JPH11168206A - Solid-state image pick-up device and its manufacture - Google Patents
Solid-state image pick-up device and its manufactureInfo
- Publication number
- JPH11168206A JPH11168206A JP10269309A JP26930998A JPH11168206A JP H11168206 A JPH11168206 A JP H11168206A JP 10269309 A JP10269309 A JP 10269309A JP 26930998 A JP26930998 A JP 26930998A JP H11168206 A JPH11168206 A JP H11168206A
- Authority
- JP
- Japan
- Prior art keywords
- charge transfer
- impurity
- transfer electrodes
- region
- impurity concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000012535 impurity Substances 0.000 claims abstract description 342
- 239000004065 semiconductor Substances 0.000 claims abstract description 122
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 239000002356 single layer Substances 0.000 claims abstract description 13
- 238000003384 imaging method Methods 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 56
- 239000000758 substrate Substances 0.000 claims description 26
- 239000007787 solid Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 40
- 238000005468 ion implantation Methods 0.000 description 33
- 238000000206 photolithography Methods 0.000 description 22
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 15
- 229910052796 boron Inorganic materials 0.000 description 15
- 239000011229 interlayer Substances 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- 238000005530 etching Methods 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電荷転送電極が所
定の間隔で形成された垂直電荷転送部および水平電荷転
送部を有する固体撮像装置及びその製造方法に関する。[0001] 1. Field of the Invention [0002] The present invention relates to a solid-state imaging device having a vertical charge transfer section and a horizontal charge transfer section in which charge transfer electrodes are formed at predetermined intervals, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】近年、微細加工技術の進歩に伴い、単層
の導電性電極材料を用いてこれをエッチング加工するこ
とで0.2〜0.3μmの電極間距離を有する単層電極
構造の電荷転送装置が形成可能となった。単層電極構造
の電荷転送装置では、電極間の重なり部分がないことか
ら、層間容量が小さく、また、電極間の絶縁の問題が無
いという利点がある。また、層間膜を形成するために電
極を酸化する必要がないため、電極材料として多結晶シ
リコンのほかにメタル膜やそのシリサイド膜を用いるこ
とができ、電極の低抵抗化が図れるという利点もある。2. Description of the Related Art In recent years, with the progress of microfabrication technology, a single-layer conductive electrode material has been etched using a single-layer conductive electrode material to form a single-layer electrode structure having an interelectrode distance of 0.2 to 0.3 μm. A charge transfer device can now be formed. The charge transfer device having a single-layer electrode structure has advantages that the interlayer capacitance is small and there is no problem of insulation between the electrodes because there is no overlapping portion between the electrodes. Further, since it is not necessary to oxidize the electrode in order to form an interlayer film, a metal film or a silicide film thereof can be used in addition to polycrystalline silicon as an electrode material, and there is an advantage that the resistance of the electrode can be reduced. .
【0003】図11は、従来の固体撮像装置の垂直電荷
転送部と水平電荷転送部に相当する単層電極4相駆動と
2相駆動の電荷転送装置の平面図である。FIG. 11 is a plan view of a single-layer electrode 4-phase drive and 2-phase drive charge transfer device corresponding to a vertical charge transfer section and a horizontal charge transfer section of a conventional solid-state imaging device.
【0004】図11において、102は電荷転送部とな
るN型半導体領域、105は垂直電荷転送部の電荷転送
電極間に形成されたN- 型半導体領域、109は光電変
換部となるN型半導体領域、110は信号読み出し部と
なるP型半導体領域、111は素子分離部となるP+ 型
半導体領域、112a、b、c、dは垂直電荷転送部の
電荷転送電極、113a、bは水平電荷転送部の電荷転
送電極である。なお、垂直電荷転送部、水平電荷転送部
の各電荷転送電極は約0.3μmの間隙を隔てて形成さ
れている。[0004] In FIG. 11, N-type semiconductor region serving as a charge transfer unit 102, N formed between the charge transfer electrodes of the vertical charge transfer portion 105 - -type semiconductor region, N-type semiconductor 109 serving as a photoelectric conversion portion Region, 110 is a P-type semiconductor region serving as a signal readout unit, 111 is a P + -type semiconductor region serving as an element isolation unit, 112a, b, c, and d are charge transfer electrodes of a vertical charge transfer unit, and 113a and b are horizontal charges. This is a charge transfer electrode of the transfer unit. The charge transfer electrodes of the vertical charge transfer section and the horizontal charge transfer section are formed with a gap of about 0.3 μm.
【0005】図12は、従来の固体撮像装置の垂直電荷
転送部と水平電荷転送部に相当する単層電極4相駆動と
2相駆動の電荷転送装置の各製造工程に於ける断面図を
示したものである。FIG. 12 is a cross-sectional view of a single-layer electrode four-phase drive and two-phase drive charge transfer device corresponding to a vertical charge transfer portion and a horizontal charge transfer portion of a conventional solid-state imaging device in respective manufacturing steps. It is a thing.
【0006】まず、不純物濃度が1×1016cm-3程度
のP型半導体基板101内に逆導電型の不純物濃度が1
×1017cm-3程度のN型半導体領域102を形成し、
熱酸化を施すことにより約30nm程度の第1の酸化膜
103を形成する(図12(a))。First, an impurity concentration of the opposite conductivity type is set to 1 in a P-type semiconductor substrate 101 having an impurity concentration of about 1 × 10 16 cm −3.
Forming an N-type semiconductor region 102 of about × 10 17 cm -3 ,
By performing thermal oxidation, a first oxide film 103 having a thickness of about 30 nm is formed (FIG. 12A).
【0007】更に、写真食刻法およびエッチング法によ
り水平電荷転送部のN型半導体領域102の所望の領域
および垂直電荷転送部のN型半導体領域102の第1の
酸化膜103を除去した後、再び熱酸化を施すことによ
り約60nm程度の第2の酸化膜104を形成する。こ
のとき水平電荷転送部のN型半導体層102の所望の領
域に形成された第1の酸化膜103は約70nm程度の
膜厚となる(図12(b))。Further, after a desired region of the N-type semiconductor region 102 of the horizontal charge transfer portion and a first oxide film 103 of the N-type semiconductor region 102 of the vertical charge transfer portion are removed by photolithography and etching, By performing thermal oxidation again, a second oxide film 104 of about 60 nm is formed. At this time, the first oxide film 103 formed in a desired region of the N-type semiconductor layer 102 in the horizontal charge transfer portion has a thickness of about 70 nm (FIG. 12B).
【0008】次に、前記第1の酸化膜103および第2
の酸化膜104を介して周知の技術により0.3μmの
間隔をおいて多結晶シリコン膜から成る垂直電荷転送部
の電荷転送電極112a、b、c、dおよび水平電荷転
送部の電荷転送電極113a、bを形成する(図12
(c))。Next, the first oxide film 103 and the second
And the charge transfer electrodes 112a, b, c, and d of the vertical charge transfer portion and the charge transfer electrode 113a of the horizontal charge transfer portion made of a polycrystalline silicon film at an interval of 0.3 μm by a known technique via the oxide film 104. , B (FIG. 12)
(C)).
【0009】続いて、写真食刻法を用いて前記多結晶シ
リコン膜から成る垂直電荷転送部の電荷転送電極112
a、b、c、dの各電極間、水平電荷転送部の電荷転送
電極113a、bの各電極間、および垂直電荷転送部の
電荷転送電極112dと水平電荷転送部の電荷転送電極
113a間に自己整合的にN型半導体領域102と逆導
電型の不純物(例えばボロン)をイオン注入法にて導入
することにより不純物濃度が9.0×1016cm-3程度
のN- 型半導体領域105を形成する(図12
(d))。Subsequently, the charge transfer electrode 112 of the vertical charge transfer portion made of the polycrystalline silicon film is formed by using a photo-etching method.
a, b, c, and d, between the charge transfer electrodes 113a and 113b of the horizontal charge transfer unit, and between the charge transfer electrode 112d of the vertical charge transfer unit and the charge transfer electrode 113a of the horizontal charge transfer unit. By introducing an impurity (for example, boron) of the opposite conductivity type to the N-type semiconductor region 102 in a self-aligned manner by an ion implantation method, an N − -type semiconductor region 105 having an impurity concentration of about 9.0 × 10 16 cm −3 is obtained. Forming (FIG. 12)
(D)).
【0010】その後、周知の技術により層間絶縁膜11
4を介して垂直電荷転送部の電荷転送電極112a、
b、c、dおよび水平電荷転送部の電荷転送電極113
a、bを金属配線115にて接続することにより従来の
電荷転送装置が得られる(図12(e))。Thereafter, the interlayer insulating film 11 is formed by a known technique.
4, the charge transfer electrode 112a of the vertical charge transfer unit,
b, c, d and the charge transfer electrode 113 of the horizontal charge transfer section
A conventional charge transfer device can be obtained by connecting a and b with the metal wiring 115 (FIG. 12E).
【0011】一般的に、この様な固体撮像装置は、垂直
電荷転送部の各電荷転送電極2a、2b、2c、2dに
は0〜−8V程度の振幅を有し、90度ずつ位相のずれ
た駆動パルスを各電極に印加することにより、水平電荷
転送部の各電荷転送電極3a、3bには0〜5V程度の
振幅を有し、180度位相のずれた駆動パルスを各電極
に印加することにより駆動される。Generally, in such a solid-state imaging device, each of the charge transfer electrodes 2a, 2b, 2c, and 2d of the vertical charge transfer section has an amplitude of about 0 to -8 V and a phase shift of 90 degrees. By applying the applied drive pulse to each electrode, a drive pulse having an amplitude of about 0 to 5 V and a phase shift of 180 degrees is applied to each of the charge transfer electrodes 3a and 3b of the horizontal charge transfer section. It is driven by.
【0012】[0012]
【発明が解決しようとする課題】しかしながら、上述し
たような固体撮像装置に於いて、垂直電荷転送部と水平
電荷転送部でそれぞれの駆動パルスの絶対値および振幅
が異なる場合があり、また、垂直電荷転送部と水平電荷
転送部でそれぞれのチャンネル幅、或いは電極間隔が異
なる場合がある。However, in the solid-state imaging device described above, the absolute value and amplitude of the driving pulse may be different between the vertical charge transfer unit and the horizontal charge transfer unit. In some cases, the channel width or the electrode interval between the charge transfer unit and the horizontal charge transfer unit is different.
【0013】このような場合、垂直電荷転送部と、水平
電荷転送部と、垂直電荷転送部と水平電荷転送部間とで
それぞれ電荷転送電極間に形成される電位ポテンシャル
の深さが相違するものとなる。すなわち、電荷電送電極
が間隔をおいて存在する場合、間隙部には電位ポテンシ
ャルが形成されるが、この電位ポテンシャルは間隔が開
いているほど深いものとなる(図13(a)、
(b))。また、電極間に印可される電位によっても電
位ポテンシャルの形状、深さが変化し、電位差が大きけ
れば電位変調効果により浅い電位ポテンシャルが形成さ
れることとなる((図13(c))。In such a case, the vertical charge transfer portion, the horizontal charge transfer portion, and the depth of the potential formed between the charge transfer electrodes differ between the vertical charge transfer portion and the horizontal charge transfer portion. Becomes That is, when the charge transmission electrodes are present at intervals, a potential is formed in the gap, and the potential becomes deeper as the interval increases (FIG. 13A,
(B)). In addition, the shape and depth of the potential change depending on the potential applied between the electrodes. If the potential difference is large, a shallow potential is formed due to the potential modulation effect (FIG. 13C).
【0014】一方、前述の従来例では逆導電型のイオン
を導入して電位ポテンシャルの低減を図っているが、こ
のイオン注入による電位ポテンシャルの低減も注入量が
多すぎると逆にポテンシャル障壁を生じ、注入量には最
適値が存在する。例えば、図14(a)、(b)におい
て、Ф’が最適注入量となる。なお、図14(a)は電
位差が無い場合、(b)は電位差がある場合である。On the other hand, in the above-mentioned conventional example, the potential potential is reduced by introducing ions of the opposite conductivity type. However, the reduction of the potential potential by the ion implantation also causes a potential barrier if the amount of implantation is too large. There is an optimum value for the injection amount. For example, in FIGS. 14A and 14B, Ф ′ is the optimum injection amount. 14A shows a case where there is no potential difference, and FIG. 14B shows a case where there is a potential difference.
【0015】ところが前述の従来例では、全ての電荷転
送電極間に自己整合的にN型半導体領域と逆導電型の不
純物(例えばボロン)をイオン注入法にて導入すること
によりN- 型半導体領域を形成しているため、全ての電
荷転送電極間の電位ポテンシャルを均一に低減すること
が困難であった。このため、信号電荷の転送残りが生じ
る等、電荷転送効率の点でなお改善の余地を有してい
た。[0015] However, in the conventional example described above, N by introducing all self-aligned manner N-type semiconductor region and the opposite conductivity type impurity between the charge transfer electrodes (e.g., boron) in the ion implantation method - -type semiconductor region Therefore, it is difficult to uniformly reduce the potential between all the charge transfer electrodes. For this reason, there is still room for improvement in terms of charge transfer efficiency, such as occurrence of signal charge transfer residue.
【0016】本発明の目的は、垂直電荷転送部と、水平
電荷転送部と、垂直電荷転送部と水平電荷転送部間とで
それぞれの電荷転送電極間に形成される電位ポテンシャ
ルを均一に低減し、電荷転送効率の優れた固体撮像装置
及びその製造方法を提供することにある。An object of the present invention is to uniformly reduce potential potentials formed between respective charge transfer electrodes between a vertical charge transfer section, a horizontal charge transfer section, and between a vertical charge transfer section and a horizontal charge transfer section. Another object of the present invention is to provide a solid-state imaging device having excellent charge transfer efficiency and a method of manufacturing the same.
【0017】[0017]
【課題を解決するための手段】上記課題を解決する本発
明によれば、光電変換部と、前記光電変換部で発生した
電荷を垂直方向に転送する垂直電荷転送部と、前記垂直
電荷転送部より転送された電荷を受けこれを水平方向に
転送する水平電荷転送部とを備える固体撮像装置であっ
て、前記垂直電荷転送部に設けられた複数の垂直電荷転
送電極と、前記各垂直電荷転送電極間に設けられた第1
の不純物領域と、前記水平電荷転送部に設けられた複数
の水平電荷転送電極と、前記各水平電荷転送電極間に設
けられた第2の不純物領域と、前記垂直電荷転送電極及
び前記水平電荷転送電極間に設けられた第3の不純物領
域とを備え、前記第3の不純物領域の不純物濃度は、少
なくとも前記第1及び第2の不純物領域の一方の不純物
濃度とは異なることを特徴とする固体撮像装置が提供さ
れる。According to the present invention for solving the above problems, a photoelectric conversion unit, a vertical charge transfer unit for vertically transferring charges generated in the photoelectric conversion unit, and a vertical charge transfer unit A plurality of vertical charge transfer electrodes provided in the vertical charge transfer unit, the plurality of vertical charge transfer electrodes being provided in the vertical charge transfer unit. The first provided between the electrodes
An impurity region, a plurality of horizontal charge transfer electrodes provided in the horizontal charge transfer portion, a second impurity region provided between the horizontal charge transfer electrodes, the vertical charge transfer electrode and the horizontal charge transfer. A third impurity region provided between the electrodes, wherein the impurity concentration of the third impurity region is different from at least the impurity concentration of one of the first and second impurity regions. An imaging device is provided.
