Nothing Special   »   [go: up one dir, main page]

JPH111318A - Production of zeolite granule with controlled pore size - Google Patents

Production of zeolite granule with controlled pore size

Info

Publication number
JPH111318A
JPH111318A JP17305797A JP17305797A JPH111318A JP H111318 A JPH111318 A JP H111318A JP 17305797 A JP17305797 A JP 17305797A JP 17305797 A JP17305797 A JP 17305797A JP H111318 A JPH111318 A JP H111318A
Authority
JP
Japan
Prior art keywords
zeolite
granules
pore size
surface area
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17305797A
Other languages
Japanese (ja)
Inventor
Toru Yoshida
徹 吉田
Satoru Kamata
悟 鎌田
Yasushi Sugawara
靖 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKITA PREF GOV
Original Assignee
AKITA PREF GOV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKITA PREF GOV filed Critical AKITA PREF GOV
Priority to JP17305797A priority Critical patent/JPH111318A/en
Publication of JPH111318A publication Critical patent/JPH111318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing zeolite granules 0.05-1 μm in pore size, sharp in pore size distribution and 10-50 m<2> /g in specific surface area. SOLUTION: The zeolite granules can be obtained through the following process: 100 pts.wt. of natural zeolite powder, or a mixture of 90 pts.wt. of natural zeolite powder and 10 pts.wt. of polyvinyl alcohol or a mixture of 80 pts.wt. of natural zeolite powder and 20 pts.wt. of bentonite is incorporated with 15-30 (pref. 18-25) wt.% of water as a binder followed by thoroughly mixing the stock powder with the water for 5-30 min through revolution of an agitating blade at 900-3,000 rpm using a rotary mixing-type granulator; the temperature of the resulting granules is then raised at a rate of 100 deg.C/h to 200-700 deg.C followed by baking the granules at that temperature for 1-2 h, thus obtaining the objective zeolite granules 0.05-1 μm in pore diameter, sharp in pore size distribution and 10-50 m<2> /g in specific surface area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は孔径が特定範囲の細
孔径のゼオライト造粒体の製造に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for producing granulated zeolite having a pore diameter in a specific range.

【0002】[0002]

【従来の技術】ゼオライトを工業的に利用する場合は、
ゼオライト粉末をそのままの状態で使用することは少な
く、柱状、球状、板状もしくは他の適当な成形体として
利用するのが一般的である。成形体を製造する際には、
ゼオライト粉末自体には相互結合性がないために、適当
な可塑性と結合性(強度)を付与する目的でカオリナイ
ト、モンモリロナイト等の粘土鉱物やアルミナゾル、シ
リカゾル等が添加される。しかし、このようにして製造
されたゼオライト成形体は、結合材が添加された分だけ
ゼオライト成分が希釈されたり、また、結合材が好まし
くない反応を起こすことによりゼオライトの特性が低下
するおそれがある。一方、細孔を制御したゼオライトの
作製方法に関しては、ゼオライト結晶を構成しているナ
トリウム、カリウム等をイオン交換することにより、3
〜5Åのミクロポアのサイズを変える方法は知られてい
るが、0.1μm以上のメゾポアやマクロポアを簡単に
制御する方法は知られていないのが実状である。
2. Description of the Related Art When zeolite is used industrially,
Zeolite powder is rarely used as it is, and is generally used as a columnar, spherical, plate-like or other suitable molded body. When manufacturing molded products,
Since the zeolite powder itself has no mutual bonding properties, clay minerals such as kaolinite and montmorillonite, alumina sol, silica sol, and the like are added for the purpose of imparting appropriate plasticity and bonding (strength). However, the zeolite molded body thus produced may have a zeolite component diluted by the amount of the binder added, or may have an undesired reaction of the binder, resulting in a decrease in the properties of the zeolite. . On the other hand, with respect to a method for producing a zeolite with controlled pores, sodium, potassium, etc. constituting the zeolite crystal are ion-exchanged to obtain a zeolite.
Although a method of changing the size of the micropore of about 5 mm is known, a method of simply controlling a mesopore or macropore of 0.1 μm or more is not known.

