このよ
うな場合それぞれの磁性層から発生する磁束は同程度と
考えられるので設計が容易になる。If the third ferromagnetic layer 75 or the second ferromagnetic layer 73 is saturated with magnetic flux, there is a possibility that a part of the leakage magnetic flux reaches the first ferromagnetic layer 71. come.
Therefore, the second ferromagnetic layer 73 and the third ferromagnetic layer 7
The saturation magnetic flux density and film thickness of No. 5 must be set to appropriate values. More preferably, the materials and thicknesses of the third ferromagnetic layer 75 and the second ferromagnetic layer 73 are made equal. In such a case, the magnetic flux generated from each magnetic layer is considered to be substantially the same, so that the design becomes easy.
【0037】第2の非磁性層74は第2の強磁性層73
と第3の強磁性層75が交換結合してその磁化方向が平
行になるのを防ぐ役割を持っている。導電性の非磁性層
で第2の強磁性層73と第3の強磁性層75を反強磁性
交換結合させて磁化方向を反平行にする場合には非磁性
層の膜厚を厳密に制御する必要があるが、本発明の第2
の非磁性層74は第2の強磁性層73と第3の強磁性層
75の交換結合を小さくするのが目的であるので膜厚制
御はそれほど厳密に行わずともよい。第2の非磁性層7
4としてはシャント電流を減らすという点から比抵抗が
高い方が望ましい。例えば20μΩ・cm以上が望まし
く、さらに好ましくは絶縁体である。交換結合を切ると
いう点からも絶縁体が好ましい。絶縁体としては酸化シ
リコン、アルミナ、窒化シリコンなどが良好な薄膜が得
られる点で好ましい。また膜厚としては薄すぎるとピン
ホールができてしまうので1nm以上が好ましいが、あま
り厚いと第2の強磁性層73は第3の強磁性層75より
も第1の強磁性層71と静磁結合してしまうので20nm以
下が好ましい。より好ましくは第1の非磁性層72の膜
厚と同程度、もしくはそれ以下である。The second non-magnetic layer 74 is the second ferromagnetic layer 73
And the third ferromagnetic layer 75 exchange-couples to prevent the magnetization directions from becoming parallel. When the second ferromagnetic layer 73 and the third ferromagnetic layer 75 are anti-ferromagnetic exchange-coupled by a conductive non-magnetic layer to make their magnetization directions anti-parallel, the thickness of the non-magnetic layer is strictly controlled. The second aspect of the present invention
Since the purpose of the non-magnetic layer 74 is to reduce the exchange coupling between the second ferromagnetic layer 73 and the third ferromagnetic layer 75, the film thickness control does not have to be performed so strictly. Second non-magnetic layer 7
As for 4, it is desirable that the specific resistance is higher from the viewpoint of reducing the shunt current. For example, it is preferably 20 μΩ · cm or more, and more preferably an insulator. An insulator is also preferable from the viewpoint of cutting off exchange coupling. As the insulator, silicon oxide, alumina, silicon nitride, or the like is preferable because a favorable thin film can be obtained. When the film thickness is too small, a pinhole is formed, so that the thickness is preferably 1 nm or more. However, when the film thickness is too large, the second ferromagnetic layer 73 is more static than the third ferromagnetic layer 75. 20 nm or less is preferable because magnetic coupling occurs. More preferably, the thickness is equal to or less than the thickness of the first nonmagnetic layer 72.
【0038】またシャント電流を減少させるためには第
3の強磁性層75の比抵抗はできるだけ高い方が好まし
い。In order to reduce the shunt current, the specific resistance of the third ferromagnetic layer 75 is preferably as high as possible.
【0039】それぞれの磁性層および非磁性層の成膜に
はスパッタリング法などを用いることができる。図7に
は図示していないが、磁気抵抗効果素子に電流を流すた
めのリード層を設けてもよい。リード層としてはAuや
Cuなどの比抵抗の低い金属を用いる。Each of the magnetic layer and the non-magnetic layer can be formed by a sputtering method or the like. Although not shown in FIG. 7, a lead layer for flowing a current to the magnetoresistance effect element may be provided. As the lead layer, a metal having a low specific resistance such as Au or Cu is used.
【0040】図8は本発明の第三の実施の形態である磁
気抵抗効果素子の構造を示す断面図である。基板87上
に第3の強磁性層86,第2の非磁性層85、反強磁性
層84、第2の強磁性層83、第1の非磁性層82、第
1の強磁性層81が積層された構造となっている。FIG. 8 is a sectional view showing the structure of a magnetoresistive element according to a third embodiment of the present invention. On a substrate 87, a third ferromagnetic layer 86, a second nonmagnetic layer 85, an antiferromagnetic layer 84, a second ferromagnetic layer 83, a first nonmagnetic layer 82, and a first ferromagnetic layer 81 are provided. It has a laminated structure.
【0041】基板87にはガラス、シリコン、Al2O3
とTiCの焼結体などの非磁性材料で表面の平坦性のよ
いものを用いる。第1の強磁性層81は微少な外部信号
磁界に対して磁化が回転できるよう、保磁力が十分小さ
い、いわゆる軟磁性材料が適している。例えばNiFeやNi
FeCoなどを用いることができる。第1の強磁性層81の
厚さとしては1nm以上10nm以下がよい。膜厚が厚いとシ
ャント効果によりMR比が低下するが薄すぎると軟磁気
特性が悪くなる。The substrate 87 is made of glass, silicon, Al 2 O 3
And a non-magnetic material such as a sintered body of TiC with good surface flatness is used. For the first ferromagnetic layer 81, a so-called soft magnetic material having a sufficiently small coercive force is suitable so that the magnetization can be rotated by a small external signal magnetic field. For example, NiFe or Ni
FeCo or the like can be used. The thickness of the first ferromagnetic layer 81 is preferably 1 nm or more and 10 nm or less. When the film thickness is large, the MR ratio is reduced due to the shunt effect, but when it is too small, the soft magnetic characteristics deteriorate.