【0018】また、前記第3の不純物領域の不純物濃度
は、少なくとも前記第1及び第2の不純物領域の一方の
不純物濃度よりも高いことが好ましい。It is preferable that the impurity concentration of the third impurity region is higher than at least one of the first and second impurity regions.
【0019】また、前記第3の不純物領域の不純物濃度
は、前記第1及び第2の不純物領域の一方の不純物濃度
とは異なり、前記第1及び第2の不純物領域の他方の不
純物濃度と実質的に同一であることも好ましい。さら
に、前記第3の不純物領域の不純物濃度は、前記第1及
び第2の不純物領域の前記一方の不純物濃度よりも高い
ことが好ましい。Further, the impurity concentration of the third impurity region is different from the impurity concentration of one of the first and second impurity regions and substantially equal to the other impurity concentration of the first and second impurity regions. It is also preferable that they are identical. Further, it is preferable that the impurity concentration of the third impurity region is higher than the one of the first and second impurity regions.
【0020】また、前記第1、第2及び第3の不純物領
域の不純物濃度はいずれも互いに異なることが好まし
い。さらに、前記第1の不純物領域の不純物濃度は前記
第2の不純物領域の不純物濃度よりも高く、前記第2の
不純物領域の不純物濃度は前記第3の不純物領域の不純
物濃度よりも高いことが好ましい。It is preferable that the first, second and third impurity regions have different impurity concentrations. Further, the impurity concentration of the first impurity region is preferably higher than the impurity concentration of the second impurity region, and the impurity concentration of the second impurity region is preferably higher than the impurity concentration of the third impurity region. .
【0021】さらに、本発明によれば、光電変換部と、
垂直電荷転送部と、水平電荷転送部とを備える固体撮像
装置において、前記垂直電荷転送部は、一導電型の複数
の第1不純物領域と、絶縁膜を介して前記複数の第1不
純物領域上にそれぞれ設けられた複数の垂直電荷転送電
極と、前記複数の第1不純物領域間にそれぞれ設けられ
た前記一導電型の複数の第2不純物領域とを備え、前記
水平電荷転送部は、前記一導電型の複数の第3不純物領
域と、絶縁膜を介して前記複数の第3不純物領域上にそ
れぞれ設けられた複数の水平電荷転送電極と、前記複数
の第3不純物領域間にそれぞれ設けられた前記一導電型
の複数の第4不純物領域とを備え、前記第2不純物領域
の不純物濃度と前記第4不純物領域の不純物濃度とは異
なることを特徴とする固体撮像装置が提供される。Further, according to the present invention, a photoelectric conversion unit;
In a solid-state imaging device including a vertical charge transfer unit and a horizontal charge transfer unit, the vertical charge transfer unit includes a plurality of first conductivity regions of one conductivity type and a plurality of first impurity regions on an insulation film. A plurality of vertical charge transfer electrodes respectively provided between the plurality of first impurity regions, and a plurality of second impurity regions of the one conductivity type provided between the plurality of first impurity regions, respectively. A plurality of conductive third impurity regions, a plurality of horizontal charge transfer electrodes provided on the plurality of third impurity regions via an insulating film, and a plurality of third impurity regions provided between the plurality of third impurity regions, respectively. There is provided a solid-state imaging device including the plurality of fourth impurity regions of the one conductivity type, wherein an impurity concentration of the second impurity region is different from an impurity concentration of the fourth impurity region.
【0022】また、前記第1不純物領域と前記第3不純
物領域との間に設けられた前記一導電型の第5不純物領
域をさらに備え、前記第5不純物領域の不純物濃度は、
少なくとも前記第2及び第4不純物領域の一方の不純物
濃度とは異なることが好ましい。さらに、前記第1及び
第3不純物領域の不純物濃度はいずれも前記第5不純物
領域の不純物濃度よりも高く、前記第5不純物領域の不
純物濃度は前記第2及び第4不純物領域の少なくとも一
方の不純物濃度よりも高いことが好ましい。また、前記
第1、第2、第4及び第5不純物領域の不純物濃度はい
ずれも互いに異なることも好ましい。また、前記第1不
純物領域の不純物濃度と前記第3不純物領域の不純物濃
度とは実質的に同一であり、前記第2不純物領域の不純
物濃度と前記第5不純物領域の不純物濃度とは実質的に
同一であり、前記第1及び第3不純物領域の不純物濃度
は前記第2及び第5不純物領域の不純物濃度よりも高
く、前記第2及び第5不純物領域の不純物濃度は前記第
4不純物領域の不純物濃度よりも高いことも好ましい。
また、前記第1不純物領域の不純物濃度と前記第3不純
物領域の不純物濃度とは実質的に同一であり、前記第4
不純物領域の不純物濃度と前記第5不純物領域の不純物
濃度とは実質的に同一であり、前記第1及び第3不純物
領域の不純物濃度は前記第2不純物領域の不純物濃度よ
りも高く、前記第2不純物領域の不純物濃度は前記第4
及び第5不純物領域の不純物濃度よりも高いことも好ま
しい。また、前記第1、第2及び第3不純物領域の不純
物濃度はいずれも互いに同一であり、前記第4及び第5
不純物領域の不純物濃度は互いに同一であり、前記第
1、第2及び第3不純物領域の不純物濃度は前記第4及
び第5不純物領域の不純物濃度よりも高いことも好まし
い。また、前記第1、第2、第3及び第5不純物領域の
不純物濃度はいずれも互いに同一であり、前記第1、第
2、第3及び第5不純物領域の不純物濃度は前記第4不
純物領域の不純物濃度よりも高いことも好ましい。The semiconductor device may further include a fifth impurity region of the one conductivity type provided between the first impurity region and the third impurity region, wherein the impurity concentration of the fifth impurity region is
Preferably, at least one of the second and fourth impurity regions has a different impurity concentration. Further, the impurity concentration of each of the first and third impurity regions is higher than the impurity concentration of the fifth impurity region, and the impurity concentration of the fifth impurity region is at least one of the second and fourth impurity regions. Preferably, it is higher than the concentration. It is also preferable that the first, second, fourth, and fifth impurity regions have different impurity concentrations. Further, the impurity concentration of the first impurity region and the impurity concentration of the third impurity region are substantially the same, and the impurity concentration of the second impurity region and the impurity concentration of the fifth impurity region are substantially equal. The impurity concentration of the first and third impurity regions is higher than the impurity concentration of the second and fifth impurity regions, and the impurity concentration of the second and fifth impurity regions is the same as that of the fourth impurity region. It is also preferable that the concentration be higher than the concentration.
Further, the impurity concentration of the first impurity region and the impurity concentration of the third impurity region are substantially the same,
The impurity concentration of the impurity region is substantially the same as the impurity concentration of the fifth impurity region. The impurity concentration of the first and third impurity regions is higher than the impurity concentration of the second impurity region. The impurity concentration of the impurity region is the fourth
It is also preferable that the impurity concentration is higher than the impurity concentration of the fifth impurity region. The first, second and third impurity regions have the same impurity concentration, and the fourth and fifth impurity regions have the same impurity concentration.
Preferably, the impurity concentration of the impurity regions is the same as each other, and the impurity concentration of the first, second and third impurity regions is higher than the impurity concentration of the fourth and fifth impurity regions. Further, the first, second, third and fifth impurity regions have the same impurity concentration, and the first, second, third and fifth impurity regions have the same impurity concentration as the fourth impurity region. It is also preferable that the impurity concentration is higher than the impurity concentration.
【0023】さらに、本発明によれば、一導電型の半導
体基板内に逆導電型の不純物領域を形成する工程と、前
記半導体基板上に絶縁膜を形成する工程と、前記絶縁膜
上に複数の垂直電荷転送電極及び複数の水平電荷転送電
極を形成する工程と、前記各垂直電荷転送電極間及び前
記各水平電荷転送電極間をマスクで覆い前記垂直電荷転
送電極と前記水平電荷転送電極との間の前記不純物領域
内に前記一導電型の不純物を導入する工程と、前記各水
平電荷転送電極間と前記垂直電荷転送電極及び前記水平
電荷転送電極間とをマスクで覆い前記各垂直電荷転送電
極間の前記不純物領域内に前記一導電型の不純物を導入
する工程と、前記各垂直電荷転送電極間と前記垂直電荷
転送電極及び前記水平電荷転送電極間とをマスクで覆い
前記各水平電荷転送電極間の前記不純物領域内に前記一
導電型の不純物を導入する工程とを備え、これにより前
記垂直電荷転送電極と前記水平電荷転送電極との間の不
純物領域、前記各垂直電荷転送電極間の不純物領域、及
び前記各水平電荷転送電極間の不純物領域のそれぞれの
不純物濃度を互いに異ならせたことを特徴とする固体撮
像装置の製造方法が提供される。Furthermore, according to the present invention, a step of forming an impurity region of the opposite conductivity type in a semiconductor substrate of one conductivity type, a step of forming an insulating film on the semiconductor substrate, Forming vertical charge transfer electrodes and a plurality of horizontal charge transfer electrodes, and covering the vertical charge transfer electrodes and the horizontal charge transfer electrodes with a mask covering between the vertical charge transfer electrodes and between the horizontal charge transfer electrodes. Introducing the impurity of the one conductivity type into the impurity region between the vertical charge transfer electrodes, and covering the space between the horizontal charge transfer electrodes and the space between the vertical charge transfer electrodes and the horizontal charge transfer electrodes with a mask. Introducing the one-conductivity-type impurity into the impurity region between the vertical charge-transfer electrodes and the vertical charge-transfer electrodes and between the horizontal charge-transfer electrodes with a mask. Introducing the impurity of the one conductivity type into the impurity region between the electrodes, whereby the impurity region between the vertical charge transfer electrode and the horizontal charge transfer electrode, between the respective vertical charge transfer electrodes There is provided a method for manufacturing a solid-state imaging device, wherein impurity concentrations of an impurity region and an impurity region between the horizontal charge transfer electrodes are different from each other.
【0024】また、本発明によれば、一導電型の半導体
基板内に逆導電型の不純物領域を形成する工程と、前記
半導体基板上に絶縁膜を形成する工程と、前記絶縁膜上
に複数の垂直電荷転送電極及び複数の水平電荷転送電極
を形成する工程と、前記複数の垂直電荷転送電極及び前
記複数の水平電荷転送電極をマスクとして前記不純物領
域内に前記一導電型の不純物を導入する工程と、前記垂
直電荷転送電極及び前記水平電荷転送電極間をマスクで
覆い前記各垂直電荷転送電極間及び前記各水平電荷転送
電極間の前記不純物領域内に前記一導電型の不純物を導
入する工程と、前記各垂直電荷転送電極間と前記垂直電
荷転送電極及び前記水平電荷転送電極間とをマスクで覆
い前記各水平電荷転送電極間の前記不純物領域内に前記
一導電型の不純物を導入する工程とを備える固体撮像装
置の製造方法が提供される。According to the invention, a step of forming an impurity region of the opposite conductivity type in a semiconductor substrate of one conductivity type, a step of forming an insulating film on the semiconductor substrate, Forming the vertical charge transfer electrode and the plurality of horizontal charge transfer electrodes, and introducing the one conductivity type impurity into the impurity region using the plurality of vertical charge transfer electrodes and the plurality of horizontal charge transfer electrodes as a mask. And covering the space between the vertical charge transfer electrodes and the horizontal charge transfer electrodes with a mask and introducing the one conductivity type impurity into the impurity regions between the vertical charge transfer electrodes and between the horizontal charge transfer electrodes. And covering the space between the vertical charge transfer electrodes and the space between the vertical charge transfer electrodes and the horizontal charge transfer electrodes with a mask, and forming the one conductivity type impurity in the impurity region between the horizontal charge transfer electrodes. Method for manufacturing a solid-state imaging device and a step of introducing is provided.
【0025】また、本発明によれば、一導電型の半導体
基板内に逆導電型の不純物領域を形成する工程と、前記
半導体基板上に絶縁膜を形成する工程と、前記絶縁膜上
に複数の垂直電荷転送電極及び複数の水平電荷転送電極
を形成する工程と、前記各水平電荷転送電極間をマスク
で覆い前記各垂直電荷転送電極間と前記垂直電荷転送電
極及び前記水平電荷転送電極間の前記不純物領域内に前
記一導電型の不純物を導入する工程と、前記各垂直電荷
転送電極間と前記垂直電荷転送電極及び前記水平電荷転
送電極間とをマスクで覆い前記各水平電荷転送電極間の
前記不純物領域内に前記一導電型の不純物を導入する工
程とを備える固体撮像装置の製造方法が提供される。According to the invention, a step of forming an impurity region of the opposite conductivity type in a semiconductor substrate of one conductivity type, a step of forming an insulating film on the semiconductor substrate, Forming a vertical charge transfer electrode and a plurality of horizontal charge transfer electrodes, and covering between the horizontal charge transfer electrodes with a mask, between the vertical charge transfer electrodes and between the vertical charge transfer electrode and the horizontal charge transfer electrode. Introducing the one-conductivity-type impurity into the impurity region, and covering the space between the vertical charge transfer electrodes and the space between the vertical charge transfer electrode and the horizontal charge transfer electrode with a mask between the horizontal charge transfer electrodes. Introducing the one conductivity type impurity into the impurity region.
【0026】また、本発明によれば、一導電型の半導体
基板内に逆導電型の不純物領域を形成する工程と、前記
半導体基板上に絶縁膜を形成する工程と、前記絶縁膜上
に複数の垂直電荷転送電極及び複数の水平電荷転送電極
を形成する工程と、前記各水平電荷転送電極間と前記垂
直電荷転送電極及び前記水平電荷転送電極間とをマスク
で覆い前記各垂直電荷転送電極間の前記不純物領域内に
前記一導電型の不純物を導入する工程と、前記各垂直電
荷転送電極間をマスクで覆い前記各水平電荷転送電極間
と前記垂直電荷転送電極及び前記水平電荷転送電極間の
前記不純物領域内に前記一導電型の不純物を導入する工
程とを備える固体撮像装置の製造方法が提供される。Further, according to the present invention, a step of forming a reverse conductivity type impurity region in a semiconductor substrate of one conductivity type, a step of forming an insulating film on the semiconductor substrate, Forming a vertical charge transfer electrode and a plurality of horizontal charge transfer electrodes, and covering the space between the horizontal charge transfer electrodes and the space between the vertical charge transfer electrode and the horizontal charge transfer electrodes with a mask. Introducing the one-conductivity-type impurity into the impurity region, and covering between the vertical charge transfer electrodes with a mask, between the horizontal charge transfer electrodes, and between the vertical charge transfer electrodes and the horizontal charge transfer electrodes. Introducing the one conductivity type impurity into the impurity region.