【0003】従来の方法で製造したゼオライト造粒体
は、結合材が添加されているためゼオライトのガス吸着
能、イオン交換能、触媒能等が低下する傾向が見られ
る。また、ゼオライトの細孔制御については、ゼオライ
ト自身が有するミクロポアサイズの制御を行ったものは
あるが、1μm程度の細孔の制御はなされていない。ま
た、ゼオライト成形体の細孔制御として板状成形体の細
孔制御は行われているが、造粒体の制御は皆無である。
[0003] The zeolite granules produced by the conventional method tend to have a reduced gas adsorption ability, ion exchange ability, catalytic ability, etc. of the zeolite due to the addition of a binder. Regarding the control of the pores of zeolite, there is a control of the micropore size of the zeolite itself, but the control of the pores of about 1 μm is not performed. Further, although the pore control of the plate-like compact is performed as the pore control of the zeolite compact, there is no control of the granulated product.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、細孔直径が0.05〜1μmに制御され、
かつ細孔分布がシャープで、比表面積が10〜50m2
/gのゼオライト造粒体の製造方法を提供するものであ
る。
The problem to be solved by the present invention is that the pore diameter is controlled to 0.05 to 1 μm,
And the pore distribution is sharp and the specific surface area is 10 to 50 m 2.
/ G of zeolite granules.

【0005】[0005]

【課題を解決するための手段】本発明が上記課題を解決
するための手段は、天然ゼオライト粉末100重量部、
または天然ゼオライト粉90重量部とポリビニルアルコ
ール10重量部、あるいは天然ゼオライト粉80重量部
とベントナイト20重量部の混合物に、結合材として1
5〜30%、好ましくは18〜25%の水分を加え、回
転混合式造粒機を使用して、攪拌羽根を900〜300
0r.p.mの特定回転数で回転させ、5〜30分間、
原料粉と水をよく混合させて造粒を行いゼオライト造粒
体を作る。次に、この造粒体を200〜700℃の範囲
内の特定温度まで昇温速度100℃/Hrで昇温し、そ
の温度で1〜2時間焼成を行うことにより0.05〜1
μm範囲内の特定細孔直径を有し、かつ細孔分布がシャ
ープで、さらに比表面積が10〜50m2 /gであるゼ
オライト造粒体を得るものである。
The present invention solves the above-mentioned problems by providing a natural zeolite powder of 100 parts by weight,
Alternatively, a mixture of 90 parts by weight of natural zeolite powder and 10 parts by weight of polyvinyl alcohol, or 80 parts by weight of natural zeolite powder and 20 parts by weight of bentonite is used as a binder.
5-30%, preferably 18-25% of water is added, and the stirring blade is turned to 900-300 using a rotary mixing type granulator.
0r. p. m at a specific rotation speed, 5-30 minutes,
The raw material powder and water are mixed well and granulated to produce granulated zeolite. Next, the granulated body is heated to a specific temperature in the range of 200 to 700 ° C. at a heating rate of 100 ° C./Hr, and is baked at that temperature for 1 to 2 hours to obtain 0.05 to 1 hour.
An object of the present invention is to obtain a zeolite granule having a specific pore diameter in the range of μm, a sharp pore distribution, and a specific surface area of 10 to 50 m 2 / g.

【0006】[0006]

【発明の実施の形態】本発明における細孔直径は、造粒
による混合と焼成による物質移動の相乗効果により制御
されるため、造粒条件と焼成条件を選択することで0.
05〜1μmの範囲内の細孔の制御が可能となる。造粒
条件としての添加割合は添加成分によって0〜20%が
適当であり、造粒機回転数は900〜3000r.p.
mが適当であり、焼成条件は200〜700℃が適当で
あった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The pore diameter in the present invention is controlled by the synergistic effect of mixing by granulation and mass transfer by calcination.
It is possible to control the pores within the range of 0.05 to 1 μm. The addition ratio as granulation conditions is suitably 0 to 20% depending on the added component, and the rotation speed of the granulator is 900 to 3000 rpm. p.
m was appropriate, and the firing conditions were suitably 200 to 700 ° C.