【0042】第1の非磁性層82は第1の強磁性層81
と第2の強磁性層83の間の交換結合をできるだけ小さ
くする役割をしており、Cu,Ag,Au,Ruなどを用いること
ができるが特にCuが最も適している。非磁性層の厚さと
しては、交換結合を小さくするために、少なくとも1.5n
m以上、好ましくは1.8nm以上である。しかしながら厚す
ぎるとシャント効果によりMR比が低下するので10nm以
下、望ましくは3nm以下にする。The first non-magnetic layer 82 is the first ferromagnetic layer 81
It serves to minimize the exchange coupling between the second ferromagnetic layer 83 and Cu, Ag, Au, Ru, etc., but Cu is most suitable. The thickness of the non-magnetic layer should be at least 1.5 n in order to reduce exchange coupling.
m or more, preferably 1.8 nm or more. However, if the thickness is too large, the shunt effect lowers the MR ratio, so the thickness is set to 10 nm or less, preferably 3 nm or less.
【0043】第1の強磁性層81、第2の強磁性層8
3、第3の強磁性層86はそれぞれ層面内に磁化されて
いる。第1の強磁性層81と第2の強磁性層83の磁化
方向は外部磁界の印可がない状態で互いにほぼ直交し、
第2の強磁性層83と第3の強磁性層86の磁化方向は
ほぼ反平行になるようにする。これは例えば磁性層を成
膜するときに磁化させたい方向に外部磁界を印可しなが
ら成膜することによって達成される。第2の強磁性層8
3と第3の強磁性層86の磁化がほぼ反平行であれば第
2の強磁性層83からの漏洩磁束が第3の強磁性層86
を介して閉じるようになり、漏洩磁束が第1の強磁性層
81を介して閉じるのを防ぐことができる。The first ferromagnetic layer 81 and the second ferromagnetic layer 8
The third and third ferromagnetic layers 86 are each magnetized in the layer plane. The magnetization directions of the first ferromagnetic layer 81 and the second ferromagnetic layer 83 are substantially orthogonal to each other in the absence of an external magnetic field,
The magnetization directions of the second ferromagnetic layer 83 and the third ferromagnetic layer 86 are substantially antiparallel. This can be achieved, for example, by forming a magnetic layer while applying an external magnetic field in a direction in which the magnetic layer is to be magnetized. Second ferromagnetic layer 8
If the magnetizations of the third ferromagnetic layer 86 and the third ferromagnetic layer 86 are substantially antiparallel, the leakage magnetic flux from the second ferromagnetic layer 83
, And the leakage magnetic flux can be prevented from closing through the first ferromagnetic layer 81.
【0044】ただし反強磁性層84を間に挟んでいるた
め、第3の強磁性層86は第1の強磁性層81に比べ第
2の強磁性層からより遠くにあるので、第1の実施の形
態に比べると第2の強磁性層から発生する漏洩磁束が第
1の強磁性層81に到達するのを防ぐ効果は小さい。し
かしながら反強磁性層84の厚さを適度に薄くしてやれ
ば一部の漏洩磁束は第3の強磁性層を通して閉じるので
第1の強磁性層81へ到達する漏洩磁束を減らす効果は
ある。本実施の形態の特徴は反強磁性層との交換結合に
よって第2の強磁性層の磁化のピン止めを効果的に行う
ことにある。However, since the antiferromagnetic layer 84 is interposed therebetween, the third ferromagnetic layer 86 is farther from the second ferromagnetic layer than the first ferromagnetic layer 81, The effect of preventing the leakage magnetic flux generated from the second ferromagnetic layer from reaching the first ferromagnetic layer 81 is smaller than that of the embodiment. However, if the thickness of the antiferromagnetic layer 84 is appropriately reduced, a part of the leakage magnetic flux is closed through the third ferromagnetic layer, so that there is an effect of reducing the leakage magnetic flux reaching the first ferromagnetic layer 81. The feature of this embodiment resides in that the magnetization of the second ferromagnetic layer is effectively pinned by exchange coupling with the antiferromagnetic layer.
【0045】なお磁化方向の制御は無磁界中で成膜した
のち、磁場中アニールを行ってもよい。The magnetization direction may be controlled by forming a film in a non-magnetic field and then performing annealing in a magnetic field.
【0046】第2の強磁性層83の磁化は外部磁界に対
してピン止めされていなければならないが、これは第2
の強磁性層83と反強磁性層84の間での交換結合によ
ってなされる。第2の強磁性層83は反強磁性層によっ
て磁化がピン止めされているので自身の保磁力は小さく
ても良く材料の選択範囲は第一の実施の形態に比べて広
がる。例えば鉄・ニッケル合金、コバルト、鉄・ニッケ
ル・コバルト合金、コバルト・白金合金などが好まし
い。厚さとしては1nm以上10nm以下が好ましい。また第
3の強磁性層86としては鉄・ニッケル合金、コバル
ト、鉄・ニッケル・コバルト合金、コバルト・白金合金
などが好ましい。厚さとしては1nm以上10nm以下が好ま
しい。The magnetization of the second ferromagnetic layer 83 must be pinned to an external magnetic field.
By the exchange coupling between the ferromagnetic layer 83 and the antiferromagnetic layer 84. Since the magnetization of the second ferromagnetic layer 83 is pinned by the antiferromagnetic layer, the coercive force of the second ferromagnetic layer 83 may be small, and the material selection range is wider than in the first embodiment. For example, iron-nickel alloy, cobalt, iron-nickel-cobalt alloy, cobalt-platinum alloy, and the like are preferable. The thickness is preferably 1 nm or more and 10 nm or less. The third ferromagnetic layer 86 is preferably made of iron / nickel alloy, cobalt, iron / nickel / cobalt alloy, cobalt / platinum alloy, or the like. The thickness is preferably 1 nm or more and 10 nm or less.
【0047】反強磁性層84は第2の強磁性層83と交
換結合し、第2の強磁性層83の磁化を外部磁界に対し
てピン止めする。反強磁性層84の材料としては例えば
イリジウム・マンガン合金、鉄・マンガン合金、ニッケ
ル・マンガン合金,白金パラジウム・マンガン合金や酸
化ニッケル,酸化コバルト,α-Fe2O3などが好ましい。シ
ャント電流を減らすという点では酸化ニッケル、酸化コ
バルト、α-Fe2O3などの酸化物反強磁性体が望ましい。
層厚としては10nm以上50nm以下が好ましい。The antiferromagnetic layer 84 is exchange-coupled with the second ferromagnetic layer 83, and pins the magnetization of the second ferromagnetic layer 83 to an external magnetic field. As a material of the antiferromagnetic layer 84, for example, an iridium-manganese alloy, an iron-manganese alloy, a nickel-manganese alloy, a platinum-palladium-manganese alloy, nickel oxide, cobalt oxide, α-Fe 2 O 3 and the like are preferable. From the viewpoint of reducing the shunt current, an oxide antiferromagnetic material such as nickel oxide, cobalt oxide, and α-Fe 2 O 3 is preferable.