【0027】また、本発明によれば、第1導電型半導体
基板上に絶縁膜を介して単層の電荷転送電極が所定の間
隔で形成されてなる垂直電荷転送部および水平電荷転送
部を備えた固体撮像装置において、前記垂直電荷転送部
と水平電荷転送部との間の接続領域に設けられた第1の
第1導電型半導体領域と、前記垂直電荷転送部の各電荷
転送電極間の間隙に設けられた第2の第1導電型半導体
領域と、前記水平電荷転送部の各電荷転送電極間の間隙
に設けられた第3の第1導電型半導体領域とを有し、前
記第1の第1導電型半導体領域、前記第2の第1導電型
半導体領域および前記第3の第1導電型半導体領域の不
純物濃度がそれぞれ異なり、駆動電圧印加時に、前記垂
直電荷転送部の各電荷転送電極間に形成される電位ポテ
ンシャルと、前記水平電荷転送部の各電荷転送電極間に
形成される電位ポテンシャルと、前記垂直電荷転送部と
前記水平電荷転送部との間の接続領域に形成される電位
ポテンシャルとが略等しい深さとなるように、前記第1
の第1導電型半導体領域、前記第2の第1導電型半導体
領域および前記第3の第1導電型半導体領域の不純物濃
度が設定されていることを特徴とする固体撮像装置も提
供される。Further, according to the present invention, there are provided a vertical charge transfer section and a horizontal charge transfer section in which single-layer charge transfer electrodes are formed at predetermined intervals on a first conductivity type semiconductor substrate via an insulating film. In the solid-state imaging device, a gap between a first first conductivity type semiconductor region provided in a connection region between the vertical charge transfer unit and the horizontal charge transfer unit, and each charge transfer electrode of the vertical charge transfer unit And a third first conductivity type semiconductor region provided in a gap between the charge transfer electrodes of the horizontal charge transfer portion, wherein the first first conductivity type semiconductor region is provided in The impurity concentration of the first conductivity type semiconductor region, the second first conductivity type semiconductor region, and the third first conductivity type semiconductor region are different from each other, and when the driving voltage is applied, each charge transfer electrode of the vertical charge transfer unit is applied. The potential formed between them, The potential potential formed between the charge transfer electrodes of the flat charge transfer portion and the potential potential formed in the connection region between the vertical charge transfer portion and the horizontal charge transfer portion have substantially the same depth. , The first
A solid-state imaging device, wherein the first conductive type semiconductor region, the second first conductive type semiconductor region, and the third first conductive type semiconductor region are set to have impurity concentrations.
【0028】[0028]
【発明の実施の形態】以下、実施例をもって本発明の実
施の形態を説明する。Embodiments of the present invention will be described below with reference to examples.
【0029】本発明の一実施例による固体撮像装置を示
す図1を参照すれば、本実施例による固体撮像装置は光
電変換部10と、垂直電荷転送部20と、水平電荷転送
部30とからなる。垂直電荷転送部20及び水平電荷転
送部30は単層電極構造を有する。垂直電荷転送部20
は4相クロックからなる駆動パルスによって駆動され
て、光電変換部10で発生した電荷を水平電荷転送部3
0へ転送する。水平電荷転送部30は2相クロックから
なる駆動パルスによって駆動されて、垂直電荷転送部2
0より転送される電荷を図示しない出力端へ転送する。Referring to FIG. 1 showing a solid-state imaging device according to one embodiment of the present invention, a solid-state imaging device according to this embodiment includes a photoelectric conversion unit 10, a vertical charge transfer unit 20, and a horizontal charge transfer unit 30. Become. The vertical charge transfer unit 20 and the horizontal charge transfer unit 30 have a single-layer electrode structure. Vertical charge transfer unit 20
Is driven by a driving pulse composed of a four-phase clock, and charges generated in the photoelectric conversion unit 10 are transferred to the horizontal charge transfer unit 3.
Transfer to 0. The horizontal charge transfer unit 30 is driven by a driving pulse composed of a two-phase clock, and
The charge transferred from 0 is transferred to an output terminal (not shown).
【0030】図1において、102は電荷転送部となる
N型半導体領域、106は垂直電荷転送部と水平電荷転
送部の電荷転送電極間に形成された第1のN- 型半導体
領域、107は垂直電荷転送部の電荷転送電極間に形成
された第2のN- 型半導体領域、108は水平電荷転送
部の電荷転送電極間に形成された第3のN- 型半導体領
域、109は光電変換部となるN型半導体領域、110
は信号読み出し部となるP型半導体領域、111は素子
分離部となるP+ 型半導体領域、112a、b、c、d
は垂直電荷転送部の電荷転送電極、113a、bは水平
電荷転送部の電荷転送電極である。In FIG. 1, reference numeral 102 denotes an N-type semiconductor region serving as a charge transfer portion; 106, a first N - type semiconductor region formed between the charge transfer electrodes of the vertical charge transfer portion and the horizontal charge transfer portion; A second N − type semiconductor region formed between the charge transfer electrodes of the vertical charge transfer unit, 108 is a third N − type semiconductor region formed between the charge transfer electrodes of the horizontal charge transfer unit, and 109 is a photoelectric conversion. N-type semiconductor region serving as a part, 110
Denotes a P-type semiconductor region serving as a signal readout unit, 111 denotes a P + -type semiconductor region serving as an element isolation unit, 112a, b, c, d
Denotes charge transfer electrodes of the vertical charge transfer unit, and 113a and 113b denote charge transfer electrodes of the horizontal charge transfer unit.
【0031】垂直電荷転送部の電荷転送電極112a、
b、c、dにはそれぞれ異なる位相の駆動パルスが印加
され、水平電荷転送部の電荷転送電極113a、bには
それぞれ異なる位相の駆動パルスが印加される。なお、
垂直電荷転送部、水平電荷転送部の各電荷転送電極は約
0.3μmの間隙を隔て形成されている。The charge transfer electrodes 112a of the vertical charge transfer section
Drive pulses of different phases are applied to b, c, and d, respectively, and drive pulses of different phases are applied to the charge transfer electrodes 113a and 113b of the horizontal charge transfer unit. In addition,
Each charge transfer electrode of the vertical charge transfer section and the horizontal charge transfer section is formed with a gap of about 0.3 μm.
【0032】次に、図2を用いて、図1に示す固体撮像
装置の製造工程を、垂直電荷転送部のI−I’断面と、
水平電荷転送部のII−II’断面を用いて説明する。Next, the manufacturing process of the solid-state imaging device shown in FIG. 1 will be described with reference to FIG.
The description will be made using the II-II ′ cross section of the horizontal charge transfer unit.
【0033】まず、不純物濃度が1.0×1016cm-3
程度のP型半導体基板101内に逆導電型の不純物濃度
が1.0×1017cm-3程度のN型半導体領域102を
形成する。その後、熱酸化を施すことにより約30nm
程度の第1の酸化膜103を形成する(図2(a))。First, when the impurity concentration is 1.0 × 10 16 cm −3
An N-type semiconductor region 102 having a reverse conductivity type impurity concentration of about 1.0 × 10 17 cm −3 is formed in a P-type semiconductor substrate 101 having a size of about 1.0 × 10 17 cm −3 . Then, about 30 nm is obtained by performing thermal oxidation.
A first oxide film 103 is formed to a degree (FIG. 2A).
【0034】次に、写真食刻法およびエッチング法によ
り、水平電荷転送部20に形成された第1の酸化膜10
3及び垂直電荷転送部30に形成された第1の酸化膜1
03の一部を除去する。その後、再び熱酸化を施すこと
により約60nm程度の第2の酸化膜104を形成す
る。この時、水平電荷転送部30に残存している第1の
酸化膜103はさらに成長し、約70nm程度の膜厚と
なる。Next, the first oxide film 10 formed on the horizontal charge transfer section 20 is formed by photolithography and etching.
3 and first oxide film 1 formed on vertical charge transfer section 30
03 is partially removed. After that, a second oxide film 104 of about 60 nm is formed by performing thermal oxidation again. At this time, the first oxide film 103 remaining in the horizontal charge transfer section 30 further grows to a thickness of about 70 nm.
【0035】これにより、垂直電荷転送部20の全面
は、厚さ約60nmの第2の酸化膜104に覆われるこ
ととなり、水平電荷転送部30のうち、上記エッチング
により第1の酸化膜103が除去された部分においては
厚さ約60nmの第2の酸化膜104に覆われ、第1の
酸化膜103が除去されなかった部分においては厚さ約
70nmに成長した第1の酸化膜103に覆われること
なる。As a result, the entire surface of the vertical charge transfer section 20 is covered with the second oxide film 104 having a thickness of about 60 nm, and the first oxide film 103 of the horizontal charge transfer section 30 is etched by the above-described etching. The removed portion is covered with a second oxide film 104 having a thickness of about 60 nm, and the portion where the first oxide film 103 is not removed is covered with a first oxide film 103 having a thickness of about 70 nm. Will be done.
【0036】次に、前記第1の酸化膜103および第2
の酸化膜104上に多結晶シリコン膜を形成し、これを
パターニングすることにより、垂直電荷転送部20には
電荷転送電極112を形成し、水平電荷転送部30には
電荷転送電極113を形成する。これら各電荷転送電極
112間の間隔及び各電荷転送電極113間の間隔は約
0.3μmである。また、I−I’断面に示されるよう
に、垂直電荷転送部20の最終電荷転送電極112と水
平電荷転送部30の電荷転送電極113との間隔も約
0.3μmである(図2(b))。Next, the first oxide film 103 and the second
By forming a polycrystalline silicon film on the oxide film 104 and patterning the same, a charge transfer electrode 112 is formed in the vertical charge transfer section 20 and a charge transfer electrode 113 is formed in the horizontal charge transfer section 30. . The distance between the charge transfer electrodes 112 and the distance between the charge transfer electrodes 113 are about 0.3 μm. Further, as shown in the II ′ section, the distance between the final charge transfer electrode 112 of the vertical charge transfer section 20 and the charge transfer electrode 113 of the horizontal charge transfer section 30 is also about 0.3 μm (FIG. 2B). )).
【0037】続いて、全面にマスク材を形成し、写真食
刻法を用いて、垂直電荷転送部20の最終電荷転送電極
112と水平電荷転送部30の電荷転送電極113との
間に対応する部分を選択的に除去し、マスク材116a
とする。その後、マスク材116aをマスクとしてN型
半導体領域102と逆導電型の不純物(例えばボロン)
をイオン注入法にて導入する。これにより、不純物濃度
が9.7×1016cm-3程度の第1のN- 型半導体領域
106が形成される(図2(c))。Subsequently, a mask material is formed on the entire surface, and a photo-etching method is used to correspond between the final charge transfer electrode 112 of the vertical charge transfer section 20 and the charge transfer electrode 113 of the horizontal charge transfer section 30. The portions are selectively removed, and the mask material 116a is removed.
And Then, using the mask material 116a as a mask, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is used.
Is introduced by an ion implantation method. Thus, a first N − type semiconductor region 106 having an impurity concentration of about 9.7 × 10 16 cm −3 is formed (FIG. 2C).
【0038】更に、再度、全面にマスク材を形成し、写
真食刻法を用いて、垂直電荷転送部20の各電荷転送電
極112間に対応する部分を選択的に除去し、マスク材
116bとする。その後、マスク材116bをマスクと
してN型半導体領域102と逆導電型の不純物(例えば
ボロン)をイオン注入法にて導入する。これにより、不
純物濃度が9.5×1016cm-3程度の第2のN−型半
導体領域107が形成される(図2(d))。Further, a mask material is formed again on the entire surface, and a portion corresponding to between the respective charge transfer electrodes 112 of the vertical charge transfer section 20 is selectively removed by using a photolithography method. I do. After that, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is introduced by ion implantation using the mask material 116b as a mask. Thus, a second N-type semiconductor region 107 having an impurity concentration of about 9.5 × 10 16 cm −3 is formed (FIG. 2D).
【0039】更に、再度、全面にマスク材を形成し、写
真食刻法を用いて、水平電荷転送部30の各電荷転送電
極113間に対応する部分を選択的に除去し、マスク材
116cとする。その後、マスク材116cをマスクと
してN型半導体領域102と逆導電型の不純物(例えば
ボロン)をイオン注入法にて導入する。これにより、不
純物濃度が9.0×1016cm-3程度の第3のN−型半
導体領域108が形成される(図2(e))。Further, a mask material is formed again on the entire surface, and portions corresponding to the portions between the charge transfer electrodes 113 of the horizontal charge transfer section 30 are selectively removed by using a photolithography method. I do. Thereafter, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is introduced by ion implantation using the mask material 116c as a mask. As a result, a third N-type semiconductor region 108 having an impurity concentration of about 9.0 × 10 16 cm −3 is formed (FIG. 2E).
【0040】その後、周知の技術により層間絶縁膜11
4を形成し(図2(f))、これを介して垂直電荷転送
部の電荷転送電極112a、b、c、dおよび水平電荷
転送部の電荷転送電極113a、bを金属配線115に
て接続することにより本発明の電荷転送装置が完成する
(図2(g))。Thereafter, the interlayer insulating film 11 is formed by a known technique.
4 (FIG. 2F), and the charge transfer electrodes 112a, b, c, and d of the vertical charge transfer section and the charge transfer electrodes 113a and 113b of the horizontal charge transfer section are connected via the metal wiring 115 via this. This completes the charge transfer device of the present invention (FIG. 2 (g)).
【0041】一般的に、この様な固体撮像装置の駆動時
においては、垂直電荷転送部20の各電荷転送電極11
2a、b、c、dには、0〜−8V程度の振幅を有する
90度ずつ位相のずれた駆動パルスがそれぞれ印加さ
れ、水平電荷転送部30の各電荷転送電極113a、b
には、0〜5V程度の振幅を有する180度位相のずれ
た駆動パルスがそれぞれ印加される。Generally, when such a solid-state imaging device is driven, each charge transfer electrode 11 of the vertical charge transfer unit 20 is driven.
To 2a, b, c, and d, drive pulses having amplitudes of about 0 to -8 V and having phases shifted by 90 degrees are applied, respectively, and the charge transfer electrodes 113a, 113b of the horizontal charge transfer unit 30 are applied.
, Drive pulses having an amplitude of about 0 to 5 V and a phase shift of 180 degrees are applied.