【0007】[0007]

【実施例】本発明の実施例を説明すると、 実施例1 平均粒径10.24μmの天然ゼオライト5kgに、結
合材として水を25%加え、回転混合式造粒機を使用
し、900r.p.mの回転数で20分間攪拌を行い、
0.1〜1cmのサイズのゼオライト造粒体を作製した。
次に、このゼオライト造粒体を、昇温速度100℃/H
rで200〜700℃の特定温度まで昇温し、その温度
で2時間保持した後、炉内放令した。このようにして得
たゼオライト造粒体について、水銀圧入式による細孔分
布測定(水銀接触角130度、表面張力484dyne
/cm)および比表面積測定(BET1点式、窒素吸着
法)を行った。細孔直径の測定結果を第1図に示す。第
1図において横軸は焼成温度[℃]で縦軸は細孔直径
[μm]である。300〜600℃の焼成においては、
焼成温度を高くすることにより細孔直径がわずかずつ大
きくなっていく傾向が認められる。300℃よりも低温
の200℃では、300℃の場合と変わりなく、また6
00℃よりも高温の700℃でも600℃の場合と同様
の結果となった。したがって、0.05〜0.3μmの
細孔径を有する造粒体を製造するには、回転混合式造粒
機の回転数を900r.p.mにして造粒体を作り、そ
れを300〜600℃で焼成すればよいことが判明し
た。比表面積測定結果を第2図に示す。第2図において
横軸は焼成温度[℃]であり縦軸は比表面積値[m2
g]である。比表面積値は、いずれの焼成温度において
も天然ゼオライト原鉱の38m2 /gよりも若干小さく
なっており、焼成温度が高いほど値が低下している。し
かし、ゼオライトのガス吸着能はさほど低下していない
と推定される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. Example 1 To 5 kg of natural zeolite having an average particle size of 10.24 μm, 25% of water was added as a binder, and a rotary mixing granulator was used. p. stirring at 20 rpm for 20 minutes,
Zeolite granules having a size of 0.1 to 1 cm were prepared.
Next, the granulated zeolite was heated at a heating rate of 100 ° C./H.
The temperature was raised to a specific temperature of 200 to 700 ° C. at r, and kept at that temperature for 2 hours, and then the furnace was released. The zeolite granules thus obtained were subjected to a pore distribution measurement by a mercury intrusion method (a mercury contact angle of 130 degrees and a surface tension of 484 dyne).
/ Cm) and specific surface area (BET one-point method, nitrogen adsorption method). FIG. 1 shows the measurement results of the pore diameter. In FIG. 1, the horizontal axis is the firing temperature [° C.] and the vertical axis is the pore diameter [μm]. In firing at 300 to 600 ° C,
It is recognized that the pore diameter tends to gradually increase as the firing temperature is increased. At 200 ° C., which is lower than 300 ° C., the same as at 300 ° C.
Even at 700 ° C. higher than 00 ° C., the same result as at 600 ° C. was obtained. Therefore, in order to produce a granulated product having a pore size of 0.05 to 0.3 μm, the rotational speed of the rotary mixing type granulator is set to 900 rpm. p. m to form a granulated body, which has been found to be fired at 300 to 600 ° C. FIG. 2 shows the specific surface area measurement results. In FIG. 2, the horizontal axis represents the firing temperature [° C.], and the vertical axis represents the specific surface area [m 2 /
g]. The specific surface area value is slightly smaller than 38 m 2 / g of the natural zeolite ore at any firing temperature, and the value decreases as the firing temperature increases. However, it is estimated that the gas adsorption capacity of zeolite has not decreased so much.