The layer thickness is preferably from 10 nm to 50 nm.
【0048】第2の非磁性層85は第3の強磁性層86
が反強磁性層84と交換結合し、その磁化方向が第2の
強磁性層83と平行になるのを防ぐために設けている。
第2の非磁性層としてはシャント電流を減らすという点
から比抵抗が高い方が望ましい。例えば20μΩ・cm
以上が望ましく、さらに好ましくは絶縁体である。交換
結合を切るという点からも絶縁体が望ましい。絶縁体と
しては酸化シリコン、アルミナ、窒化シリコンなどが良
好な薄膜が得られる点で好ましい。また膜厚としては薄
すぎるとピンホールができてしまうので1nm以上が好ま
しい。The second nonmagnetic layer 85 is a third ferromagnetic layer 86
Are provided for preventing exchange coupling with the antiferromagnetic layer 84 and preventing the magnetization direction thereof from becoming parallel to the second ferromagnetic layer 83.
The second non-magnetic layer preferably has a higher specific resistance from the viewpoint of reducing the shunt current. For example, 20μΩcm
The above is desirable, and more preferably an insulator. An insulator is also desirable from the viewpoint of breaking exchange coupling. As the insulator, silicon oxide, alumina, silicon nitride, or the like is preferable because a favorable thin film can be obtained. When the film thickness is too small, pinholes are formed, so that the thickness is preferably 1 nm or more.
【0049】またシャント電流を減少させるためには第
3の強磁性層86の比抵抗はできるだけ高い方が好まし
い。In order to reduce the shunt current, the specific resistance of the third ferromagnetic layer 86 is preferably as high as possible.
【0050】それぞれの磁性層および非磁性層の成膜に
はスパッタリング方などを用いることができる。図8に
は図示していないが、磁気抵抗効果素子に電流を流すた
めのリード層を設けても良い。リード層としてはAuや
Cuなどの比抵抗の低い金属を用いる。Each of the magnetic layer and the non-magnetic layer can be formed by a sputtering method or the like. Although not shown in FIG. 8, a lead layer for flowing a current to the magnetoresistive element may be provided. As the lead layer, a metal having a low specific resistance such as Au or Cu is used.
【0051】なお図8では基板87に下から、第3の強
磁性層86、第2の非磁性層85、反強磁性層84、第
2の強磁性層83、第1の非磁性層82、第1の強磁性
層81と積層したが、逆に第1の強磁性層81、第1の
非磁性層82、第2の強磁性層83、反強磁性層84、
第2の非磁性層85、第3の強磁性層86の順に積層し
てもよい。In FIG. 8, the third ferromagnetic layer 86, the second nonmagnetic layer 85, the antiferromagnetic layer 84, the second ferromagnetic layer 83, and the first nonmagnetic layer 82 , The first ferromagnetic layer 81, the first nonmagnetic layer 82, the second ferromagnetic layer 83, the antiferromagnetic layer 84,
The second nonmagnetic layer 85 and the third ferromagnetic layer 86 may be stacked in this order.
【0052】図4は本発明の第4の実施の形態である薄
膜磁気ヘッドの構造を示す断面図である。磁気抵抗効果
素子41をシールドギャップ層44,45とシールド4
2、43で挟み込んだ構造になっている。47は磁気抵
抗効果素子にセンス電流を流すための電極層であり、4
6は磁気抵抗効果素子の第1の強磁性層を単磁区化する
ためのハードバイアス層である。シールド42,43の
材料としてはNiFeなどの軟磁気特性をもつ磁性材料が適
しており、シールドギャップ層44,45としてはアル
ミナなどの材料が適している。電極層47としてはAuや
Cuなど比抵抗の低い金属が適しており、ハードバイアス
層46としてはCoPtなどの永久磁石膜が適している。FIG. 4 is a sectional view showing the structure of a thin-film magnetic head according to a fourth embodiment of the present invention. The magnetoresistive element 41 is connected to the shield gap layers 44 and 45 and the shield 4.
The structure is sandwiched between 2, 43. 47 is an electrode layer for passing a sense current to the magnetoresistive element;
Reference numeral 6 denotes a hard bias layer for converting the first ferromagnetic layer of the magnetoresistance effect element into a single magnetic domain. As a material for the shields 42 and 43, a magnetic material having soft magnetic properties such as NiFe is suitable, and for the shield gap layers 44 and 45, a material such as alumina is suitable. As the electrode layer 47, Au or
A metal having a low specific resistance such as Cu is suitable, and a permanent magnet film such as CoPt is suitable for the hard bias layer 46.
【0053】[0053]
【実施例】本発明の磁気抵抗効果素子および磁気抵抗効
果型ヘッドについて以下具体的な実施例を用いて説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetoresistive element and a magnetoresistive head according to the present invention will be described below using specific examples.
【0054】(実施例1)高周波マグネトロンスパッタ
装置を用いて表1に示すようなA,B2種類の磁気抵抗効
果素子を作成した。Example 1 Two types of magnetoresistive elements A and B as shown in Table 1 were prepared using a high-frequency magnetron sputtering apparatus.