【0042】この様に、垂直電荷転送部20の電荷転送
電極112に印加される駆動パルスと、水平電荷転送部
30の電荷転送電極113に印加される駆動パルスは、
その振幅も電位も異なっている。さらに、垂直電荷転送
部20と水平電荷転送部30とはチャンネル幅が異なっ
ており、チャンネル幅が狭いほどナローチャンネル効果
が顕著となる。このため、垂直電荷転送部20の各電荷
転送電極112間に形成される電位ポテンシャルと、水
平電荷転送部30の各電荷転送電極113間に形成され
る電位ポテンシャルは、互いに異なった深さとなってい
る。さらに、垂直電荷転送部20の最終電荷転送電極1
12と水平電荷転送部30の電荷転送電極113との間
に形成される電位ポテンシャルの深さも、上記電位ポテ
ンシャルとは異なっている。As described above, the drive pulse applied to the charge transfer electrode 112 of the vertical charge transfer section 20 and the drive pulse applied to the charge transfer electrode 113 of the horizontal charge transfer section 30 are:
Its amplitude and potential are also different. Furthermore, the vertical charge transfer unit 20 and the horizontal charge transfer unit 30 have different channel widths, and the narrower the channel width, the more pronounced the narrow channel effect. Therefore, the potential formed between the charge transfer electrodes 112 of the vertical charge transfer unit 20 and the potential formed between the charge transfer electrodes 113 of the horizontal charge transfer unit 30 have different depths. I have. Furthermore, the final charge transfer electrode 1 of the vertical charge transfer unit 20
The depth of the potential formed between the charge transfer electrode 12 and the charge transfer electrode 113 of the horizontal charge transfer unit 30 is also different from the above potential.
【0043】しかし、本実施例の固体撮像装置によれ
ば、垂直電荷転送部20と水平電荷転送部30の接続領
域となる電荷転送電極間には、不純物濃度が9.7×1
016cm-3程度の第1のN- 型半導体領域が形成され、
垂直電荷転送部20の各電荷転送電極112間には不純
物濃度が9.5×1016cm-3程度の第2のN- 型半導
体領城が形成され、水平電荷転送部30の各電荷転送電
極113間には不純物濃度が9.0×1016cm-3程度
の第3のN- 型半導体領域が形成されている。このた
め、上述のように、垂直電荷転送部20と水平電荷転送
部30のチャンネル幅、及びこれら電荷転送電極に印加
される駆動パルスの振幅、電位が異なる場合において
も、垂直電荷転送部20の各電荷転送電極112間、水
平電荷転送部30の電荷転送電極113間、および垂直
電荷転送部20と水平電荷転送部30の接続領域の全て
において、電荷転送の障害とならないような均一な電位
ポテンシャルが形成される。これにより電荷転送効率が
向上する。However, according to the solid-state imaging device of this embodiment, the impurity concentration is 9.7 × 1 between the charge transfer electrodes serving as connection regions between the vertical charge transfer unit 20 and the horizontal charge transfer unit 30.
A first N − type semiconductor region of about 0 16 cm −3 is formed,
A second N − type semiconductor region having an impurity concentration of about 9.5 × 10 16 cm −3 is formed between the charge transfer electrodes 112 of the vertical charge transfer unit 20, and each charge transfer of the horizontal charge transfer unit 30 is formed. A third N − -type semiconductor region having an impurity concentration of about 9.0 × 10 16 cm −3 is formed between the electrodes 113. For this reason, as described above, even when the channel widths of the vertical charge transfer unit 20 and the horizontal charge transfer unit 30 and the amplitudes and potentials of the drive pulses applied to these charge transfer electrodes are different, the vertical charge transfer unit 20 A uniform potential potential between the charge transfer electrodes 112, between the charge transfer electrodes 113 of the horizontal charge transfer unit 30, and in all the connection regions between the vertical charge transfer unit 20 and the horizontal charge transfer unit 30 so as not to hinder the charge transfer. Is formed. This improves the charge transfer efficiency.
【0044】次に、図3を用いて、図1に示す固体撮像
装置の他の製造工程を、垂直電荷転送部のI−I’断面
と、水平電荷転送部のII−II’断面を用いて説明す
る電荷転送電極112及び113を形成する工程(図3
(a)及び(b))までは、図2(a)及び(b)に示
した工程と同一であるので、その説明は省略する。Next, referring to FIG. 3, another manufacturing process of the solid-state imaging device shown in FIG. 1 will be described by using the II ′ section of the vertical charge transfer section and the II-II ′ section of the horizontal charge transfer section. Of forming charge transfer electrodes 112 and 113 (FIG. 3)
Steps up to (a) and (b)) are the same as the steps shown in FIGS. 2A and 2B, and a description thereof will be omitted.
【0045】図3(a)及び(b)に示す工程により電
荷転送電極112及び113を形成した後、マスク材を
形成することなく、N型半導体領域102と逆導電型の
不純物(例えばボロン)をイオン注入法にて導入する。
これにより、各電荷転送電極112及び113間には、
不純物濃度が9.7×1016cm-3程度の第1のN- 型
半導体領域106が形成される(図3(c))。The steps shown in FIGS. 3A and 3B
After forming the load transfer electrodes 112 and 113, the mask material is removed.
Without being formed, having a conductivity type opposite to that of the N-type semiconductor region 102.
Impurities (for example, boron) are introduced by an ion implantation method.
Thereby, between each charge transfer electrode 112 and 113,
The impurity concentration is 9.7 × 1016cm-3First N of degree- Type
A semiconductor region 106 is formed (FIG. 3C).
【0046】次に、全面にマスク材を形成し、写真食刻
法を用いて、垂直電荷転送部20の各電荷転送電極11
2間に対応する部分及び水平電荷転送部30の各電荷転
送電極113間に対応する部分を選択的に除去し、マス
ク材116aとする。その後、マスク材116aをマス
クとしてN型半導体領域102と逆導電型の不純物(例
えばボロン)をイオン注入法にて導入する。これによ
り、不純物濃度が9.5×1016cm-3程度の第2のN
- 型半導体領域107が形成される(図3(d))。Next, a mask material is formed on the entire surface, and each charge transfer electrode 11 of the vertical charge transfer section 20 is formed by photolithography.
A portion corresponding to a portion between the two and a portion corresponding to a portion between the charge transfer electrodes 113 of the horizontal charge transfer portion 30 are selectively removed to obtain a mask material 116a. After that, using the mask material 116a as a mask, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is introduced by an ion implantation method. Thereby, the second N having an impurity concentration of about 9.5 × 10 16 cm −3 is obtained.
A- type semiconductor region 107 is formed (FIG. 3D).
【0047】更に、再度、全面にマスク材を形成し、写
真食刻法を用いて、水平電荷転送部30の各電荷転送電
極113間に対応する部分を選択的に除去し、マスク材
116bとする。その後、マスク材116bをマスクと
してN型半導体領域102と逆導電型の不純物(例えば
ボロン)をイオン注入法にて導入する。これにより、不
純物濃度が9.0×1016cm-3程度の第3のN- 型半
導体領域108が形成される(図3(e))。Further, a mask material is formed again on the entire surface, and portions corresponding to the portions between the charge transfer electrodes 113 of the horizontal charge transfer section 30 are selectively removed by using a photolithography method. I do. After that, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is introduced by ion implantation using the mask material 116b as a mask. Thus, a third N − -type semiconductor region 108 having an impurity concentration of about 9.0 × 10 16 cm −3 is formed (FIG. 3E).
【0048】その後、周知の技術により層間絶縁膜11
4を形成し(図3(f))、これを介して垂直電荷転送
部の電荷転送電極112a、b、c、dおよび水平電荷
転送部の電荷転送電極113a、bを金属配線115に
て接続することにより本発明の電荷転送装置が完成する
(図3(g))。Thereafter, the interlayer insulating film 11 is formed by a known technique.
4 (FIG. 3F), through which the charge transfer electrodes 112a, b, c, and d of the vertical charge transfer section and the charge transfer electrodes 113a and 113b of the horizontal charge transfer section are connected by the metal wiring 115. Thereby, the charge transfer device of the present invention is completed (FIG. 3G).
【0049】このように、導入すべき不純物濃度が小さ
い領域から順次イオン注入をを行うことにより、写真食
刻法による工程が1回削減される。As described above, by performing ion implantation sequentially from a region having a low impurity concentration to be introduced, the number of steps by the photolithography method is reduced by one.
【0050】次に、図4を用いて、図1に示す固体撮像
装置のさらに他の製造工程を、垂直電荷転送部のI−
I’断面と、水平電荷転送部のII−II’断面を用い
て説明する。Next, referring to FIG. 4, another manufacturing process of the solid-state imaging device shown in FIG.
The description will be made with reference to the I ′ section and the II-II ′ section of the horizontal charge transfer unit.
【0051】電荷転送電極112及び113を形成する
工程(図4(a)及び(b))までは、図2(a)及び
(b)に示した工程と同一であるので、その説明は省略
する。The steps up to the step of forming the charge transfer electrodes 112 and 113 (FIGS. 4A and 4B) are the same as the steps shown in FIGS. 2A and 2B, and a description thereof will be omitted. I do.
【0052】図4(a)及び(b)に示す工程により電
荷転送電極112及び113を形成した後、全面にマス
ク材を形成し、写真食刻法を用いて、垂直電荷転送部2
0の各電荷転送電極112間に対応する部分及び垂直電
荷転送部20の最終電荷転送電極と水平電荷転送部30
の電荷転送電極112との間に対応する部分を選択的に
除去し、マスク材116aとする。その後、マスク材1
16aをマスクとしてN型半導体領域102と逆導電型
の不純物(例えばボロン)をイオン注入法にて導入す
る。これにより、不純物濃度が9.7×1016cm-3程
度の第1のN- 型半導体領域106が形成される(図4
(c))。After the charge transfer electrodes 112 and 113 are formed by the steps shown in FIGS. 4A and 4B, a mask material is formed on the entire surface, and the vertical charge transfer section 2 is formed by photolithography.
0 and the final charge transfer electrode of the vertical charge transfer section 20 and the horizontal charge transfer section 30
A portion corresponding to the portion between the charge transfer electrodes 112 is selectively removed to form a mask material 116a. Then, mask material 1
Using the mask 16a as a mask, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is introduced by ion implantation. Thus, the first N − -type semiconductor region 106 having an impurity concentration of about 9.7 × 10 16 cm −3 is formed.
(C)).
【0053】更に、再度、全面にマスク材を形成し、写
真食刻法を用いて、水平電荷転送部30の各電荷転送電
極113間に対応する部分を選択的に除去し、マスク材
116bとする。その後、マスク材116bをマスクと
してN型半導体領域102と逆導電型の不純物(例えば
ボロン)をイオン注入法にて導入する。これにより、不
純物濃度が9.0×1016cm-3程度の第2のN- 型半
導体領域108が形成される(図4(d))。Further, a mask material is again formed on the entire surface, and a portion corresponding to between the charge transfer electrodes 113 of the horizontal charge transfer section 30 is selectively removed by using a photolithography method. I do. After that, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is introduced by ion implantation using the mask material 116b as a mask. Thereby, the second N − type semiconductor region 108 having an impurity concentration of about 9.0 × 10 16 cm −3 is formed (FIG. 4D).
【0054】その後、周知の技術により層間絶縁膜11
4を形成し(図4(e))、これを介して垂直電荷転送
部の電荷転送電極112a、b、c、dおよび水平電荷
転送部の電荷転送電極113a、bを金属配線115に
て接続することにより本発明の電荷転送装置が完成する
(図4(f))。Thereafter, the interlayer insulating film 11 is formed by a known technique.
4 (FIG. 4E), through which the charge transfer electrodes 112a, 112b, 112c, and 112d of the vertical charge transfer unit and the charge transfer electrodes 113a and 113b of the horizontal charge transfer unit are connected by the metal wiring 115. Thereby, the charge transfer device of the present invention is completed (FIG. 4F).
【0055】このように、垂直電荷転送部20の各電荷
転送電極112間の不純物濃度と、垂直電荷転送部20
の最終電荷転送電極と水平電荷転送部30の電荷転送電
極112との間の不純物濃度が同一であっても、実用上
問題がない場合は、これらを共通のイオン注入工程によ
り同時に形成することにより、工程を簡素化することが
出来る。すなわち、この方法によれば、各領域106及
び108を形成するためのイオン注入は、図2に示した
方法と同様それぞれ1回であるため、各イオン注入工程
における条件設定が図2に示した方法と同様、容易であ
るとともに、イオン注入のための写真食刻工程が図3に
示した方法と同様、図2に示した方法と比べて1回削減
される。As described above, the impurity concentration between each charge transfer electrode 112 of the vertical charge transfer section 20 and the vertical charge transfer section 20
Even if the impurity concentration between the final charge transfer electrode and the charge transfer electrode 112 of the horizontal charge transfer unit 30 is the same, if there is no practical problem, these are simultaneously formed by a common ion implantation step. , The process can be simplified. That is, according to this method, the ion implantation for forming each of the regions 106 and 108 is performed once each as in the method shown in FIG. 2, and the condition setting in each ion implantation step is shown in FIG. As with the method shown in FIG. 3, the method is easy and the photolithography process for ion implantation is reduced by one time as compared with the method shown in FIG.
【0056】次に、図5を用いて、図1に示す固体撮像
装置のさらに他の製造工程を、垂直電荷転送部のI−
I’断面と、水平電荷転送部のII−II’断面を用い
て説明する。Next, referring to FIG. 5, another manufacturing process of the solid-state imaging device shown in FIG.
The description will be made with reference to the I ′ section and the II-II ′ section of the horizontal charge transfer unit.
【0057】電荷転送電極112及び113を形成する
工程(図5(a)及び(b))までは、図2(a)及び
(b)に示した工程と同一であるので、その説明は省略
する。The steps up to the step of forming the charge transfer electrodes 112 and 113 (FIGS. 5A and 5B) are the same as the steps shown in FIGS. 2A and 2B, and a description thereof will be omitted. I do.
【0058】図5(a)及び(b)に示す工程により電
荷転送電極112及び113を形成した後、全面にマス
ク材を形成し、写真食刻法を用いて、垂直電荷転送部2
0の各電荷転送電極112間に対応する部分を選択的に
除去し、マスク材116aとする。その後、マスク材1
16aをマスクとしてN型半導体領域102と逆導電型
の不純物(例えばボロン)をイオン注入法にて導入す
る。これにより、不純物濃度が9.5×1016cm-3程
度の第1のN- 型半導体領域106が形成される(図5
(c))。After the charge transfer electrodes 112 and 113 are formed by the steps shown in FIGS. 5A and 5B, a mask material is formed on the entire surface, and the vertical charge transfer portions 2 are formed by photolithography.
The portion corresponding to each of the 0 charge transfer electrodes 112 is selectively removed to form a mask material 116a. Then, mask material 1
Using the mask 16a as a mask, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is introduced by ion implantation. Thereby, the first N − -type semiconductor region 106 having an impurity concentration of about 9.5 × 10 16 cm −3 is formed.
(C)).