【0008】実施例2 実施例1において、回転混合式造粒機の回転数を900
r.p.mの代わりに3000r.p.mで行ったこと
以外は実施例1と同様の方法でゼオライト造粒体を製造
した。このようにして得たゼオライト造粒体の細孔直径
測定結果を第3図に示す。焼成温度が高くなるにしたが
い細孔直径が大きくなる傾向がみられた。0.05〜
0.5μmの細孔直径を有する造粒体を製造するには、
回転混合式造粒機の回転数を3000r.p.mに設定
して造粒体を作り、それを200〜700℃の特定温度
で焼成すれば良いことが明らかになった。第4図に比表
面積測定値を示す。焼成温度が高くなるにつれて比表面
積が低下する傾向がみられたがゼオライト原鉱の値と比
べて大きく減少しているとはいえないことからガス吸着
能の大きな低下はみられないと思われる。
Example 2 In Example 1, the rotational speed of the rotary mixing type granulator was set to 900
r. p. m instead of 3000r. p. m, zeolite granules were produced in the same manner as in Example 1. FIG. 3 shows the measurement results of the pore diameter of the zeolite granules thus obtained. The pore diameter tended to increase as the firing temperature increased. 0.05 ~
To produce granules having a pore diameter of 0.5 μm,
The rotation speed of the rotary mixing type granulator is set to 3000 rpm. p. It was clarified that a granulated body was prepared at m and fired at a specific temperature of 200 to 700 ° C. FIG. 4 shows the measured values of the specific surface area. Although the specific surface area tended to decrease as the firing temperature increased, it cannot be said that the specific surface area decreased significantly as compared with the value of the raw zeolite ore, so it is considered that the gas adsorption ability did not significantly decrease.

【0009】実施例3 実施例1において、天然ゼオライト粉100重量部の代
わりに天然ゼオライト粉90重量部とポリビニルアルコ
ール10重量部の混合物を使用した以外は実施例1と同
様の方法でゼオライト造粒体を製造した。このようにし
て得たゼオライト造粒体の細孔直径測定結果を第5図に
示す。200〜700℃の特定の温度で焼成することに
より0.5〜1μmの細孔直径を持つ造粒体を得た。実
施例1,2で得た造粒体の細孔直径に対して、わずかに
大きな細孔直径の造粒体を得た。第6図に比表面積測定
値を示す。いずれの温度で焼成した場合でも20m2
g以上の値を示し、わずかに原鉱の値よりも低下してい
るが大きな吸着能の低下は認められなかった。
Example 3 Zeolite granulation was carried out in the same manner as in Example 1 except that a mixture of 90 parts by weight of natural zeolite powder and 10 parts by weight of polyvinyl alcohol was used instead of 100 parts by weight of natural zeolite powder. Body manufactured. FIG. 5 shows the pore diameter measurement results of the zeolite granules thus obtained. By baking at a specific temperature of 200 to 700 ° C., a granule having a pore diameter of 0.5 to 1 μm was obtained. Granules having pore diameters slightly larger than the pore diameters of the granules obtained in Examples 1 and 2 were obtained. FIG. 6 shows the measured values of the specific surface area. 20 m 2 /
g or more, slightly lower than the value of the ore, but no significant decrease in adsorption capacity was observed.

【0010】実施例4 実施例1において、天然ゼオライト粉100重量部の代
わりに天然ゼオライト粉80重量部とベントナイト20
重量部の混合物を使用した以外は実施例1と同様の方法
でゼオライト造粒体を製造した。このようにして得たゼ
オライト造粒体の細孔直径測定結果を第7図に示す。2
00〜400℃の焼成では0.05μmの細孔直径を、
また500〜700℃の焼成では0.07μmの細孔直
径を持つ造粒体を得た。第8図に比表面積測定結果を示
す。実施例1,2,3と同様に焼成温度の上昇とともに
比表面積値は低下したものの大きな減少は見られなかっ
た。
Example 4 In Example 1, 80 parts by weight of natural zeolite powder and bentonite 20 were used instead of 100 parts by weight of natural zeolite powder.
A granulated zeolite was produced in the same manner as in Example 1 except that the mixture in parts by weight was used. FIG. 7 shows the measurement results of the pore diameter of the zeolite granules thus obtained. 2
In the firing at 00 to 400 ° C., a pore diameter of 0.05 μm is obtained.
In addition, a granule having a pore diameter of 0.07 μm was obtained by firing at 500 to 700 ° C. FIG. 8 shows the specific surface area measurement results. As in Examples 1, 2, and 3, the specific surface area value decreased with an increase in the firing temperature, but no significant decrease was observed.