【0055】[0055]
【表1】 [Table 1]
【0056】比較例である磁気抵抗効果素子Aは以下の
ようにして作成した。Si(100)基板を高周波マグネトロ
ンスパッタ装置内に設置し、SmCo永久磁石によって磁界
を印可しながらCoを5nm成膜した。次に同一装置内でCu
を2nm成膜した。さらにCoを成膜したときとほぼ90度
直交する磁界を印可しながらNi-Feを3nm成膜した。ここ
でNi-Feと記しているのはNi0.8Fe0.2のターゲットをス
パッタして得られた膜である。このようにして得られた
素子を公知のフォトリソグラフィー技術を用いて図5の
ように微細化およびAuからなるリード層のパターンニン
グを行った。磁気抵抗効果素子51の両端に電流を流す
ための電流リード層52が接続され、さらに中間部に電
圧を測定するための電圧リード層53が接続されてい
る。Lは1μmとし、hは0.5μmである。外部磁界H
54を印可して四端子法にてMR曲線を測定した。結果
を図6に示す。図中のMR[%]は(R-Rmin)/Rmin×100
[%]と定義した。Rはその磁界での素子の抵抗値であ
り、Rminは50Oeの磁界においての素子の抵抗値を示す。
なお印可磁界は磁気抵抗効果素子の面内方向でNi-Feの
磁化方向に対して直交するようにした。また磁気抵抗効
果素子に流すセンス電流と直交するようにした。A magnetoresistive element A as a comparative example was prepared as follows. The Si (100) substrate was set in a high-frequency magnetron sputtering apparatus, and a Co film was formed to a thickness of 5 nm while applying a magnetic field with a SmCo permanent magnet. Next, Cu
Was formed into a 2 nm film. Further, a Ni-Fe film was formed to a thickness of 3 nm while applying a magnetic field substantially orthogonal to that at the time of forming the Co film. Here, Ni-Fe is a film obtained by sputtering a target of Ni 0.8 Fe 0.2 . The element thus obtained was subjected to miniaturization and patterning of a lead layer made of Au as shown in FIG. 5 by using a known photolithography technique. A current lead layer 52 for flowing a current is connected to both ends of the magnetoresistive element 51, and a voltage lead layer 53 for measuring a voltage is connected to an intermediate portion. L is 1 μm and h is 0.5 μm. External magnetic field H
54 was applied and the MR curve was measured by the four-terminal method. FIG. 6 shows the results. MR [%] in the figure is (R-Rmin) / Rmin × 100
[%]. R is the resistance of the element in the magnetic field, and Rmin is the resistance of the element in a magnetic field of 50 Oe.
The applied magnetic field was set to be orthogonal to the magnetization direction of Ni-Fe in the in-plane direction of the magnetoresistive element. Further, the sense current is made to be orthogonal to the sense current flowing through the magnetoresistive element.
【0057】本発明の実施例である磁気抵抗効果素子B
は以下のようにして作成した。Si(100)基板を高周波マ
グネトロンスパッタ装置内に設置し、SmCo永久磁石によ
って磁界を印可しながらCoを5nm成膜した。次に同一装
置内でSiO2を2nm成膜した。その後、永久磁石による印
可磁界を先ほどと180度変化させてCoを5nm成膜した。さ
らにCuを2nm成膜した。最後に永久磁石による磁界を先
ほどCoを成膜したときとほぼ直交する方向に印可しなが
らNiFeを3nm成膜した。このようにして得られた素子B
を素子Aと同様に微細化およびリード層のパターニング
を行ってMR曲線を測定した。結果を図6に示す。図6
から明らかなように素子AではMR曲線が横軸(磁界)
方向に大きくシフトしており、ゼロ磁界前後で非直線的
な抵抗変化をしているが、素子Bではシフトはほとんど
無くゼロ磁界前後での直線的な抵抗変化が得られてい
る。なお比較例Aには反強磁性層がないが、Si基板上に
反強磁性層としてIrMnを8nm成膜した、Si/IrMn(8nm)/Co
(5nm)/Cu(2nm)/Ni-Fe(3nm)の構成にした場合はCo層のピ
ン止め効果はよかったが、ゼロ磁界前後におけるMR曲線
の非直線的な変化は素子Aとほとんど変わらなかった。The magnetoresistance effect element B according to the embodiment of the present invention
Was created as follows. The Si (100) substrate was set in a high-frequency magnetron sputtering apparatus, and a Co film was formed to a thickness of 5 nm while applying a magnetic field with a SmCo permanent magnet. Next, 2 nm of SiO 2 was formed in the same apparatus. Thereafter, Co was deposited to a thickness of 5 nm while the applied magnetic field by the permanent magnet was changed by 180 degrees as before. Further, Cu was deposited to a thickness of 2 nm. Finally, NiFe was deposited to a thickness of 3 nm while applying a magnetic field by a permanent magnet in a direction substantially perpendicular to the time when the Co was deposited. Element B thus obtained
Was subjected to miniaturization and patterning of the lead layer in the same manner as in the device A, and the MR curve was measured. FIG. 6 shows the results. FIG.
As is clear from the above, in element A, the MR curve has the horizontal axis (magnetic field).
In the element B, there is almost no shift and a linear resistance change is obtained before and after the zero magnetic field. Comparative Example A had no antiferromagnetic layer. However, IrMn was formed as an antiferromagnetic layer on a Si substrate to a thickness of 8 nm, and Si / IrMn (8 nm) / Co was used.
In the case of (5 nm) / Cu (2 nm) / Ni-Fe (3 nm), the pinning effect of the Co layer was good, but the nonlinear change of the MR curve before and after the zero magnetic field was almost the same as that of the element A. Was.
【0058】なお本実施例では高周波マグネトロンスパ
ッタリング法を用いたが、直流マグネトロンスパッタリ
ング法やイオンビームスパッタリング法などを用いて成
膜してもよい。Although the high-frequency magnetron sputtering method is used in this embodiment, the film may be formed by using a direct current magnetron sputtering method or an ion beam sputtering method.
【0059】(実施例2)実施例1の磁気抵抗効果素子
A,Bと同じ構成の磁気抵抗効果素子を用いて図4に示
すような構造の薄膜磁気ヘッドHAおよびHBを構成して
特性を評価した。ただしSi基板上ではなくシールドギ
ャップ層上に直接磁気抵抗効果素子を構成した。シール
ドギャップ層43,44にはAl2O3を使用し、ハード
バイアス層45にはCo-Pt合金を用い、リード層44に
はAuを用いた。これらのヘッドに約20Oep-pの正弦波信
号磁界を印可したところHAは信号磁界に対して非線形
的な歪んだ出力しか得られなかったが、HBは正弦波出
力が得られ信号磁界に対して線形的な応答を示した。[0059] (Example 2) magnetoresistive element A of Example 1, to constitute a thin-film magnetic heads H A and H B having a structure as shown in FIG. 4 using a magnetoresistance effect element having the same structure as B The properties were evaluated. However, the magnetoresistive element was formed directly on the shield gap layer, not on the Si substrate. Al 2 O 3 was used for the shield gap layers 43 and 44, a Co—Pt alloy was used for the hard bias layer 45, and Au was used for the lead layer 44. When a sinusoidal signal magnetic field of about 20 Oep-p was applied to these heads, only a non-linearly distorted output was obtained for H A with respect to the signal magnetic field, but a sinusoidal output was obtained for H B with the signal magnetic field applied. The response was linear.
【0060】(実施例3)高周波マグネトロンスパッタ
装置を用いて表2に示すようなC、D2種類の磁気抵抗効
果素子を作成した。Example 3 Two types of magnetoresistive elements C and D as shown in Table 2 were prepared using a high-frequency magnetron sputtering apparatus.
【0061】[0061]
【表2】 [Table 2]
【0062】比較例である磁気抵抗効果素子Cは以下の
ようにして作成した。Si(100)基板を高周波マグネトロ
ンスパッタ装置内に設置し、SmCo永久磁石によって磁界
を印可しながらIrMnを20nm成膜した。続けて磁界を印可
したままCoを5nm成膜した。次に同一装置内でCuを2nm成
膜した。さらにCoを成膜したときとほぼ90度直交する
磁界を印可しながらNi-Feを3nm成膜した。ここでNi-Fe
と記しているのはNi0 .8Fe0.2のターゲットをスパッタし
て得られた膜である。A magnetoresistive element C as a comparative example was prepared as follows. The Si (100) substrate was placed in a high-frequency magnetron sputtering apparatus, and IrMn was deposited to a thickness of 20 nm while applying a magnetic field with a SmCo permanent magnet. Subsequently, a Co film was formed to a thickness of 5 nm while applying a magnetic field. Next, Cu was deposited to a thickness of 2 nm in the same apparatus. Further, a Ni-Fe film was formed to a thickness of 3 nm while applying a magnetic field substantially orthogonal to that at the time of forming the Co film. Where Ni-Fe
And I wrote in What is a film obtained by sputtering the target of Ni 0 .8 Fe 0.2.
【0063】本発明の実施例である磁気抵抗効果素子D
は以下のように作成した。Si(100)基板を高周波マグネ
トロンスパッタ装置内に設置し、SmCo永久磁石によって
磁界を印可しながらIrMnを20nm成膜した。続けて磁界を
印可したままCoを5nm成膜した。さらにSiO2を1nm成膜し
た。その後、永久磁石による印可磁界を先ほどと180度
変化させてCoを5nm成膜した。さらにCuを2nm成膜した。
最後に永久磁石による磁界を先ほどCoを成膜したときと
ほぼ直交する方向に印可しながらNiFeを3nm成膜した。
素子C,Dを実施例1と同様にパターニングし四端子法に
てMR曲線を測定した。結果を図9に示す。図9から明
らかなように素子CではMR曲線が横軸(磁界)方向に
大きくシフトしており、ゼロ磁界前後で非直線的な抵抗
変化をしているが、素子Dではシフトはほとんど無くゼ
ロ磁界前後での直線的な抵抗変化が得られている。ま
た、さらに大きな磁界を印可すると第2の強磁性層の磁
化が反転してしまうが、本実施例では実施例1に比べよ
り大きな磁界を印可しないと反転しなかった。The magnetoresistance effect element D according to the embodiment of the present invention
Was created as follows. The Si (100) substrate was placed in a high-frequency magnetron sputtering apparatus, and IrMn was deposited to a thickness of 20 nm while applying a magnetic field with a SmCo permanent magnet. Subsequently, a Co film was formed to a thickness of 5 nm while applying a magnetic field. Further, SiO 2 was deposited to a thickness of 1 nm. Thereafter, Co was deposited to a thickness of 5 nm while the applied magnetic field by the permanent magnet was changed by 180 degrees as before. Further, Cu was deposited to a thickness of 2 nm.
Finally, NiFe was deposited to a thickness of 3 nm while applying a magnetic field by a permanent magnet in a direction substantially perpendicular to the time when the Co was deposited.
The devices C and D were patterned in the same manner as in Example 1, and the MR curve was measured by a four-terminal method. FIG. 9 shows the results. As is clear from FIG. 9, in the element C, the MR curve is largely shifted in the horizontal axis (magnetic field) direction, and the resistance changes nonlinearly before and after the zero magnetic field. A linear resistance change before and after the magnetic field is obtained. Further, when a larger magnetic field is applied, the magnetization of the second ferromagnetic layer is reversed. However, in the present embodiment, the magnetization is not reversed unless a larger magnetic field is applied than in the first embodiment.
【0064】なお本実施例では高周波マグネトロンスパ
ッタリング法を用いたが、直流マグネトロンスパッタリ
ング法やイオンビームスパッタリング法などを用いて成
膜してもよい。Although the high-frequency magnetron sputtering method is used in this embodiment, the film may be formed by using a direct current magnetron sputtering method or an ion beam sputtering method.
【0065】(実施例4)実施例3の磁気抵抗効果素子
C、Dと同じ構成の磁気抵抗効果素子を用いて実施例2
と同じように薄膜磁気ヘッドHCおよびHDを構成して特
性を評価した。約20Oep-pの正弦波信号磁界を印可した
ところHCは信号磁界に対して非線形的な歪んだ出力し
か得られなかったが、HDは正弦波出力が得られ信号磁
界に対して線形的な応答を示した。(Embodiment 4) Embodiment 2 using a magnetoresistive element having the same configuration as the magnetoresistive elements C and D of Embodiment 3
The thin film magnetic heads H C and H D were constructed in the same manner as described above, and the characteristics were evaluated. When a sinusoidal signal magnetic field of about 20 Oep-p was applied, H C provided only a non-linearly distorted output with respect to the signal magnetic field, but H D provided a sinusoidal output and was linear with respect to the signal magnetic field. Response.
【0066】(実施例5)高周波マグネトロンスパッタ
装置を用いて表1に示すようなE,F2種類の磁気抵抗効
果素子を作成した。Example 5 Two types of magnetoresistance effect elements E and F as shown in Table 1 were prepared using a high-frequency magnetron sputtering apparatus.