【0059】更に、再度、全面にマスク材を形成し、写
真食刻法を用いて、水平電荷転送部30の各電荷転送電
極113間に対応する部分及び垂直電荷転送部20の最
終電荷転送電極と水平電荷転送部30の電荷転送電極1
12との間に対応する部分を選択的に除去し、マスク材
116bとする。その後、マスク材116bをマスクと
してN型半導体領域102と逆導電型の不純物(例えば
ボロン)をイオン注入法にて導入する。これにより、不
純物濃度が9.0×1016cm-3程度の第2のN- 型半
導体領域108が形成される(図5(d))。Further, a mask material is formed again on the entire surface, and the portion corresponding to each space between the charge transfer electrodes 113 of the horizontal charge transfer section 30 and the final charge transfer electrode of the vertical charge transfer section 20 are formed by photolithography. And the charge transfer electrode 1 of the horizontal charge transfer unit 30
12 is selectively removed to obtain a mask material 116b. After that, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is introduced by ion implantation using the mask material 116b as a mask. Thus, a second N − -type semiconductor region 108 having an impurity concentration of about 9.0 × 10 16 cm −3 is formed (FIG. 5D).
【0060】その後、周知の技術により層間絶縁膜11
4を形成し(図5(e))、これを介して垂直電荷転送
部の電荷転送電極112a、b、c、dおよび水平電荷
転送部の電荷転送電極113a、bを金属配線115に
て接続することにより本発明の電荷転送装置が完成する
(図5(f))。Thereafter, the interlayer insulating film 11 is formed by a known technique.
4 (FIG. 5E), through which the charge transfer electrodes 112a, b, c, and d of the vertical charge transfer unit and the charge transfer electrodes 113a and 113b of the horizontal charge transfer unit are connected by the metal wiring 115. Thereby, the charge transfer device of the present invention is completed (FIG. 5F).
【0061】このように、水平電荷転送部30の各電荷
転送電極113間の不純物濃度と、垂直電荷転送部20
の最終電荷転送電極と水平電荷転送部30の電荷転送電
極112との間の不純物濃度が同一であっても、実用上
問題がない場合は、これらを共通のイオン注入工程によ
り同時に形成することにより、工程を簡素化することが
出来る。すなわち、この方法によれば、各領域106及
び108を形成するためのイオン注入は、図2に示した
方法と同様それぞれ1回であるため、各イオン注入工程
における条件設定が図2に示した方法と同様、容易であ
るとともに、イオン注入のための写真食刻工程が図3及
び図4に示した方法と同様、図2に示した方法と比べて
1回削減される。As described above, the impurity concentration between the charge transfer electrodes 113 of the horizontal charge transfer section 30 and the vertical charge transfer section 20
Even if the impurity concentration between the final charge transfer electrode and the charge transfer electrode 112 of the horizontal charge transfer unit 30 is the same, if there is no practical problem, these are simultaneously formed by a common ion implantation step. , The process can be simplified. That is, according to this method, the ion implantation for forming each of the regions 106 and 108 is performed once each as in the method shown in FIG. 2, and the condition setting in each ion implantation step is shown in FIG. Like the method, it is easy and the photolithography process for ion implantation is reduced by one time as compared with the method shown in FIG. 2 as in the method shown in FIGS.
【0062】また、図示しないが、特に垂直電荷転送部
20の各電荷転送電極112間の間隔がより狭い場合な
どは、垂直電荷転送部20の各電荷転送電極112間へ
のイオン注入工程を省略することも可能である。この場
合は、例えば、図2に示した工程のうち、図2(d)の
工程を省略すればよい。若しくは、図3に示した工程の
うち、図3(d)の工程を省略するとともに図3(c)
の工程において垂直電荷転送部20をマスク材116で
覆えばよい。これによれば、イオン注入のための写真食
刻工程が図2に示した方法と比べて1回削減される。Although not shown, the step of implanting ions between the charge transfer electrodes 112 of the vertical charge transfer section 20 is omitted particularly when the interval between the charge transfer electrodes 112 of the vertical charge transfer section 20 is narrower. It is also possible. In this case, for example, of the steps shown in FIG. 2, the step of FIG. 2D may be omitted. Alternatively, of the steps shown in FIG. 3, the step of FIG.
In this step, the vertical charge transfer section 20 may be covered with the mask material 116. According to this, the photolithography process for ion implantation is reduced by one time as compared with the method shown in FIG.
【0063】さらに、垂直電荷転送部20の各電荷転送
電極112間へのイオン注入工程を省略する場合におい
て、図5において説明したように、水平電荷転送部30
の各電荷転送電極113間の不純物濃度と、垂直電荷転
送部20の最終電荷転送電極と水平電荷転送部30の電
荷転送電極112との間の不純物濃度が同一であっても
実用上問題がない場合は、その製造工程は一層簡易とな
る。すなわち、図5に示した工程のうち、図5(c)の
工程を省略すればよい。これによれば、イオン注入工程
は図5(d)の1回だけですむ。Further, when the step of implanting ions between the charge transfer electrodes 112 of the vertical charge transfer section 20 is omitted, as described with reference to FIG.
Even if the impurity concentration between the respective charge transfer electrodes 113 and the impurity concentration between the final charge transfer electrode of the vertical charge transfer unit 20 and the charge transfer electrode 112 of the horizontal charge transfer unit 30 are the same, there is no practical problem. In that case, the manufacturing process is further simplified. That is, of the steps shown in FIG. 5, the step of FIG. 5C may be omitted. According to this, the ion implantation step is required only once in FIG.
【0064】さらに、垂直電荷転送部20の各電荷転送
電極112間へのイオン注入工程を省略するだけでな
く、垂直電荷転送部20の最終電荷転送電極と水平電荷
転送部30の電荷転送電極112との間へのイオン注入
工程をも省略し、水平電荷転送部30の各電荷転送電極
113間へのみイオン注入することも可能である。この
場合は、図4に示した工程のうち、図4(c)の工程を
省略すればよい。これによれば、イオン注入工程は図4
(d)の1回だけですむ。Further, not only the step of implanting ions between the charge transfer electrodes 112 of the vertical charge transfer section 20 is omitted, but also the final charge transfer electrode of the vertical charge transfer section 20 and the charge transfer electrode 112 of the horizontal charge transfer section 30. It is also possible to omit the ion implantation step between the two and to implant ions only between the charge transfer electrodes 113 of the horizontal charge transfer unit 30. In this case, the step of FIG. 4C may be omitted from the steps shown in FIG. According to this, the ion implantation step is performed as shown in FIG.
(D) only once.
【0065】次に、本発明の他の実施例による固体撮像
装置について説明する。図6を参照すれば、本実施例に
よる固体撮像装置は光電変換部10と、垂直電荷転送部
20と、水平電荷転送部30とからなる。垂直電荷転送
部20及び水平電荷転送部30は単層電極構造を有す
る。垂直電荷転送部20は4相クロックからなる駆動パ
ルスによって駆動されて、光電変換部10で発生した電
荷を水平電荷転送部30へ転送する。水平電荷転送部3
0は2相クロックからなる駆動パルスによって駆動され
て、垂直電荷転送部20より転送される電荷を図示しな
い出力端へ転送する。Next, a solid-state imaging device according to another embodiment of the present invention will be described. Referring to FIG. 6, the solid-state imaging device according to the present embodiment includes a photoelectric conversion unit 10, a vertical charge transfer unit 20, and a horizontal charge transfer unit 30. The vertical charge transfer unit 20 and the horizontal charge transfer unit 30 have a single-layer electrode structure. The vertical charge transfer unit 20 is driven by a drive pulse including a four-phase clock, and transfers the charge generated by the photoelectric conversion unit 10 to the horizontal charge transfer unit 30. Horizontal charge transfer unit 3
0 is driven by a driving pulse composed of a two-phase clock, and transfers the electric charge transferred from the vertical charge transfer unit 20 to an output terminal (not shown).
【0066】図6に示す固体撮像装置が図1に示す固体
撮像装置と異なる点は、垂直電荷転送部20の各電荷転
送電極112間の間隔と、水平電荷転送部30の各電荷
転送電極113間の間隔とが異なっている点である。す
なわち、垂直電荷転送部20の各電荷転送電極112間
の間隔は約0.3μmであり、水平電荷転送部30の各
電荷転送電極113間の間隔は約0.5μmである。
尚、垂直電荷転送部20の最終電荷転送電極112と水
平電荷転送部30の電荷転送電極113との間隔は約
0.3μmである。The solid-state image pickup device shown in FIG. 6 differs from the solid-state image pickup device shown in FIG. 1 in that the distance between the charge transfer electrodes 112 of the vertical charge transfer section 20 and the charge transfer electrodes 113 of the horizontal charge transfer section 30 are different. The difference is that the interval between them is different. That is, the interval between the charge transfer electrodes 112 of the vertical charge transfer unit 20 is about 0.3 μm, and the interval between the charge transfer electrodes 113 of the horizontal charge transfer unit 30 is about 0.5 μm.
The distance between the final charge transfer electrode 112 of the vertical charge transfer section 20 and the charge transfer electrode 113 of the horizontal charge transfer section 30 is about 0.3 μm.
【0067】この様に、水平電荷転送部30の各電荷転
送電極113間の間隔を、垂直電荷転送部20の各電荷
転送電極112間の間隔よりも広く設定することによ
り、水平電荷転送部30の各電荷転送電極113間の容
量を小さくし、これにより、駆動周波数の高い水平電荷
転送部が消費する電力を低減している。As described above, by setting the interval between the charge transfer electrodes 113 of the horizontal charge transfer unit 30 to be wider than the interval between the charge transfer electrodes 112 of the vertical charge transfer unit 20, the horizontal charge transfer unit 30 The capacitance between the respective charge transfer electrodes 113 is reduced, thereby reducing the power consumed by the horizontal charge transfer unit having a high driving frequency.
【0068】次に、図7を用いて、図6に示す固体撮像
装置の製造工程を、垂直電荷転送部のI−I’断面と、
水平電荷転送部のII−II’断面を用いて説明する。Next, referring to FIG. 7, the manufacturing process of the solid-state imaging device shown in FIG.
The description will be made using the II-II ′ cross section of the horizontal charge transfer unit.
【0069】まず、不純物濃度が1.0×1016cm-3
程度のP型半導体基板101内に逆導電型の不純物濃度
が1.0×1017cm-3程度のN型半導体領域102を
形成する。その後、熱酸化を施すことにより約30nm
程度の第1の酸化膜103を形成する(図7(a))。First, the impurity concentration is 1.0 × 10 16 cm −3.
An N-type semiconductor region 102 having a reverse conductivity type impurity concentration of about 1.0 × 10 17 cm −3 is formed in a P-type semiconductor substrate 101 having a size of about 1.0 × 10 17 cm −3 . Then, about 30 nm is obtained by performing thermal oxidation.
A first oxide film 103 having a thickness of approximately the same level is formed (FIG. 7A).
【0070】次に、写真食刻法およびエッチング法によ
り、水平電荷転送部20に形成された第1の酸化膜10
3及び垂直電荷転送部30に形成された第1の酸化膜1
03の一部を除去する。その後、再び熱酸化を施すこと
により約60nm程度の第2の酸化膜104を形成す
る。この時、水平電荷転送部30に残存している第1の
酸化膜103はさらに成長し、約70nm程度の膜厚と
なる。Next, the first oxide film 10 formed on the horizontal charge transfer section 20 is formed by photolithography and etching.
3 and first oxide film 1 formed on vertical charge transfer section 30
03 is partially removed. After that, a second oxide film 104 of about 60 nm is formed by performing thermal oxidation again. At this time, the first oxide film 103 remaining in the horizontal charge transfer section 30 further grows to a thickness of about 70 nm.
【0071】これにより、垂直電荷転送部20の全面
は、厚さ約60nmの第2の酸化膜104に覆われるこ
ととなり、水平電荷転送部30のうち、上記エッチング
により第1の酸化膜103が除去された部分においては
厚さ約60nmの第2の酸化膜104に覆われ、第1の
酸化膜103が除去されなかった部分においては厚さ約
70nmに成長した第1の酸化膜103に覆われること
なる。As a result, the entire surface of the vertical charge transfer portion 20 is covered with the second oxide film 104 having a thickness of about 60 nm, and the first oxide film 103 of the horizontal charge transfer portion 30 is etched by the above-described etching. The removed portion is covered with a second oxide film 104 having a thickness of about 60 nm, and the portion where the first oxide film 103 is not removed is covered with a first oxide film 103 having a thickness of about 70 nm. Will be done.
【0072】次に、前記第1の酸化膜103および第2
の酸化膜104上に多結晶シリコン膜を形成し、これを
パターニングすることにより、垂直電荷転送部20には
電荷転送電極112を形成し、水平電荷転送部30には
電荷転送電極113を形成する。垂直電荷転送部20の
各電荷転送電極112間の間隔は約0.3μmであり、
水平電荷転送部30の各電荷転送電極113間の間隔は
約0.5μmである。また、I−I’断面に示されるよ
うに、垂直電荷転送部20の最終電荷転送電極112と
水平電荷転送部30の電荷転送電極113との間隔は約
0.3μmである(図7(b))。Next, the first oxide film 103 and the second
By forming a polycrystalline silicon film on the oxide film 104 and patterning the same, a charge transfer electrode 112 is formed in the vertical charge transfer section 20 and a charge transfer electrode 113 is formed in the horizontal charge transfer section 30. . The interval between the charge transfer electrodes 112 of the vertical charge transfer unit 20 is about 0.3 μm,
The space between the charge transfer electrodes 113 of the horizontal charge transfer unit 30 is about 0.5 μm. Further, as shown in the II ′ section, the distance between the final charge transfer electrode 112 of the vertical charge transfer unit 20 and the charge transfer electrode 113 of the horizontal charge transfer unit 30 is about 0.3 μm (FIG. 7B )).
【0073】続いて、全面にマスク材を形成し、写真食
刻法を用いて、垂直電荷転送部20の最終電荷転送電極
112と水平電荷転送部30の電荷転送電極113との
間に対応する部分を選択的に除去し、マスク材116a
とする。その後、マスク材116aをマスクとしてN型
半導体領域102と逆導電型の不純物(例えばボロン)
をイオン注入法にて導入する。これにより、不純物濃度
が9.7×1016cm-3程度の第1のN- 型半導体領域
106が形成される(図7(c))。Subsequently, a mask material is formed on the entire surface, and a portion corresponding to the space between the final charge transfer electrode 112 of the vertical charge transfer section 20 and the charge transfer electrode 113 of the horizontal charge transfer section 30 is formed by photolithography. The portions are selectively removed, and the mask material 116a is removed.
And Then, using the mask material 116a as a mask, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is used.
Is introduced by an ion implantation method. Thus, the first N − -type semiconductor region 106 having an impurity concentration of about 9.7 × 10 16 cm −3 is formed (FIG. 7C).