【0011】実施例1,2,3及び4で得たゼオライト
造粒体について、表1に製造条件と細孔直径並びに比表
面積を測定した結果を示す。
With respect to the zeolite granules obtained in Examples 1, 2, 3, and 4, Table 1 shows the production conditions, the results of measuring the pore diameter and the specific surface area.

【0012】[0012]

【発明の効果】本発明によれば、0.05〜1μm範囲
の細孔直径を有し、かつ細孔分布がシャープで、しかも
ゼオライト原鉱に対して比表面積等の性質の低下がみら
れないゼオライト造粒体を得られた、このゼオライト造
粒体は制御された細孔を目的に応じて利用することによ
り、ガス吸着材、水処理などの既存の分野のみならず、
各種分離材や触媒担体等への応用が期待される。
According to the present invention, it has a pore diameter in the range of 0.05 to 1 μm, a sharp pore distribution, and a decrease in properties such as specific surface area with respect to the raw zeolite ore. Obtained no zeolite granules, this zeolite granules by using the controlled pores according to the purpose, gas adsorbents, as well as existing fields such as water treatment,
It is expected to be applied to various separation materials and catalyst carriers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1におけるゼオライト造粒体の
焼成温度と細孔直径との関係図。
FIG. 1 is a diagram showing the relationship between the firing temperature of a granulated zeolite and pore diameter in Example 1 of the present invention.

【図2】本発明の実施例1におけるゼオライト造粒体の
焼成温度と比表面積との関係図。
FIG. 2 is a diagram showing the relationship between the firing temperature and the specific surface area of the zeolite granules in Example 1 of the present invention.

【図3】本発明の実施例2における図1の関係図。FIG. 3 is a relationship diagram of FIG. 1 in a second embodiment of the present invention.

【図4】本発明の実施例2における図2の関係図。FIG. 4 is a relationship diagram of FIG. 2 in a second embodiment of the present invention.

【図5】本発明の実施例3における図1の関係図。FIG. 5 is a relationship diagram of FIG. 1 in a third embodiment of the present invention.

【図6】本発明の実施例3における図2の関係図。FIG. 6 is a relationship diagram of FIG. 2 in a third embodiment of the present invention.

【図7】本発明の実施例4における図1の関係図。FIG. 7 is a relationship diagram of FIG. 1 in a fourth embodiment of the present invention.

【図8】本発明の実施例4における図2の関係図。FIG. 8 is a relationship diagram of FIG. 2 in a fourth embodiment of the present invention.

【表1】 [Table 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が0.1〜100μmのゼオラ
イト粉末をそのまま、もしくは有機水溶性高分子物質や
粘土鉱物を添加して、これらに結合材として適量の水を
加え、回転混合式造粒機により造粒を行い、粒径0.1
mm〜2cmのサイズの造粒体を製造し、次に、200〜7
00℃で焼成を行うことにより、細孔径が0.05〜1
μmに制御され、さらに細孔径分布がシャープで、かつ
比表面積がゼオライト原鉱と同様の10〜50m2 /g
であるゼオライト造粒体を得ることを特徴とする細孔径
を制御したゼオライト造粒体の製造方法。
1. A zeolite powder having an average particle size of 0.1 to 100 μm as it is, or an organic water-soluble polymer substance or a clay mineral is added thereto, and an appropriate amount of water is added thereto as a binder, followed by a rotary mixing method. Granulate with a granulator, particle size 0.1
to produce granules with a size of mm to 2 cm,
By calcining at 00 ° C., the pore size becomes 0.05 to 1
μm, the pore size distribution is sharp, and the specific surface area is 10 to 50 m 2 / g similar to that of the zeolite ore.
A method for producing a zeolite granule having a controlled pore size, characterized by obtaining a zeolite granule as described above.
JP17305797A 1997-06-12 1997-06-12 Production of zeolite granule with controlled pore size Pending JPH111318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17305797A JPH111318A (en) 1997-06-12 1997-06-12 Production of zeolite granule with controlled pore size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17305797A JPH111318A (en) 1997-06-12 1997-06-12 Production of zeolite granule with controlled pore size