【0067】[0067]
【表3】 [Table 3]
【0068】比較例である磁気抵抗効果素子Eは以下の
ようにして作成した。Si(100)基板を高周波マグネトロ
ンスパッタ装置内に設置し、SmCo永久磁石によって磁界
を印可しながらIrMnを20nm成膜した。続けて磁界を印可
したままCoを5nm成膜した。次に同一装置内でCuを2nm成
膜した。さらにCoを成膜したときとほぼ90度直交する
磁界を印可しながらNi-Feを3nm成膜した。ここでNi-Fe
と記しているのはNi0 .8Fe0.2のターゲットをスパッタし
て得られた膜である。A magnetoresistive element E as a comparative example was prepared as follows. The Si (100) substrate was placed in a high-frequency magnetron sputtering apparatus, and IrMn was deposited to a thickness of 20 nm while applying a magnetic field with a SmCo permanent magnet. Subsequently, a Co film was formed to a thickness of 5 nm while applying a magnetic field. Next, Cu was deposited to a thickness of 2 nm in the same apparatus. Further, a Ni-Fe film was formed to a thickness of 3 nm while applying a magnetic field substantially orthogonal to that at the time of forming the Co film. Where Ni-Fe
And I wrote in What is a film obtained by sputtering the target of Ni 0 .8 Fe 0.2.
【0069】本発明の実施例である磁気抵抗効果素子F
は以下のように作成した。Si(100)基板を高周波マグネ
トロンスパッタ装置内に設置し、SmCo永久磁石によって
磁界を印可しながらCoを5nm成膜した。続けてSiO2を1nm
成膜し、その後、永久磁石による印可磁界を先ほどと18
0度変化させてIrMnを20nm成膜した。続けて磁界を印可
しながらCoを5nm成膜した。さらにCuを2nm成膜した。最
後に永久磁石による磁界を先ほどCoを成膜したときと直
交する方向に印可しながらNiFeを3nm成膜した。The magnetoresistance effect element F according to the embodiment of the present invention
Was created as follows. The Si (100) substrate was set in a high-frequency magnetron sputtering apparatus, and a Co film was formed to a thickness of 5 nm while applying a magnetic field with a SmCo permanent magnet. Continue with 1 nm of SiO 2
After forming the film, the applied magnetic field by the permanent magnet was
IrMn was deposited to a thickness of 20 nm while being changed by 0 degrees. Subsequently, a Co film was formed to a thickness of 5 nm while applying a magnetic field. Further, Cu was deposited to a thickness of 2 nm. Finally, NiFe was deposited to a thickness of 3 nm while applying a magnetic field by a permanent magnet in a direction orthogonal to the time when the Co was deposited.
【0070】素子E,Fを実施例1と同様にパターニング
し四端子法にてMR曲線を測定した。結果を図10に示
す。図10から明らかなように素子EではMR曲線が横
軸(磁界)方向に大きくシフトしており、ゼロ磁界前後
で非直線的な抵抗変化をしているが、素子Fでは若干の
シフトが見られるがゼロ磁界前後での直線的な抵抗変化
が得られている。また、さらに大きな磁界を印可すると
第2の強磁性層の磁化が反転してしまうが、本実施例で
は実施例1に比べより大きな磁界を印可しないと反転し
なかった。The devices E and F were patterned in the same manner as in Example 1, and the MR curve was measured by the four-terminal method. The results are shown in FIG. As is clear from FIG. 10, in the element E, the MR curve is largely shifted in the horizontal axis (magnetic field) direction, and the resistance changes nonlinearly around the zero magnetic field. However, a linear resistance change before and after the zero magnetic field is obtained. Further, when a larger magnetic field is applied, the magnetization of the second ferromagnetic layer is reversed. However, in the present embodiment, the magnetization is not reversed unless a larger magnetic field is applied than in the first embodiment.
【0071】なお本実施例では高周波マグネトロンスパ
ッタリング法を用いたが、直流マグネトロンスパッタリ
ング法やイオンビームスパッタリング法などを用いて成
膜してもよい。Although the high-frequency magnetron sputtering method is used in this embodiment, the film may be formed by using a direct current magnetron sputtering method or an ion beam sputtering method.
【0072】(実施例6)実施例5の磁気抵抗効果素子
E、Fと同じ構成の磁気抵抗効果素子を用いて実施例2
と同じように薄膜磁気ヘッドHEおよびHFを構成して特
性を評価した。約10Oep-pの正弦波信号磁界を印可した
ところHEは信号磁界に対して非線形的な歪んだ出力し
か得られなかったが、HFは正弦波出力が得られ信号磁
界に対して線形的な応答を示した。(Embodiment 6) Embodiment 2 using a magnetoresistive element having the same configuration as the magnetoresistive elements E and F of Embodiment 5
Just as to constitute a thin-film magnetic heads H E and H F and their characteristics were evaluated. About 10Oep-p H E was applied sine wave signal magnetic field is was only non-linear distorted output to the signal magnetic field, linearly with respect to H F is the signal magnetic field sine wave output is obtained Response.
【0073】[0073]
【発明の効果】以上説明したように、本発明の磁気抵抗
効果素子は、従来のものに比べてゼロ磁界前後の印可磁
界に対して直線的な抵抗変化が得られ、また本発明の磁
気抵抗効果型ヘッドはゼロ磁界前後の印可磁界に対して
直線的な出力特性が得られる。As described above, the magnetoresistive element of the present invention has a linear resistance change with respect to an applied magnetic field of around zero magnetic field as compared with the conventional magnetoresistive element. The effect type head has a linear output characteristic with respect to an applied magnetic field around zero magnetic field.
【図1】本発明の磁気抵抗効果素子の第一の実施例の断
面の模式図FIG. 1 is a schematic cross-sectional view of a first embodiment of a magnetoresistive element of the present invention.
【図2】従来の磁気抵抗効果素子の第1の例の分解図FIG. 2 is an exploded view of a first example of a conventional magnetoresistance effect element.
【図3】従来の磁気抵抗効果素子の第2の例の断面の模
式図FIG. 3 is a schematic cross-sectional view of a second example of a conventional magnetoresistive element.
【図4】本発明の一実施例である磁気抵抗効果型ヘッド
の断面の模式図FIG. 4 is a schematic cross-sectional view of a magnetoresistive head according to an embodiment of the present invention.
【図5】磁気抵抗効果素子の四端子測定法による抵抗を
測定するためのリード層の模式図FIG. 5 is a schematic view of a lead layer for measuring the resistance of a magnetoresistive element by a four-terminal measurement method.
【図6】本発明の磁気抵抗効果素子の一実施例と比較例
のMR曲線を示す図FIG. 6 is a diagram showing MR curves of one example and a comparative example of the magnetoresistive element of the present invention.
【図7】本発明の磁気抵抗効果素子の第二の実施例の断
面の模式図FIG. 7 is a schematic sectional view of a second embodiment of the magnetoresistive element of the present invention.
【図8】本発明の磁気抵抗効果素子の第三の実施例の断
面の模式図FIG. 8 is a schematic sectional view of a third embodiment of the magnetoresistive element of the present invention.
【図9】本発明の磁気抵抗効果素子の第二の実施例と比
較例のMR曲線を示す図FIG. 9 is a diagram showing MR curves of a second example and a comparative example of the magnetoresistance effect element of the present invention.
【図10】本発明の磁気抵抗効果素子の第三の実施例と
比較例のMR曲線を示す図FIG. 10 is a diagram showing MR curves of a third example and a comparative example of the magnetoresistance effect element of the present invention.
1 第1の強磁性層 2 第1の非磁性層 3 第2の強磁性層 4 第2の非磁性層 5 第3の強磁性層 6 基板 41 磁気抵抗効果素子 42,43 シールド 44,45 シールドギャップ層 46 ハードバイアス層 47 電極層 51 磁気抵抗効果素子 52 電流リード層 53 電圧リード層 54 外部磁界 61 素子BのMR曲線 62 素子AのMR曲線 71 第一の強磁性層 72 第一の非磁性層 73 第二の強磁性層 74 第二の非磁性層 75 第三の強磁性層 76 反強磁性層 77 基板 81 第一の強磁性層 82 第一の非磁性層 83 第二の強磁性層 84 反強磁性層 85 第二の非磁性層 86 第三の強磁性層 87 基板 DESCRIPTION OF SYMBOLS 1 1st ferromagnetic layer 2 1st nonmagnetic layer 3 2nd ferromagnetic layer 4 2nd nonmagnetic layer 5 3rd ferromagnetic layer 6 Substrate 41 Magnetoresistive element 42, 43 Shield 44, 45 Shield Gap layer 46 Hard bias layer 47 Electrode layer 51 Magnetoresistive element 52 Current lead layer 53 Voltage lead layer 54 External magnetic field 61 MR curve of element B 62 MR curve of element A 71 First ferromagnetic layer 72 First nonmagnetic Layer 73 Second ferromagnetic layer 74 Second nonmagnetic layer 75 Third ferromagnetic layer 76 Antiferromagnetic layer 77 Substrate 81 First ferromagnetic layer 82 First nonmagnetic layer 83 Second ferromagnetic layer 84 antiferromagnetic layer 85 second nonmagnetic layer 86 third ferromagnetic layer 87 substrate
Claims (14)
強磁性層および第2の強磁性層と、前記第2の強磁性層
に、第2の非磁性層を介して隣接した第3の強磁性層か
らなり、前記第1の強磁性層の磁化容易軸と前記第2の
強磁性層の磁化容易軸がほぼ直交しており、前記第2の
強磁性層と前記第3の強磁性層が静磁結合することによ
って前記第2の強磁性層の磁化が固定されていることを
特徴とする磁気抵抗効果素子。A first ferromagnetic layer and a second ferromagnetic layer adjacent to each other via a first nonmagnetic layer; and an adjacent to the second ferromagnetic layer via a second nonmagnetic layer. And the easy axis of magnetization of the first ferromagnetic layer and the easy axis of magnetization of the second ferromagnetic layer are substantially orthogonal to each other. A magnetoresistive element wherein the magnetization of the second ferromagnetic layer is fixed by magnetostatic coupling of the third ferromagnetic layer.
たことを特徴とする請求項1記載の磁気抵抗効果素子。2. The magnetoresistive element according to claim 1, wherein an antiferromagnetic layer is adjacent to the third ferromagnetic layer.
μΩ・cm以上であることを特徴とする請求項1または2
に記載の磁気抵抗効果素子。3. The specific resistance of the second nonmagnetic layer is at least 20.
3. The method according to claim 1, wherein the resistance is not less than μΩ · cm.
3. The magnetoresistive effect element according to item 1.
特徴とする請求項3記載の磁気抵抗効果素子。4. The magnetoresistive element according to claim 3, wherein the second nonmagnetic layer is made of an insulator.
シリコンのいずれかであることを特徴とする請求項4に
記載の磁気抵抗効果素子。5. The magnetoresistive element according to claim 4, wherein the insulator is any one of silicon oxide, alumina, and silicon nitride.
下であることを特徴とする請求項1から5の何れかに記
載の磁気抵抗効果素子。6. The magnetoresistance effect element according to claim 1, wherein the thickness of the second nonmagnetic layer is 1 nm or more and 20 nm or less.
の材料かつ同一の層厚であることを特徴とする請求項1
から6の何れかに記載の磁気抵抗効果素子。7. The method according to claim 1, wherein the second ferromagnetic layer and the third ferromagnetic layer have the same material and the same thickness.
7. The magnetoresistive element according to any one of items 1 to 6.
強磁性層と第2の強磁性層と、前記第2の磁性層に隣接
した反強磁性層と、前記反強磁性層に、第2の非磁性層
を介して隣接した第3の強磁性層からなり、前記第1の
強磁性層の磁化容易軸と前記第2の強磁性層の磁化容易
軸がほぼ直交しており、前記反強磁性層によって前記第
2の強磁性層の磁化が固定されており、前記第3の強磁
性層の磁化は前記第2の強磁性層の磁化とほぼ反平行に
なっていることを特徴とする磁気抵抗効果素子。8. A first ferromagnetic layer and a second ferromagnetic layer adjacent via a first nonmagnetic layer, an antiferromagnetic layer adjacent to the second magnetic layer, and the antiferromagnetic layer. A third ferromagnetic layer adjacent to the layer with a second nonmagnetic layer interposed therebetween, wherein the easy axis of magnetization of the first ferromagnetic layer and the easy axis of magnetization of the second ferromagnetic layer are substantially orthogonal to each other. The magnetization of the second ferromagnetic layer is fixed by the antiferromagnetic layer, and the magnetization of the third ferromagnetic layer is substantially antiparallel to the magnetization of the second ferromagnetic layer. A magnetoresistive effect element.
μΩ・cm以上であることを特徴とする請求項8に記載の
磁気抵抗効果素子。9. The second nonmagnetic layer having a specific resistance of at least 20
9. The magnetoresistive element according to claim 8, wherein the resistance is at least μΩ · cm.
を特徴とする請求項9記載の磁気抵抗効果素子。10. The magnetoresistive element according to claim 9, wherein the second nonmagnetic layer is made of an insulator.
化シリコンのいずれかであることを特徴とする請求項1
0に記載の磁気抵抗効果素子。11. The semiconductor device according to claim 1, wherein the insulator is any one of silicon oxide, alumina, and silicon nitride.
0. The magnetoresistive element according to item 0.
以下であることを特徴とする請求項8から11の何れか
に記載の磁気抵抗効果素子。12. The thickness of the second nonmagnetic layer is 1 nm or more and 20 nm.
The magnetoresistive element according to claim 8, wherein:
μm以下である請求項1から12のいずれかに記載の磁
気抵抗効果素子。13. The length of the second ferromagnetic layer in the magnetization direction is 1
The magnetoresistive element according to any one of claims 1 to 12, which has a thickness of not more than μm.
磁気抵抗効果素子を軟磁性材料からなる1対のシールド
で挟み込んだ磁気抵抗効果型ヘッド。14. A magnetoresistive head in which the magnetoresistive element according to claim 1 is sandwiched between a pair of shields made of a soft magnetic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10015259A JPH11195824A (en) | 1997-11-10 | 1998-01-28 | Magnetoresistance effect element and magnetoresistance effect type head |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30685597 | 1997-11-10 | ||
JP9-306855 | 1997-11-10 | ||
JP10015259A JPH11195824A (en) | 1997-11-10 | 1998-01-28 | Magnetoresistance effect element and magnetoresistance effect type head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11195824A true JPH11195824A (en) | 1999-07-21 |
Family
ID=26351386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10015259A Pending JPH11195824A (en) | 1997-11-10 | 1998-01-28 | Magnetoresistance effect element and magnetoresistance effect type head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11195824A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100438059B1 (en) * | 2000-07-21 | 2004-07-02 | 가부시키가이샤 데루타 쓰-링 | Plane magnetic sensor and plane magnetic sensor for multidimensional magnetic field analysis |
WO2007020823A1 (en) * | 2005-08-15 | 2007-02-22 | Nec Corporation | Magnetic memory cell, magnetic random access memory and method for reading/writing data in magnetic random access memory |
US7848137B2 (en) | 2006-03-24 | 2010-12-07 | Nec Corporation | MRAM and data read/write method for MRAM |
US8009466B2 (en) | 2007-02-21 | 2011-08-30 | Nec Corporation | Semiconductor storage device |
US8300456B2 (en) | 2006-12-06 | 2012-10-30 | Nec Corporation | Magnetic random access memory and method of manufacturing the same |
US8693238B2 (en) | 2006-08-07 | 2014-04-08 | Nec Corporation | MRAM having variable word line drive potential |
WO2022244735A1 (en) * | 2021-05-17 | 2022-11-24 | パナソニックIpマネジメント株式会社 | Magnetic sensor and magnetic detection system |
-
1998
- 1998-01-28 JP JP10015259A patent/JPH11195824A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100438059B1 (en) * | 2000-07-21 | 2004-07-02 | 가부시키가이샤 데루타 쓰-링 | Plane magnetic sensor and plane magnetic sensor for multidimensional magnetic field analysis |
WO2007020823A1 (en) * | 2005-08-15 | 2007-02-22 | Nec Corporation | Magnetic memory cell, magnetic random access memory and method for reading/writing data in magnetic random access memory |
US7929342B2 (en) | 2005-08-15 | 2011-04-19 | Nec Corporation | Magnetic memory cell, magnetic random access memory, and data read/write method for magnetic random access memory |
US7848137B2 (en) | 2006-03-24 | 2010-12-07 | Nec Corporation | MRAM and data read/write method for MRAM |
US8693238B2 (en) | 2006-08-07 | 2014-04-08 | Nec Corporation | MRAM having variable word line drive potential |
US8300456B2 (en) | 2006-12-06 | 2012-10-30 | Nec Corporation | Magnetic random access memory and method of manufacturing the same |
US8009466B2 (en) | 2007-02-21 | 2011-08-30 | Nec Corporation | Semiconductor storage device |
WO2022244735A1 (en) * | 2021-05-17 | 2022-11-24 | パナソニックIpマネジメント株式会社 | Magnetic sensor and magnetic detection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3291208B2 (en) | Magnetoresistive sensor, method of manufacturing the same, and magnetic head equipped with the sensor | |
US7199984B2 (en) | Current-perpendicular-to-plane magnetoresistive sensor with free layer stabilized by in-stack orthogonal magnetic coupling | |
US7602591B2 (en) | Exchange-coupled free layer with out-of-plane magnetization | |
KR100344030B1 (en) | Magnetic element, magnetic memory device, magnetoresistance effect head, and magnetic storage system | |
US20020154455A1 (en) | Magnetic device with a coupling layer and method of manufacturing and operation of such device | |
JPH11510911A (en) | Magnetoresistive magnetic field sensor | |
KR20010030391A (en) | Magnetoresistive element and magnetic memory device | |
JP2018517225A (en) | Magnetoresistive sensor | |
KR100330950B1 (en) | Spin-valve type magnetoresistive thin film element | |
JPH07509812A (en) | Magnetoresistive sensor with shortened measurement layer | |
JPH0936456A (en) | Giant reluctance, its manufacturing process and its application to magnetic sensor | |
CN111090063B (en) | Magnetic sensor | |
JP3697369B2 (en) | Magnetic element, magnetic memory device, magnetoresistive head, magnetic head gimbal assembly, and magnetic recording system | |
KR100321956B1 (en) | Magnetoresistance effect film and method for making the same | |
KR100306312B1 (en) | Magnetoresistance element | |
JPH11238924A (en) | Spin-dependent transmission element electronic component using the same, and magnetic part | |
JP3558951B2 (en) | Magnetic memory element and magnetic memory using the same | |
US11163023B2 (en) | Magnetic device | |
JPH11195824A (en) | Magnetoresistance effect element and magnetoresistance effect type head | |
JP2001076479A (en) | Magnetic memory element | |
KR20050025238A (en) | Magnetoresistance effect film and magnetoresistance effect head | |
JP5869405B2 (en) | Magnetic detection element and magnetic sensor using the same | |
JP2001052315A (en) | Spin valve-type thin-film magnetic element, thin-film magnetic head and manufacture of the spin valve-type thin-film magnetic element | |
JP2001217479A (en) | Magnetic tunnel junction element and magnetic memory using the same | |
EP4231031A1 (en) | Magnetoresistive element having thermally robust performances after high-field exposure and sensor comprising the magnetoresistive element |