【0074】更に、再度、全面にマスク材を形成し、写
真食刻法を用いて、垂直電荷転送部20の各電荷転送電
極112間に対応する部分を選択的に除去し、マスク材
116bとする。その後、マスク材116bをマスクと
してN型半導体領域102と逆導電型の不純物(例えば
ボロン)をイオン注入法にて導入する。これにより、不
純物濃度が9.5×1016cm-3程度の第2のN- 型半
導体領域107が形成される(図7(d))。Further, a mask material is again formed on the entire surface, and portions corresponding to the portions between the respective charge transfer electrodes 112 of the vertical charge transfer section 20 are selectively removed using a photolithography method. I do. After that, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is introduced by ion implantation using the mask material 116b as a mask. Thereby, the second N − -type semiconductor region 107 having an impurity concentration of about 9.5 × 10 16 cm −3 is formed (FIG. 7D).
【0075】更に、再度、全面にマスク材を形成し、写
真食刻法を用いて、水平電荷転送部30の各電荷転送電
極113間に対応する部分を選択的に除去し、マスク材
116cとする。その後、マスク材116cをマスクと
してN型半導体領域102と逆導電型の不純物(例えば
ボロン)をイオン注入法にて導入する。これにより、不
純物濃度が8.0×1016cm-3程度の第3のN- 型半
導体領域108が形成される(図7(e))。Further, a mask material is again formed on the entire surface, and portions corresponding to the portions between the charge transfer electrodes 113 of the horizontal charge transfer section 30 are selectively removed by using a photolithography method. I do. Thereafter, an impurity (for example, boron) of a conductivity type opposite to that of the N-type semiconductor region 102 is introduced by ion implantation using the mask material 116c as a mask. As a result, a third N − -type semiconductor region 108 having an impurity concentration of about 8.0 × 10 16 cm −3 is formed (FIG. 7E).
【0076】その後、周知の技術により層間絶縁膜11
4を形成し(図7(f))、これを介して垂直電荷転送
部の電荷転送電極112a、b、c、dおよび水平電荷
転送部の電荷転送電極113a、bを金属配線115に
て接続することにより本発明の電荷転送装置が完成する
(図7(g))。Thereafter, the interlayer insulating film 11 is formed by a known technique.
4 (FIG. 7F), and the charge transfer electrodes 112a, b, c, and d of the vertical charge transfer unit and the charge transfer electrodes 113a and 113b of the horizontal charge transfer unit are connected via the metal wiring 115 via this. Thereby, the charge transfer device of the present invention is completed (FIG. 7G).
【0077】このように、本実施例の固体撮像装置によ
れば、垂直電荷転送部20と水平電荷転送部30の接続
領域となる電荷転送電極間には、不純物濃度が9.7×
1016cm-3程度の第1のN- 型半導体領域106が形
成され、垂直電荷転送部20の各電荷転送電極112間
には不純物濃度が9.5×1016cm-3程度の第2のN
- 型半導体領城107が形成され、水平電荷転送部30
の各電荷転送電極113間には不純物濃度が8.0×1
016cm-3程度の第3のN- 型半導体領域108が形成
されている。As described above, according to the solid-state imaging device of the present embodiment, the impurity concentration between the charge transfer electrodes serving as the connection region between the vertical charge transfer unit 20 and the horizontal charge transfer unit 30 is 9.7 ×.
A first N − type semiconductor region 106 of about 10 16 cm −3 is formed, and a second impurity concentration of about 9.5 × 10 16 cm −3 is provided between each charge transfer electrode 112 of the vertical charge transfer section 20. N
- -type semiconductor Ryojo 107 is formed, the horizontal charge transfer portion 30
Between each charge transfer electrode 113 is 8.0 × 1
A third N − type semiconductor region 108 of about 0 16 cm −3 is formed.
【0078】つまり、本実施例では、駆動周波数の高い
水平電荷転送部における消費電力低減のために、水平電
荷転送部30の各電荷転送電極113間の間隔を、垂直
電荷転送部20の各電荷転送電極112間の間隔よりも
広く設定しているため、水平電荷転送部30の各電荷転
送電極113間の不純物濃度を一層低く設定することに
より、各領域において均一な電位ポテンシャルが形成さ
れる。これにより電荷転送効率が向上する。That is, in this embodiment, in order to reduce power consumption in the horizontal charge transfer section having a high driving frequency, the interval between the charge transfer electrodes 113 of the horizontal charge transfer section 30 is set to be equal to each charge of the vertical charge transfer section 20. Since the distance between the transfer electrodes 112 is set to be wider, a uniform potential is formed in each region by setting the impurity concentration between the charge transfer electrodes 113 of the horizontal charge transfer unit 30 even lower. This improves the charge transfer efficiency.
【0079】尚、本実施例による固体撮像装置において
も、図3乃至図5に示した方法を用いて各領域の不純物
濃度を設定しても良い。In the solid-state imaging device according to the present embodiment, the impurity concentration of each region may be set by using the method shown in FIGS.
【0080】次に、本発明のさらに他の実施例による固
体撮像装置について図8を用いて説明する。Next, a solid-state imaging device according to still another embodiment of the present invention will be described with reference to FIG.
【0081】図7に示す、本実施例による固体撮像装置
は、不純物濃度が1.0×1016cm-3程度のN型半導
体基板201内に形成された逆導電型の不純物濃度が
1.0×1016cm-3程度のP型ウエル層202を形成
を有し、このP型ウエル層202内に逆導電型のN型半
導体領域102を形成し、またP型ウエル層202上に
電荷転送電極112及び113を形成するものである。
その製造方法は、図8(a)〜図8(g)に示すよう
に、N型半導体基板201内にP型ウエル層202を形
成する工程を除いて図2又は図7に示した方法と同様で
ある。また、図3乃至図5に示した方法を用いても良い
ことはいうまでもない。In the solid-state imaging device according to the present embodiment shown in FIG. 7, the impurity concentration of the opposite conductivity type formed in the N-type semiconductor substrate 201 having the impurity concentration of about 1.0 × 10 16 cm −3 is 1. A P-type well layer 202 of about 0 × 10 16 cm −3 is formed, an N-type semiconductor region 102 of the opposite conductivity type is formed in the P-type well layer 202, and a charge is formed on the P-type well layer 202. The transfer electrodes 112 and 113 are formed.
8A to 8G, except that a step of forming a P-type well layer 202 in an N-type semiconductor substrate 201 is the same as the method shown in FIG. 2 or FIG. The same is true. It goes without saying that the methods shown in FIGS. 3 to 5 may be used.
【0082】このように、本発明は、ウェルを用いた固
体撮像装置にも適用可能である。As described above, the present invention is also applicable to a solid-state imaging device using a well.
【0083】上述した各実施例は、本発明を埋め込み型
の電荷転送装置に適用したものであるが、本発明は、表
面型の電荷転送装置に対しても、同様に適用できる。In each of the above-described embodiments, the present invention is applied to a buried type charge transfer device. However, the present invention can be similarly applied to a surface type charge transfer device.
【0084】図9は、本発明を表面型の電荷転送装置に
適用した実施例を説明する図である。本実施例において
も、垂直電荷転送部20の各電荷転送電極112間の間
隔と、水平電荷転送部30の各電荷転送電極113間の
間隔とが異なっている。すなわち、垂直電荷転送部20
の各電荷転送電極112間の間隔は約0.3μmであ
り、水平電荷転送部30の各電荷転送電極113間の間
隔は約0.5μmである。尚、垂直電荷転送部20の最
終電荷転送電極112と水平電荷転送部30の電荷転送
電極113との間隔は約0.3μmである。この様に、
水平電荷転送部30の各電荷転送電極113間の間隔
を、垂直電荷転送部20の各電荷転送電極112間の間
隔よりも広く設定することにより、駆動周波数の高い水
平電荷転送部が消費する電力を低減している。FIG. 9 is a diagram for explaining an embodiment in which the present invention is applied to a surface-type charge transfer device. Also in this embodiment, the interval between the charge transfer electrodes 112 of the vertical charge transfer unit 20 and the interval between the charge transfer electrodes 113 of the horizontal charge transfer unit 30 are different. That is, the vertical charge transfer unit 20
The interval between the respective charge transfer electrodes 112 is about 0.3 μm, and the interval between the respective charge transfer electrodes 113 of the horizontal charge transfer section 30 is about 0.5 μm. The distance between the final charge transfer electrode 112 of the vertical charge transfer section 20 and the charge transfer electrode 113 of the horizontal charge transfer section 30 is about 0.3 μm. Like this
By setting the interval between the charge transfer electrodes 113 of the horizontal charge transfer unit 30 wider than the interval between the charge transfer electrodes 112 of the vertical charge transfer unit 20, the power consumed by the horizontal charge transfer unit with a high driving frequency is increased. Has been reduced.
【0085】次に、図10を用いて、図9に示す固体撮
像装置の製造工程を、垂直電荷転送部のI−I’断面
と、水平電荷転送部のII−II’断面を用いて説明す
る。Next, the manufacturing process of the solid-state imaging device shown in FIG. 9 will be described with reference to FIGS. 10A to 10C by using a II-II section of the vertical charge transfer section and a II-II 'section of the horizontal charge transfer section. I do.
【0086】まず、不純物濃度が1.0×1016cm-3
程度のP型半導体基板101を熱酸化することにより約
30nm程度の第1の酸化膜103を形成する(図10
(a))。First, the impurity concentration is 1.0 × 10 16 cm −3.
The first oxide film 103 having a thickness of about 30 nm is formed by thermally oxidizing the P-type semiconductor substrate 101 having a thickness of about 30 nm.
(A)).
【0087】次に、写真食刻法およびエッチング法によ
り、水平電荷転送部20に形成された第1の酸化膜10
3及び垂直電荷転送部30に形成された第1の酸化膜1
03の一部を除去する。その後、再び熱酸化を施すこと
により約60nm程度の第2の酸化膜104を形成す
る。この時、水平電荷転送部30に残存している第1の
酸化膜103はさらに成長し、約70nm程度の膜厚と
なる。Next, the first oxide film 10 formed on the horizontal charge transfer section 20 is formed by photolithography and etching.
3 and first oxide film 1 formed on vertical charge transfer section 30
03 is partially removed. After that, a second oxide film 104 of about 60 nm is formed by performing thermal oxidation again. At this time, the first oxide film 103 remaining in the horizontal charge transfer section 30 further grows to a thickness of about 70 nm.
【0088】これにより、垂直電荷転送部20の全面
は、厚さ約60nmの第2の酸化膜104に覆われるこ
ととなり、水平電荷転送部30のうち、上記エッチング
により第1の酸化膜103が除去された部分においては
厚さ約60nmの第2の酸化膜104に覆われ、第1の
酸化膜103が除去されなかった部分においては厚さ約
70nmに成長した第1の酸化膜103に覆われること
なる。As a result, the entire surface of the vertical charge transfer section 20 is covered with the second oxide film 104 having a thickness of about 60 nm, and the first oxide film 103 of the horizontal charge transfer section 30 is etched by the above-described etching. The removed portion is covered with a second oxide film 104 having a thickness of about 60 nm, and the portion where the first oxide film 103 is not removed is covered with a first oxide film 103 having a thickness of about 70 nm. Will be done.
【0089】次に、前記第1の酸化膜103および第2
の酸化膜104上に多結晶シリコン膜を形成し、これを
パターニングすることにより、垂直電荷転送部20には
電荷転送電極112を形成し、水平電荷転送部30には
電荷転送電極113を形成する。垂直電荷転送部20の
各電荷転送電極112間の間隔は約0.3μmであり、
水平電荷転送部30の各電荷転送電極113間の間隔は
約0.5μmである。また、I−I’断面に示されるよ
うに、垂直電荷転送部20の最終電荷転送電極112と
水平電荷転送部30の電荷転送電極113との間隔は約
0.3μmである(図10(b))。Next, the first oxide film 103 and the second
By forming a polycrystalline silicon film on the oxide film 104 and patterning the same, a charge transfer electrode 112 is formed in the vertical charge transfer section 20 and a charge transfer electrode 113 is formed in the horizontal charge transfer section 30. . The interval between the charge transfer electrodes 112 of the vertical charge transfer unit 20 is about 0.3 μm,
The space between the charge transfer electrodes 113 of the horizontal charge transfer unit 30 is about 0.5 μm. Further, as shown in the II ′ section, the distance between the final charge transfer electrode 112 of the vertical charge transfer unit 20 and the charge transfer electrode 113 of the horizontal charge transfer unit 30 is about 0.3 μm (FIG. 10B )).
【0090】続いて、全面にマスク材を形成し、写真食
刻法を用いて、垂直電荷転送部20の最終電荷転送電極
112と水平電荷転送部30の電荷転送電極113との
間に対応する部分を選択的に除去し、マスク材116a
とする。その後、マスク材116aをマスクとしてP型
半導体領域101と逆導電型の不純物(例えばリン)を
イオン注入法にて導入する(図10(c))。Subsequently, a mask material is formed on the entire surface, and a space between the final charge transfer electrode 112 of the vertical charge transfer section 20 and the charge transfer electrode 113 of the horizontal charge transfer section 30 is formed by photolithography. The portions are selectively removed, and the mask material 116a is removed.
And Thereafter, using the mask material 116a as a mask, an impurity (for example, phosphorus) of a conductivity type opposite to that of the P-type semiconductor region 101 is introduced by an ion implantation method (FIG. 10C).
【0091】更に、再度、全面にマスク材を形成し、写
真食刻法を用いて、垂直電荷転送部20の各電荷転送電
極112間に対応する部分を選択的に除去し、マスク材
116bとする。その後、マスク材116bをマスクと
してP型半導体領域101と逆導電型の不純物(例えば
リン)をイオン注入法にて導入する(図10(d))。Further, a mask material is again formed on the entire surface, and a portion corresponding to between the charge transfer electrodes 112 of the vertical charge transfer section 20 is selectively removed by using a photolithography method. I do. Thereafter, using the mask material 116b as a mask, an impurity (for example, phosphorus) of a conductivity type opposite to that of the P-type semiconductor region 101 is introduced by an ion implantation method (FIG. 10D).
【0092】更に、再度、全面にマスク材を形成し、写
真食刻法を用いて、水平電荷転送部30の各電荷転送電
極113間に対応する部分を選択的に除去し、マスク材
116cとする。その後、マスク材116cをマスクと
してP型半導体領域101と逆導電型の不純物(例えば
リン)をイオン注入法にて導入する(図10(e))。Further, a mask material is formed again on the entire surface, and portions corresponding to the portions between the charge transfer electrodes 113 of the horizontal charge transfer portion 30 are selectively removed by using a photolithography method, so that the mask material 116c is removed. I do. Thereafter, using the mask material 116c as a mask, an impurity (eg, phosphorus) of a conductivity type opposite to that of the P-type semiconductor region 101 is introduced by an ion implantation method (FIG. 10E).