Publications (1)

Publication Number Publication Date
JPH111318A true JPH111318A (en) 1999-01-06

Family

ID=15953428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17305797A Pending JPH111318A (en) 1997-06-12 1997-06-12 Production of zeolite granule with controlled pore size

Country Status (1)

Country Link
JP (1) JPH111318A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128523A (en) * 1998-10-19 2000-05-09 Mitsubishi Chemicals Corp Method for forming zeolite
JP2006137636A (en) * 2004-11-12 2006-06-01 Chubu Electric Power Co Inc Method for granulating artificial zeolite and artificial zeolite granule
JP2007519774A (en) * 2003-12-22 2007-07-19 フレデレール ウォーター システムズ ゲーエムベーハー Bacterial carrier material
JP2007223868A (en) * 2006-02-27 2007-09-06 Yoshiyuki Suzuki Method for manufacturing ceramic solid article
JP2018531150A (en) * 2015-07-07 2018-10-25 ノーティラス キャピタル コーポレイション Improved material for rapid gas adsorption in loudspeakers
US10667038B2 (en) 2016-12-07 2020-05-26 Apple Inc. MEMS mircophone with increased back volume

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128523A (en) * 1998-10-19 2000-05-09 Mitsubishi Chemicals Corp Method for forming zeolite
JP2007519774A (en) * 2003-12-22 2007-07-19 フレデレール ウォーター システムズ ゲーエムベーハー Bacterial carrier material
JP2006137636A (en) * 2004-11-12 2006-06-01 Chubu Electric Power Co Inc Method for granulating artificial zeolite and artificial zeolite granule
JP4611717B2 (en) * 2004-11-12 2011-01-12 中部電力株式会社 Method for granulating artificial zeolite and granulated product of artificial zeolite
JP2007223868A (en) * 2006-02-27 2007-09-06 Yoshiyuki Suzuki Method for manufacturing ceramic solid article
JP2018531150A (en) * 2015-07-07 2018-10-25 ノーティラス キャピタル コーポレイション Improved material for rapid gas adsorption in loudspeakers
US10349164B2 (en) 2015-07-07 2019-07-09 Nautilus Capital Corporation Material for rapid gas sorption in loudspeakers
US10667038B2 (en) 2016-12-07 2020-05-26 Apple Inc. MEMS mircophone with increased back volume

Similar Documents

Publication Publication Date Title
JPS6291410A (en) Calcium phosphate hydroxyapatite for chromatographic separation and its production
JPH01264978A (en) Porous inorganic material
JPH0930809A (en) Production of silica gel
JP3381948B2 (en) Method for producing highly active calcium oxide porous body
US5643347A (en) Process for manufacture of silica granules
US6251823B1 (en) Production of spherical catalyst carrier
JP3417490B2 (en) Calcium oxide porous granular composite and method for producing the same
JPH111318A (en) Production of zeolite granule with controlled pore size
JPH0674136B2 (en) Zeolite compact and manufacturing method thereof
JPH01275480A (en) Biological carrier
JPH03252304A (en) Production of porous ceramic grain
JPH04322746A (en) Silica composition having high porosity and crushing strength and method for preparing the same
JP2000070730A (en) Production of spherical carrier for carrying catalyst
JPS6065725A (en) Preparation of spherical particles of titania
JP4715230B2 (en) Aluminophosphate granule and method for producing the same
JPH04175213A (en) Production of cellular spherical apatite grain
JPH04118047A (en) Adsorbent and filler for separation and refining and manufacture thereof
JP2881875B2 (en) High strength molded activated carbon
JPH11292651A (en) Zeolite-forming porous body and its production
JPS61266306A (en) Fine spherical particle of crystalline aluminosilicate and its preparation
KR101644310B1 (en) Aluminosilicates structure, manufacturing method thereof and use using the same
JPH04108654A (en) Starting material for extrusion-molding zeolite and its production
JP3772412B2 (en) Low-abrasion zeolite bead molded body and method for producing the same
JPH10167724A (en) Production of spherical carrier
JPH11246282A (en) X-zeolite bead compact and its production