【0093】その後、周知の技術により層間絶縁膜11
4を形成し(図10(f))、これを介して垂直電荷転
送部の電荷転送電極112a、b、c、dおよび水平電
荷転送部の電荷転送電極113a、bを金属配線115
にて接続することにより本発明の電荷転送装置が完成す
る(図10(g))。Thereafter, the interlayer insulating film 11 is formed by a known technique.
4 (FIG. 10 (f)), through which the charge transfer electrodes 112a, b, c, and d of the vertical charge transfer section and the charge transfer electrodes 113a and 113b of the horizontal charge transfer section are connected to the metal wiring 115.
To complete the charge transfer device of the present invention (FIG. 10 (g)).
【0094】この様に、本実施例による固体撮像装置
も、上記各実施例によるの固体撮像装置と同様に、垂直
電荷転送部20の電荷転送電極112間、水平電荷転送
部30の電荷転送電極113間、および垂直電荷転送部
20と水平電荷転送部30の接続領域のそれぞれに、均
一な電位ポテンシャルを形成することができ、これによ
り電荷転送効率を向上させることができる。As described above, in the solid-state imaging device according to the present embodiment, similarly to the solid-state imaging devices according to the above-described embodiments, the charge transfer electrodes of the vertical charge transfer unit 20 and the charge transfer electrodes of the horizontal charge transfer unit 30 are provided. A uniform potential can be formed between the adjacent charge transfer portions 113 and in the connection region between the vertical charge transfer section 20 and the horizontal charge transfer section 30, thereby improving the charge transfer efficiency.
【0095】尚、本発明は、上述のような単層電極4相
駆動の垂直電荷転送部と単層電極2相駆動の水平電荷転
送部からなるインターライン型固体撮像装置に限定され
ず、例えば、3相駆動であっても良いし、またフレーム
転送型固体撮像装置であっても良い。The present invention is not limited to the above-described interline solid-state imaging device including the above-described single-layer electrode four-phase driven vertical charge transfer unit and the single-layer electrode two-phase driven horizontal charge transfer unit. Or a three-phase drive or a frame transfer type solid-state imaging device.
【0096】[0096]
【発明の効果】以上説明したように、本発明の固体撮像
装置は、垂直電荷転送部と水平電荷転送部との間の接続
領域、垂直電荷転送部の各電荷転送電極間、水平電荷転
送部の各電荷転送電極間のそれぞれに不純物濃度の異な
る半導体領域を設けているため、各電極間に電荷転送の
障害とならないような均一な電位ポテンシャルが形成さ
れるようにすることができ、これにより電荷転送効率を
向上させることができる。As described above, according to the solid-state imaging device of the present invention, the connection region between the vertical charge transfer section and the horizontal charge transfer section, between the charge transfer electrodes of the vertical charge transfer section, and the horizontal charge transfer section. Since the semiconductor regions having different impurity concentrations are provided between the respective charge transfer electrodes, it is possible to form a uniform potential between the electrodes so as not to hinder the charge transfer. The charge transfer efficiency can be improved.
【0097】また、これらの半導体領域の内、任意の2
つの半導体領域の不純物濃度を等しくすれば、製造工程
を簡略化することができる。Further, of these semiconductor regions, any two
If the impurity concentrations of the two semiconductor regions are made equal, the manufacturing process can be simplified.
【図1】 本発明の第1の実施例の固体撮像装置の平面
図である。FIG. 1 is a plan view of a solid-state imaging device according to a first embodiment of the present invention.
【図2】 本発明の第1の実施例の固体撮像装置の製造
方法を示す主要工程の断面図である。FIG. 2 is a cross-sectional view of main steps showing a method for manufacturing the solid-state imaging device according to the first embodiment of the present invention.
【図3】 本発明の第1の実施例の固体撮像装置の他の
製造方法を示す主要工程の断面図である。FIG. 3 is a sectional view of a main step showing another method of manufacturing the solid-state imaging device according to the first embodiment of the present invention;
【図4】 本発明の第1の実施例の固体撮像装置のさら
に他の製造方法を示す主要工程の断面図である。FIG. 4 is a cross-sectional view of main steps showing still another method of manufacturing the solid-state imaging device according to the first embodiment of the present invention.
【図5】 本発明の第1の実施例の固体撮像装置のさら
に他の製造方法を示す主要工程の断面図である。FIG. 5 is a cross-sectional view of main steps showing still another method of manufacturing the solid-state imaging device according to the first embodiment of the present invention.
【図6】 本発明の第2の実施例の固体撮像装置の平面
図である。FIG. 6 is a plan view of a solid-state imaging device according to a second embodiment of the present invention.
【図7】 本発明の第2の実施例の固体撮像装置の製造
方法を示す主要工程の断面図である。FIG. 7 is a cross-sectional view of main steps showing a method for manufacturing a solid-state imaging device according to a second embodiment of the present invention.
【図8】 本発明の第3の実施例の固体撮像装置の製造
方法を示す主要工程の断面図である。FIG. 8 is a sectional view of main steps showing a method for manufacturing a solid-state imaging device according to a third embodiment of the present invention.
【図9】 本発明の第4の実施例の固体撮像装置の平面
図である。FIG. 9 is a plan view of a solid-state imaging device according to a fourth embodiment of the present invention.
【図10】 本発明の第4の実施例の固体撮像装置の製
造方法を示す主要工程の断面図である。FIG. 10 is a sectional view of main steps showing a method for manufacturing a solid-state imaging device according to a fourth embodiment of the present invention.
【図11】 従来の固体撮像装置の平面図である。FIG. 11 is a plan view of a conventional solid-state imaging device.
【図12】 従来の固体撮像装置の製造方法を示す主要
工程の断面図である。FIG. 12 is a cross-sectional view of main steps showing a conventional method for manufacturing a solid-state imaging device.
【図13】 電極間に形成される電位ポテンシャルの形
状を示す図である。FIG. 13 is a diagram showing a shape of a potential formed between electrodes.
【図14】 電極間に形成される電位ポテンシャルの形
状がイオン注入量によって異なることを説明するための
図である。FIG. 14 is a diagram for explaining that the shape of the potential formed between the electrodes differs depending on the amount of ion implantation.
10 光電変換部 20 垂直電荷転送部 30 水平電荷転送部 101 P型半導体基板 102 電荷転送部のN型半導体領域 103 第1の絶縁膜 104 第2の絶縁膜 105 N- 型半導体領域 106 第1のN- 型半導体領域 107 第2のN- 型半導体領域 108 第3のN- 型半導体領域 109 光電変換部のN型半導体領域 110 P型半導体領域 111 P+ 型半導体領域 112 垂直電荷転送部の電荷転送電極 113 水平電荷転送部の電荷転送電極 114 層間絶縁膜 115 金属配線 116 フォトレジスト 201 N-型半導体基板 202 P型ウエル層 306 第1のP- 型半導体領域 307 第2のP- 型半導体領域 308 第3のP- 型半導体領域 1201 電極 1202 ポテンシャルDESCRIPTION OF SYMBOLS 10 Photoelectric conversion part 20 Vertical charge transfer part 30 Horizontal charge transfer part 101 P-type semiconductor substrate 102 N-type semiconductor region of a charge transfer part 103 1st insulating film 104 2nd insulating film 105 N - type semiconductor region 106 1st N - type semiconductor region 107 Second N - type semiconductor region 108 Third N - type semiconductor region 109 N - type semiconductor region of photoelectric conversion unit 110 P-type semiconductor region 111 P + -type semiconductor region 112 Charge of vertical charge transfer unit Transfer electrode 113 Charge transfer electrode of horizontal charge transfer section 114 Interlayer insulating film 115 Metal wiring 116 Photoresist 201 N-type semiconductor substrate 202 P-type well layer 306 First P - type semiconductor region 307 Second P - type semiconductor region 308 third P − type semiconductor region 1201 electrode 1202 potential
Claims (19)
た電荷を垂直方向に転送する垂直電荷転送部と、前記垂
直電荷転送部より転送された電荷を受けこれを水平方向
に転送する水平電荷転送部とを備える固体撮像装置であ
って、前記垂直電荷転送部に設けられた複数の垂直電荷
転送電極と、前記各垂直電荷転送電極間に設けられた第
1の不純物領域と、前記水平電荷転送部に設けられた複
数の水平電荷転送電極と、前記各水平電荷転送電極間に
設けられた第2の不純物領域と、前記垂直電荷転送電極
及び前記水平電荷転送電極間に設けられた第3の不純物
領域とを備え、前記第3の不純物領域の不純物濃度は、
少なくとも前記第1及び第2の不純物領域の一方の不純
物濃度とは異なることを特徴とする固体撮像装置。1. A photoelectric conversion unit, a vertical charge transfer unit for vertically transferring the charge generated in the photoelectric conversion unit, and a horizontal charge receiving the charge transferred from the vertical charge transfer unit and transferring the charge in a horizontal direction. A solid-state imaging device comprising: a charge transfer unit; a plurality of vertical charge transfer electrodes provided in the vertical charge transfer unit; a first impurity region provided between the vertical charge transfer electrodes; A plurality of horizontal charge transfer electrodes provided in the charge transfer portion; a second impurity region provided between the horizontal charge transfer electrodes; and a second impurity region provided between the vertical charge transfer electrode and the horizontal charge transfer electrode. And the third impurity region has an impurity concentration of:
A solid-state imaging device, wherein at least one of the first and second impurity regions has a different impurity concentration.
少なくとも前記第1及び第2の不純物領域の一方の不純
物濃度よりも高いことを特徴とする請求項1記載の固体
撮像装置。2. An impurity concentration of the third impurity region,
2. The solid-state imaging device according to claim 1, wherein the impurity concentration is higher than at least one of the first and second impurity regions.
前記第1及び第2の不純物領域の一方の不純物濃度とは
異なり、前記第1及び第2の不純物領域の他方の不純物
濃度と実質的に同一であることを特徴とする請求項1記
載の固体撮像装置。3. An impurity concentration of the third impurity region,
2. The solid according to claim 1, wherein the impurity concentration of one of the first and second impurity regions is different from that of the other of the first and second impurity regions. 3. Imaging device.
前記第1及び第2の不純物領域の前記一方の不純物濃度
よりも高いことを特徴とする請求項3記載の固体撮像装
置。4. The impurity concentration of the third impurity region is:
4. The solid-state imaging device according to claim 3, wherein said one of said first and second impurity regions has a higher impurity concentration than said one of said first and second impurity regions.
不純物濃度はいずれも互いに異なることを特徴とする請
求項1記載の固体撮像装置。5. The solid-state imaging device according to claim 1, wherein the first, second, and third impurity regions have different impurity concentrations.
記第2の不純物領域の不純物濃度よりも高く、前記第2
の不純物領域の不純物濃度は前記第3の不純物領域の不
純物濃度よりも高いことを特徴とする請求項5記載の固
体撮像装置。6. An impurity concentration of the first impurity region is higher than an impurity concentration of the second impurity region.
The solid-state imaging device according to claim 5, wherein the impurity concentration of the impurity region is higher than the impurity concentration of the third impurity region.
電荷転送部とを備える固体撮像装置において、前記垂直
電荷転送部は、一導電型の複数の第1不純物領域と、絶
縁膜を介して前記複数の第1不純物領域上にそれぞれ設
けられた複数の垂直電荷転送電極と、前記複数の第1不
純物領域間にそれぞれ設けられた前記一導電型の複数の
第2不純物領域とを備え、前記水平電荷転送部は、前記
一導電型の複数の第3不純物領域と、絶縁膜を介して前
記複数の第3不純物領域上にそれぞれ設けられた複数の
水平電荷転送電極と、前記複数の第3不純物領域間にそ
れぞれ設けられた前記一導電型の複数の第4不純物領域
とを備え、前記第2不純物領域の不純物濃度と前記第4
不純物領域の不純物濃度とは異なることを特徴とする固
体撮像装置。7. In a solid-state imaging device including a photoelectric conversion unit, a vertical charge transfer unit, and a horizontal charge transfer unit, the vertical charge transfer unit includes a plurality of one conductivity type first impurity regions and an insulating film. A plurality of vertical charge transfer electrodes provided on the plurality of first impurity regions, respectively, and a plurality of one conductivity type second impurity regions provided between the plurality of first impurity regions, respectively. The horizontal charge transfer section includes a plurality of third impurity regions of the one conductivity type; a plurality of horizontal charge transfer electrodes provided on the plurality of third impurity regions via an insulating film; A plurality of one-conductivity-type fourth impurity regions provided between the third impurity regions, respectively, and an impurity concentration of the second impurity region and the fourth impurity region;
A solid-state imaging device, wherein the impurity concentration of the impurity region is different from that of the impurity region.
域との間に設けられた前記一導電型の第5不純物領域を
さらに備え、前記第5不純物領域の不純物濃度は、少な
くとも前記第2及び第4不純物領域の一方の不純物濃度
とは異なることを特徴とする請求項7記載の固体撮像装
置。8. The semiconductor device further comprising a fifth impurity region of the one conductivity type provided between the first impurity region and the third impurity region, wherein an impurity concentration of the fifth impurity region is at least the second impurity region. 8. The solid-state imaging device according to claim 7, wherein the impurity concentration is different from one of the impurity concentrations of the first and fourth impurity regions.
度はいずれも前記第5不純物領域の不純物濃度よりも高
く、前記第5不純物領域の不純物濃度は前記第2及び第
4不純物領域の少なくとも一方の不純物濃度よりも高い
ことを特徴とする請求項8記載の固体撮像装置。9. An impurity concentration of each of the first and third impurity regions is higher than an impurity concentration of the fifth impurity region, and an impurity concentration of the fifth impurity region is at least one of the second and fourth impurity regions. The solid-state imaging device according to claim 8, wherein the impurity concentration is higher than one of the impurity concentrations.
領域の不純物濃度はいずれも互いに異なることを特徴と
する請求項8記載の固体撮像装置。10. The solid-state imaging device according to claim 8, wherein the first, second, fourth, and fifth impurity regions have different impurity concentrations.
記第3不純物領域の不純物濃度とは実質的に同一であ
り、前記第2不純物領域の不純物濃度と前記第5不純物
領域の不純物濃度とは実質的に同一であり、前記第1及
び第3不純物領域の不純物濃度は前記第2及び第5不純
物領域の不純物濃度よりも高く、前記第2及び第5不純
物領域の不純物濃度は前記第4不純物領域の不純物濃度
よりも高いことを特徴とする請求項8記載の固体撮像装
置。11. The impurity concentration of the first impurity region and the impurity concentration of the third impurity region are substantially the same, and the impurity concentration of the second impurity region and the impurity concentration of the fifth impurity region are different. The impurity concentration of the first and third impurity regions is higher than the impurity concentration of the second and fifth impurity regions, and the impurity concentration of the second and fifth impurity regions is substantially the same as that of the fourth impurity region. 9. The solid-state imaging device according to claim 8, wherein the impurity concentration is higher than a region.
記第3不純物領域の不純物濃度とは実質的に同一であ
り、前記第4不純物領域の不純物濃度と前記第5不純物
領域の不純物濃度とは実質的に同一であり、前記第1及
び第3不純物領域の不純物濃度は前記第2不純物領域の
不純物濃度よりも高く、前記第2不純物領域の不純物濃
度は前記第4及び第5不純物領域の不純物濃度よりも高
いことを特徴とする請求項8記載の固体撮像装置。12. An impurity concentration of the first impurity region and an impurity concentration of the third impurity region are substantially the same, and an impurity concentration of the fourth impurity region and an impurity concentration of the fifth impurity region are different from each other. The first and third impurity regions have substantially the same impurity concentration as the second impurity region, and the second impurity region has an impurity concentration of the fourth and fifth impurity regions. 9. The solid-state imaging device according to claim 8, wherein the density is higher than the density.
不純物濃度はいずれも互いに同一であり、前記第4及び
第5不純物領域の不純物濃度は互いに同一であり、前記
第1、第2及び第3不純物領域の不純物濃度は前記第4
及び第5不純物領域の不純物濃度よりも高いことを特徴
とする請求項8記載の固体撮像装置。13. The first, second, and third impurity regions have the same impurity concentration, and the fourth and fifth impurity regions have the same impurity concentration. And the third impurity region has an impurity concentration of the fourth impurity region.
9. The solid-state imaging device according to claim 8, wherein the impurity concentration is higher than an impurity concentration of the fifth impurity region.
領域の不純物濃度はいずれも互いに同一であり、前記第
1、第2、第3及び第5不純物領域の不純物濃度は前記
第4不純物領域の不純物濃度よりも高いことを特徴とす
る請求項8記載の固体撮像装置。14. The first, second, third and fifth impurity regions have the same impurity concentration, and the first, second, third and fifth impurity regions have the same impurity concentration. 9. The solid-state imaging device according to claim 8, wherein the impurity concentration is higher than the impurity concentration of the four impurity regions.
不純物領域を形成する工程と、前記半導体基板上に絶縁
膜を形成する工程と、前記絶縁膜上に複数の垂直電荷転
送電極及び複数の水平電荷転送電極を形成する工程と、
前記各垂直電荷転送電極間及び前記各水平電荷転送電極
間をマスクで覆い前記垂直電荷転送電極と前記水平電荷
転送電極との間の前記不純物領域内に前記一導電型の不
純物を導入する工程と、前記各水平電荷転送電極間と前
記垂直電荷転送電極及び前記水平電荷転送電極間とをマ
スクで覆い前記各垂直電荷転送電極間の前記不純物領域
内に前記一導電型の不純物を導入する工程と、前記各垂
直電荷転送電極間と前記垂直電荷転送電極及び前記水平
電荷転送電極間とをマスクで覆い前記各水平電荷転送電
極間の前記不純物領域内に前記一導電型の不純物を導入
する工程とを備え、これにより前記垂直電荷転送電極と
前記水平電荷転送電極との間の不純物領域、前記各垂直
電荷転送電極間の不純物領域、及び前記各水平電荷転送
電極間の不純物領域のそれぞれの不純物濃度を互いに異
ならせたことを特徴とする固体撮像装置の製造方法。15. A step of forming an impurity region of the opposite conductivity type in a semiconductor substrate of one conductivity type, a step of forming an insulating film on the semiconductor substrate, and forming a plurality of vertical charge transfer electrodes and Forming a plurality of horizontal charge transfer electrodes;
Covering the space between the vertical charge transfer electrodes and the space between the horizontal charge transfer electrodes with a mask, and introducing the one conductivity type impurity into the impurity region between the vertical charge transfer electrode and the horizontal charge transfer electrode. Covering the space between the horizontal charge transfer electrodes and the space between the vertical charge transfer electrodes and the horizontal charge transfer electrodes with a mask, and introducing the one conductivity type impurity into the impurity region between the vertical charge transfer electrodes. Covering the space between the vertical charge transfer electrodes and the space between the vertical charge transfer electrodes and the horizontal charge transfer electrodes with a mask, and introducing the one conductivity type impurity into the impurity region between the horizontal charge transfer electrodes. And an impurity region between the vertical charge transfer electrode and the horizontal charge transfer electrode, an impurity region between the vertical charge transfer electrodes, and an impurity region between the horizontal charge transfer electrodes. Method for manufacturing a solid-state imaging device, characterized in that of each of the impurity concentrations were different from each other.
不純物領域を形成する工程と、前記半導体基板上に絶縁
膜を形成する工程と、前記絶縁膜上に複数の垂直電荷転
送電極及び複数の水平電荷転送電極を形成する工程と、
前記複数の垂直電荷転送電極及び前記複数の水平電荷転
送電極をマスクとして前記不純物領域内に前記一導電型
の不純物を導入する工程と、前記垂直電荷転送電極及び
前記水平電荷転送電極間をマスクで覆い前記各垂直電荷
転送電極間及び前記各水平電荷転送電極間の前記不純物
領域内に前記一導電型の不純物を導入する工程と、前記
各垂直電荷転送電極間と前記垂直電荷転送電極及び前記
水平電荷転送電極間とをマスクで覆い前記各水平電荷転
送電極間の前記不純物領域内に前記一導電型の不純物を
導入する工程とを備える固体撮像装置の製造方法。16. A step of forming an impurity region of the opposite conductivity type in a semiconductor substrate of one conductivity type, a step of forming an insulating film on the semiconductor substrate, and forming a plurality of vertical charge transfer electrodes on the insulating film. Forming a plurality of horizontal charge transfer electrodes;
Introducing the one-conductivity-type impurity into the impurity region using the plurality of vertical charge transfer electrodes and the plurality of horizontal charge transfer electrodes as a mask, and using a mask between the vertical charge transfer electrodes and the horizontal charge transfer electrodes. Introducing the one conductivity type impurity into the impurity regions between the vertical charge transfer electrodes and between the horizontal charge transfer electrodes, and between the vertical charge transfer electrodes and the vertical charge transfer electrodes and the horizontal. Covering the space between the charge transfer electrodes with a mask and introducing the one conductivity type impurity into the impurity region between the horizontal charge transfer electrodes.
不純物領域を形成する工程と、前記半導体基板上に絶縁
膜を形成する工程と、前記絶縁膜上に複数の垂直電荷転
送電極及び複数の水平電荷転送電極を形成する工程と、
前記各水平電荷転送電極間をマスクで覆い前記各垂直電
荷転送電極間と前記垂直電荷転送電極及び前記水平電荷
転送電極間の前記不純物領域内に前記一導電型の不純物
を導入する工程と、前記各垂直電荷転送電極間と前記垂
直電荷転送電極及び前記水平電荷転送電極間とをマスク
で覆い前記各水平電荷転送電極間の前記不純物領域内に
前記一導電型の不純物を導入する工程とを備える固体撮
像装置の製造方法。17. A step of forming an impurity region of the opposite conductivity type in a semiconductor substrate of one conductivity type, a step of forming an insulating film on the semiconductor substrate, and forming a plurality of vertical charge transfer electrodes and Forming a plurality of horizontal charge transfer electrodes;
Covering the space between the horizontal charge transfer electrodes with a mask and introducing the one conductivity type impurity into the impurity region between the vertical charge transfer electrodes and between the vertical charge transfer electrode and the horizontal charge transfer electrode; Covering between the vertical charge transfer electrodes and between the vertical charge transfer electrodes and the horizontal charge transfer electrodes with a mask, and introducing the one conductivity type impurity into the impurity region between the horizontal charge transfer electrodes. A method for manufacturing a solid-state imaging device.
不純物領域を形成する工程と、前記半導体基板上に絶縁
膜を形成する工程と、前記絶縁膜上に複数の垂直電荷転
送電極及び複数の水平電荷転送電極を形成する工程と、
前記各水平電荷転送電極間と前記垂直電荷転送電極及び
前記水平電荷転送電極間とをマスクで覆い前記各垂直電
荷転送電極間の前記不純物領域内に前記一導電型の不純
物を導入する工程と、前記各垂直電荷転送電極間をマス
クで覆い前記各水平電荷転送電極間と前記垂直電荷転送
電極及び前記水平電荷転送電極間の前記不純物領域内に
前記一導電型の不純物を導入する工程とを備える固体撮
像装置の製造方法。18. A step of forming an impurity region of the opposite conductivity type in a semiconductor substrate of one conductivity type, a step of forming an insulating film on the semiconductor substrate, and forming a plurality of vertical charge transfer electrodes and Forming a plurality of horizontal charge transfer electrodes;
Covering the space between the horizontal charge transfer electrodes and the space between the vertical charge transfer electrodes and the horizontal charge transfer electrodes with a mask, and introducing the one conductivity type impurity into the impurity region between the vertical charge transfer electrodes; Covering the space between the vertical charge transfer electrodes with a mask and introducing the one conductivity type impurity into the impurity region between the horizontal charge transfer electrodes and between the vertical charge transfer electrode and the horizontal charge transfer electrode. A method for manufacturing a solid-state imaging device.
して単層の電荷転送電極が所定の間隔で形成されてなる
垂直電荷転送部および水平電荷転送部を備えた固体撮像
装置において、前記垂直電荷転送部と水平電荷転送部と
の間の接続領域に設けられた第1の第1導電型半導体領
域と、前記垂直電荷転送部の各電荷転送電極間の間隙に
設けられた第2の第1導電型半導体領域と、前記水平電
荷転送部の各電荷転送電極間の間隙に設けられた第3の
第1導電型半導体領域とを有し、前記第1の第1導電型
半導体領域、前記第2の第1導電型半導体領域および前
記第3の第1導電型半導体領域の不純物濃度がそれぞれ
異なり、駆動電圧印加時に、前記垂直電荷転送部の各電
荷転送電極間に形成される電位ポテンシャルと、前記水
平電荷転送部の各電荷転送電極間に形成される電位ポテ
ンシャルと、前記垂直電荷転送部と前記水平電荷転送部
との間の接続領域に形成される電位ポテンシャルとが略
等しい深さとなるように、前記第1の第1導電型半導体
領域、前記第2の第1導電型半導体領域および前記第3
の第1導電型半導体領域の不純物濃度が設定されている
ことを特徴とする固体撮像装置。19. A solid-state imaging device comprising a vertical charge transfer section and a horizontal charge transfer section in which single-layer charge transfer electrodes are formed at predetermined intervals on a first conductivity type semiconductor substrate via an insulating film. A first first conductivity type semiconductor region provided in a connection region between the vertical charge transfer unit and the horizontal charge transfer unit, and a second semiconductor device provided in a gap between each charge transfer electrode of the vertical charge transfer unit. And a third first conductivity type semiconductor region provided in a gap between the charge transfer electrodes of the horizontal charge transfer section, and wherein the first first conductivity type semiconductor region is provided. The second first conductivity type semiconductor region and the third first conductivity type semiconductor region have different impurity concentrations, and a potential formed between the charge transfer electrodes of the vertical charge transfer portion when a drive voltage is applied. Potential and each potential of the horizontal charge transfer section. The first electric potential is formed such that the electric potential formed between the load transfer electrodes and the electric potential formed in the connection region between the vertical charge transfer part and the horizontal charge transfer part have substantially the same depth. A first conductivity type semiconductor region, the second first conductivity type semiconductor region, and the third conductivity type semiconductor region;
A solid-state imaging device, wherein an impurity concentration of the first conductivity type semiconductor region is set.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26930998A JP3252807B2 (en) | 1997-09-24 | 1998-09-24 | Solid-state imaging device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-258596 | 1997-09-24 | ||
JP25859697 | 1997-09-24 | ||
JP26930998A JP3252807B2 (en) | 1997-09-24 | 1998-09-24 | Solid-state imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11168206A true JPH11168206A (en) | 1999-06-22 |
JP3252807B2 JP3252807B2 (en) | 2002-02-04 |
Family
ID=26543748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26930998A Expired - Fee Related JP3252807B2 (en) | 1997-09-24 | 1998-09-24 | Solid-state imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3252807B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012216693A (en) * | 2011-03-31 | 2012-11-08 | Honda Motor Co Ltd | Light-receiving device |
US9018573B2 (en) | 2011-03-31 | 2015-04-28 | Honda Motor Co., Ltd. | Solid-state image sensing device with a change-over switch |
US9054014B2 (en) | 2011-03-31 | 2015-06-09 | Honda Motor Co., Ltd. | Unit pixel for accurately removing reset noise, solid-state image sensing device, and method for summing unit pixel signals |
-
1998
- 1998-09-24 JP JP26930998A patent/JP3252807B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012216693A (en) * | 2011-03-31 | 2012-11-08 | Honda Motor Co Ltd | Light-receiving device |
US9018573B2 (en) | 2011-03-31 | 2015-04-28 | Honda Motor Co., Ltd. | Solid-state image sensing device with a change-over switch |
US9054014B2 (en) | 2011-03-31 | 2015-06-09 | Honda Motor Co., Ltd. | Unit pixel for accurately removing reset noise, solid-state image sensing device, and method for summing unit pixel signals |
Also Published As
Publication number | Publication date |
---|---|
JP3252807B2 (en) | 2002-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2517375B2 (en) | Solid-state imaging device, charge transfer device used in the device, and manufacturing method thereof | |
US5289022A (en) | CCD shift register having a plurality of storage regions and transfer regions therein | |
JP2909528B2 (en) | Charge transfer device and method of manufacturing the same | |
US6111279A (en) | CCD type solid state image pick-up device | |
US6207981B1 (en) | Charge-coupled device with potential barrier and charge storage regions | |
JP3252807B2 (en) | Solid-state imaging device | |
JP3119586B2 (en) | Charge transfer device and method of manufacturing the same | |
JPH0695536B2 (en) | Charge transfer device | |
JP3796227B2 (en) | Method for manufacturing charge coupled device | |
JPS61179574A (en) | Charge coupled device | |
JP2936153B2 (en) | Method for manufacturing solid-state imaging device | |
JPH0714050B2 (en) | Charge transfer device | |
JP2716011B2 (en) | Charge transfer device and method of manufacturing the same | |
JP2909158B2 (en) | Charge coupled device | |
JPH06140442A (en) | Charge transfer device | |
JP2911146B2 (en) | Semiconductor device | |
JP2904107B2 (en) | Method for manufacturing charge transfer device | |
JP3156779B2 (en) | Charge transfer device and method of manufacturing the same | |
JP3122670B2 (en) | Charge transfer device and method of manufacturing the same | |
JPH10144909A (en) | Solid-state image pickup device, its manufacturing method and its drive method | |
JP3360735B2 (en) | Charge coupled device and driving method thereof | |
JP2000236082A (en) | Solid-state image pickup element and manufacture thereof | |
JPH0669048B2 (en) | Charge transfer device | |
JP2522250B2 (en) | Charge transfer device | |
JPH08330574A (en) | Charge transfer device and its drive method and manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010321 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011023 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |