JPH11106258A - Baxsr1-xti03-y target material for sputtering - Google Patents
Baxsr1-xti03-y target material for sputteringInfo
- Publication number
- JPH11106258A JPH11106258A JP9283202A JP28320297A JPH11106258A JP H11106258 A JPH11106258 A JP H11106258A JP 9283202 A JP9283202 A JP 9283202A JP 28320297 A JP28320297 A JP 28320297A JP H11106258 A JPH11106258 A JP H11106258A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- sputtering
- target material
- sintered compact
- relative density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013077 target material Substances 0.000 title claims abstract description 18
- 238000004544 sputter deposition Methods 0.000 title claims abstract description 13
- 239000013078 crystal Substances 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 16
- 239000010409 thin film Substances 0.000 abstract description 15
- 239000000843 powder Substances 0.000 abstract description 12
- 230000007547 defect Effects 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000005245 sintering Methods 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 abstract description 3
- 238000007731 hot pressing Methods 0.000 abstract description 3
- 238000001513 hot isostatic pressing Methods 0.000 abstract 1
- 238000005477 sputtering target Methods 0.000 description 13
- 238000010304 firing Methods 0.000 description 7
- 230000002159 abnormal effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、MOS−ULSI
の高誘電体キャパシタ薄膜を、スパッタリング法で形成
する際に用いられるBax Sr1-x TiO3-y の組成式
で表されるスパッタリング用ターゲット材に関するもの
であり、特にはパーティクル欠陥の非常に少ない薄膜の
製造を可能とし、同時に機械的強度を向上させた、スパ
ッタリング用ターゲット材に関する。The present invention relates to a MOS-ULSI
The present invention relates to a sputtering target material represented by a composition formula of Ba x Sr 1-x TiO 3-y used when forming a high dielectric capacitor thin film of the present invention by a sputtering method. The present invention relates to a sputtering target material that enables the production of a small number of thin films and at the same time improves mechanical strength.
【0002】[0002]
【従来の技術】近年、半導体メモリーのキャパシタとし
て、高い誘電率を有するSrTiO3やそのSrサイト
の一部をBaで置換したBax Sr1-x TiO3 の薄膜
を用いることが研究されており、このような高誘電性薄
膜の成膜方法の一つにターゲットを用いてのスパッタリ
ング法があるが、SrTiO3 やそのSrサイトの一部
をBaで置換したBax Sr1-x TiO3 は、焼成中に
異常粒成長が起こりやすい材料であるため、緻密なスパ
ッタリング用ターゲットを得ることが困難であり、ま
た、緻密化のために高温で焼成すると異常粒成長の発達
により結晶粒径が20μm以上の焼結体組織になってし
まう。2. Description of the Related Art In recent years, the use of a thin film of SrTiO 3 having a high dielectric constant or a Ba x Sr 1 -x TiO 3 in which a part of the Sr site is replaced with Ba has been studied as a capacitor of a semiconductor memory. One of the methods for forming such a high dielectric thin film is a sputtering method using a target. SrTiO 3 or Ba x Sr 1-x TiO 3 in which a part of the Sr site is replaced with Ba is used. In addition, it is difficult to obtain a dense sputtering target because the material is liable to cause abnormal grain growth during firing, and the crystal grain size is 20 μm due to the development of abnormal grain growth when firing at high temperature for densification. The above sintered body structure is obtained.
【0003】このような焼結体をスパッタリング用ター
ゲットとして用いると、成膜された薄膜上にパーティク
ル(ターゲットから放出される粒子のクラスター化した
もの)と呼ばれる欠陥が多数発生し、歩留まりが大幅に
低下するという問題点があった。また、焼結体をターゲ
ット寸法に機械加工する際、密度の低い焼結体或いは結
晶粒径の大きな焼結体は機械的強度が弱いため、歩留ま
り低下、不純物による汚染等の問題があった。When such a sintered body is used as a sputtering target, many defects called particles (clustered particles emitted from the target) are generated on the formed thin film, and the yield is greatly increased. There was a problem that it decreased. Further, when a sintered body is machined to a target size, a sintered body having a low density or a sintered body having a large crystal grain size has low mechanical strength, and thus has problems such as a reduction in yield and contamination by impurities.
【0004】[0004]
【発明が解決しようとする課題】本発明の課題は、一般
式Bax Sr1-x TiO3-y (但し、0≦x<1、0≦
y<0.5)で表されるペロブスカイト型複合酸化物焼
結体から成るスパッタリング用ターゲット材において、
パーティクル欠陥の非常に少ない薄膜の製造を可能と
し、また同時にその機械的強度を向上させることであ
る。従来技術において、Bax Sr1-x TiO3-y で表
されるペロブスカイト型複合酸化物焼結体から成るスパ
ッタリング用ターゲット材における、こうしたパーティ
クル欠陥と機械的強度の問題に正面から取り組んだもの
はない。The object of the present invention is to provide a compound of the general formula Ba x Sr 1-x TiO 3-y (where 0 ≦ x <1, 0 ≦
y <0.5) a sputtering target material comprising a perovskite-type composite oxide sintered body represented by the following formula:
An object of the present invention is to make it possible to produce a thin film having very few particle defects, and at the same time to improve its mechanical strength. In the prior art, those that directly address such problems of particle defects and mechanical strength in a sputtering target material composed of a perovskite-type composite oxide sintered body represented by Ba x Sr 1-x TiO 3-y Absent.
【0005】[0005]
【課題を解決するための手段】そこで、本発明者らは上
述の課題を解決するため検討した結果、Bax Sr1- x
TiO3-y の組成式で表される焼結体の相対密度を97
%以上、かつ焼結体の結晶粒径を3μm以下とすること
により、パーティクル欠陥が1個/cm2 以下となり、
また、機械加工による歩留まりが著しく向上することを
見いだした。緻密化のために高温で焼成すると異常粒成
長の発達により結晶粒径の大きな焼結体組織になるのが
通常であるが、本発明は製造方法の適切なコントロール
を通してこの相反する要件を同時に実現することに成功
したものである。The inventors of the present invention have studied to solve the above-mentioned problems and found that Ba x Sr 1- x
The relative density of the sintered body represented by the composition formula of TiO 3-y is 97
% Or more, and the crystal grain size of the sintered body is 3 μm or less, the particle defect becomes 1 / cm 2 or less,
Further, they have found that the yield by machining is significantly improved. Normally, firing at high temperature for densification results in a sintered body structure with a large crystal grain size due to the development of abnormal grain growth, but the present invention simultaneously realizes these conflicting requirements through appropriate control of the manufacturing method. Was successful.
【0006】かくして、本発明は、一般式Bax Sr
1-x TiO3-y (但し、0≦x<1、0≦y<0.5)
で表されるペロブスカイト型複合酸化物焼結体から成る
スパッタリング用ターゲット材において、焼結体の相対
密度が97%以上であり、また、焼結体の平均結晶粒径
が3μm以下であることを特徴とするスパッタリング用
ターゲット材を提供する。Thus, the present invention provides a compound of the general formula Ba x Sr
1-x TiO 3-y (however, 0 ≦ x <1, 0 ≦ y <0.5)
In the sputtering target material composed of a perovskite-type composite oxide sintered body represented by the following formula, the relative density of the sintered body is 97% or more, and the average crystal grain size of the sintered body is 3 μm or less. Provided is a sputtering target material characterized by the following.
【0007】[0007]
【発明の実施の形態】以下に、上記の相対密度及び平均
結晶粒径特性を有するターゲット材料の作製方法に関し
て詳細に説明する。出発原料には純度3N以上、平均粒
径が1μm以下のBaCO3 及び/又はSrCO3 、T
iO2 粉を用いる。これらの原料粉を所定の組成となる
ように秤量し、アルコール等の媒体を介して湿式混合し
た後、850〜1000℃の熱合成によって平均粒径が
1μm以下のBax Sr1-x TiO3 合成粉末を得る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for producing a target material having the above-described relative density and average grain size characteristics will be described in detail. Starting materials include BaCO 3 and / or SrCO 3 having a purity of 3N or more and an average particle size of 1 μm or less, T
Use iO 2 powder. These raw material powders are weighed so as to have a predetermined composition, wet-mixed through a medium such as alcohol, and then subjected to thermal synthesis at 850 to 1000 ° C. to have Ba x Sr 1-x TiO 3 having an average particle size of 1 μm or less. Obtain a synthetic powder.
【0008】焼成方法には、ホットプレス法やこれとH
IPを併用する方法、及び常圧焼結法とHIPを併用す
る方法がある。ホットプレス法の場合、熱合成によって
得られた平均粒径1μm以下のBaxSr1-x TiO3
粉末をAr雰囲気中で1250〜1350℃、15〜3
0MPaで焼成することにより相対密度97%以上そし
て結晶粒径3μm以下の焼結体を得ることができる。こ
の際、焼結温度が1350℃を超えると、密度は上昇す
るが、異常粒成長が起こり粒径20μm以上の結晶組織
或いは異常粒と微細粒の混合組織となり、機械的強度が
低下する。また、焼成温度1250℃未満では、相対密
度97%以上の焼結体を得ることができない。[0008] The firing method includes a hot press method and a hot press method.
There are a method using IP together and a method using both normal pressure sintering and HIP. In the case of the hot pressing method, Ba x Sr 1-x TiO 3 having an average particle size of 1 μm or less obtained by thermal synthesis.
The powder is placed in an Ar atmosphere at 1250-1350 ° C., 15-3
By firing at 0 MPa, a sintered body having a relative density of 97% or more and a crystal grain size of 3 μm or less can be obtained. At this time, if the sintering temperature exceeds 1350 ° C., the density increases, but abnormal grain growth occurs, resulting in a crystal structure having a grain size of 20 μm or more or a mixed structure of abnormal grains and fine grains, resulting in a decrease in mechanical strength. If the firing temperature is lower than 1250 ° C., a sintered body having a relative density of 97% or more cannot be obtained.
【0009】ホットプレス法とHIPを併用する場合
は、ホットプレス温度を1180〜1350℃とするこ
とにより焼結体表面の気孔形態を閉気孔とし、1250
〜1350℃、50MPa以上でHIP処理することに
より、相対密度97%以上、結晶粒径3μm以下の焼結
体を得ることができる。常圧焼結法で相対密度97%以
上の焼結体を得るためには、1400℃以上での長保持
時間が必要となり、異常粒が著しく発達してしまう。そ
こで、1350〜1450℃の焼成温度において適度の
保持時間により相対密度90〜94%、焼結体表面の気
孔が閉気孔である焼結体を作製し、1250〜1350
℃、50MPa以上でHIP処理することにより相対密
度97%以上、結晶粒径3μm以下の焼結体を得ること
ができる。また、HIP処理の際、焼結体は高温で低酸
素雰囲気に曝されるため、酸素欠陥が生成し電気伝導性
を有するBa1-x Srx TiO3-y 焼結体が得られる。When the hot press method and the HIP are used together, the hot press temperature is set to 1180 to 1350 ° C. to make the pore form on the sintered body surface closed pores.
By performing the HIP treatment at 〜1350 ° C. and 50 MPa or more, a sintered body having a relative density of 97% or more and a crystal grain size of 3 μm or less can be obtained. In order to obtain a sintered body having a relative density of 97% or more by the normal pressure sintering method, a long holding time at 1400 ° C. or more is required, and abnormal grains are remarkably developed. Therefore, at a firing temperature of 1350 to 1450 ° C., a sintered body having a relative density of 90 to 94% and pores on the surface of the sintered body being closed pores is produced by an appropriate holding time, and 1250 to 1350
A sintered body having a relative density of 97% or more and a crystal grain size of 3 μm or less can be obtained by performing the HIP treatment at 50 ° C. or more at 50 ° C. In addition, during the HIP treatment, the sintered body is exposed to a low-oxygen atmosphere at a high temperature, so that a Ba 1-x Sr x TiO 3-y sintered body having electrical conductivity is obtained.
【0010】こうして、一般式Bax Sr1-x TiO
3-y (但し、0≦x<1、0≦y<0.5)で表される
ペロブスカイト型複合酸化物焼結体スパッタリング用タ
ーゲット材において、その焼結体の相対密度を97%以
上かつ焼結体の結晶粒径を3μm以下とすることができ
る。得られた焼結体は、スパッタリング用ターゲット材
の形状に機械加工される。Thus, the general formula Ba x Sr 1-x TiO
3-y (where 0 ≦ x <1, 0 ≦ y <0.5) In a target material for sputtering a perovskite-type composite oxide sintered body, the relative density of the sintered body is 97% or more and The crystal grain size of the sintered body can be 3 μm or less. The obtained sintered body is machined into a shape of a sputtering target material.
【0011】上記製法により作製した相対密度97%以
上、結晶粒径3μm以下のBax Sr1-x TiO3-y
(但し、0≦x<1、0≦y<0.5)組成で表される
焼結体は、スパッタリング用ターゲットに加工する際の
歩留まりが著しく向上し、また、これをスパッタリング
用ターゲットに用いて成膜したBax Sr1-x TiO3
薄膜には、パーティクル欠陥が1個/cm2 以下とな
り、半導体メモリの製造歩留まりが著しく向上する。Ba x Sr 1-x TiO 3-y having a relative density of 97% or more and a crystal grain size of 3 μm or less prepared by the above-mentioned method.
(However, the sintered body represented by the composition of 0 ≦ x <1, 0 ≦ y <0.5) has a remarkably improved yield when processed into a sputtering target, and is used as a sputtering target. Ba x Sr 1-x TiO 3
In the thin film, the number of particle defects becomes 1 / cm 2 or less, and the production yield of the semiconductor memory is remarkably improved.
【0012】[0012]
【実施例】以下、本発明の実施例及び比較例並びに試験
結果を説明する。EXAMPLES Examples and comparative examples of the present invention and test results will be described below.
【0013】(実施例1)純度4N、粒径1μm以下の
BaCO3 粉、SrCO3 粉及びTiO2 粉をモル比で
1:1:2となるように配合し、エタノールを媒体とし
た湿式ボールミル法により混合を行った。混合スラリー
を乾燥した後、大気中、1000℃で熱合成を行いBa
0.5 Sr0.5 TiO3 合成粉末を得た。この合成粉末に
成形助剤として有機バインダーを添加し、金型を用いて
予備成形を行った後、CIPで本成形した。添加した有
機バインダーを除去するため、大気中で脱脂処理を行っ
た後、大気中、1370℃で2h焼成を行い、相対密度
93%の予備焼結体を得た。この焼結体を更に、130
0℃で1時間、100MPaでHIP処理し、焼結体の
密度、組織、抗折力を測定した。次に、同様にして作製
した焼結体をスパッタリング用ターゲット材の形状(直
径:4inch、厚さ:6mm)に機械加工し、基板温度:5
50℃、スパッタガス圧力:Ar=0.3Pa、O2 =
0.1Pa、スパッタ電力密度:3W/cm2 の条件で
RFスパッタリング法により(Ba、Sr)TiO3 薄
膜を成膜し、薄膜上のパーティクル数を計測した。その
結果を、表1に示す。(Example 1) A wet ball mill in which BaCO 3 powder, SrCO 3 powder and TiO 2 powder having a purity of 4N and a particle size of 1 μm or less were mixed in a molar ratio of 1: 1: 2, and ethanol was used as a medium. Mixing was performed by the method. After the mixed slurry is dried, thermal synthesis is performed at 1000 ° C. in the air to form Ba.
0.5 Sr 0.5 TiO 3 synthetic powder was obtained. An organic binder was added as a molding aid to this synthetic powder, pre-molded using a mold, and then fully molded by CIP. In order to remove the added organic binder, a degreasing treatment was performed in the air, followed by baking in the air at 1370 ° C. for 2 hours to obtain a preliminary sintered body having a relative density of 93%. This sintered body is further subjected to 130
HIP treatment was performed at 100 MPa for 1 hour at 0 ° C., and the density, structure, and transverse rupture strength of the sintered body were measured. Next, the sintered body produced in the same manner was machined into the shape of a sputtering target material (diameter: 4 inches, thickness: 6 mm), and the substrate temperature: 5
50 ° C., sputtering gas pressure: Ar = 0.3 Pa, O 2 =
A (Ba, Sr) TiO 3 thin film was formed by RF sputtering under the conditions of 0.1 Pa and a sputtering power density of 3 W / cm 2 , and the number of particles on the thin film was measured. Table 1 shows the results.
【0014】実施例1により得られた焼結体の相対密度
は、99.2%であり、結晶粒径は2.3μmの微細な
組織であった。3点曲げによる抗折力は220MPaで
あり、機械加工時のターゲットの割れは無かった。これ
らのターゲットを用いて成膜した薄膜中のパーティクル
数は0.2個/cm2 と非常に少なかった。The sintered body obtained in Example 1 had a relative density of 99.2% and a fine structure having a crystal grain size of 2.3 μm. The bending strength due to the three-point bending was 220 MPa, and there was no crack in the target during machining. The number of particles in the thin film formed by using these targets was as small as 0.2 particles / cm 2 .
【0015】(実施例2)実施例1と同条件で合成した
Ba0.5 Sr0.5 TiO3 粉を用い、1300℃、30
分及び30MPaの条件でホットプレスした焼結体を作
製し、実施例1と同様の評価を行った。Example 2 Ba 0.5 Sr 0.5 TiO 3 powder synthesized under the same conditions as in Example 1 was used at 1300 ° C. and 30 ° C.
A sintered body hot-pressed under the conditions of 30 minutes and 30 MPa was produced, and the same evaluation as in Example 1 was performed.
【0016】実施例2により得られた焼結体の相対密度
は、98.9%であり、結晶粒径は1.6μmの微細な
組織であった。3点曲げによる抗折力は219MPaで
あり、機械加工時のターゲットの割れは無かった。これ
らのターゲットを用いて成膜した薄膜中のパーティクル
数は0.4個/cm2 と非常に少なかった。The sintered body obtained in Example 2 had a relative density of 98.9% and a fine structure having a crystal grain size of 1.6 μm. The transverse rupture strength by three-point bending was 219 MPa, and there was no cracking of the target during machining. The number of particles in a thin film formed using these targets was as low as 0.4 particles / cm 2 .
【0017】(比較例)実施例と同条件で合成したBa
0.5 Sr0.5 TiO3 粉を用い、1300℃で10時間
の条件及び1500℃で保持なしの条件で焼成した焼結
体を得た。得られた焼結体を1300℃で1時間、10
0MPaの条件でHIPし、焼結体の密度、組織、抗折
力を測定した。また、これら焼結体を実施例と同条件で
スパッタリング用ターゲットに機械加工し、成膜して、
薄膜中のパーティクル数を計測した。その結果を表1に
示す。(Comparative Example) Ba synthesized under the same conditions as in the example
Using 0.5 Sr 0.5 TiO 3 powder, a sintered body fired at 1300 ° C. for 10 hours and at 1500 ° C. without holding was obtained. The obtained sintered body was heated at 1300 ° C. for 1 hour for 10 hours.
HIP was performed under the condition of 0 MPa, and the density, structure, and transverse rupture strength of the sintered body were measured. Further, these sintered bodies were machined into a sputtering target under the same conditions as in the example, and a film was formed.
The number of particles in the thin film was measured. Table 1 shows the results.
【0018】1300℃10時間の焼成を行った焼結体
は、平均粒径は1μm以下と非常に微細ではあったが、
HIP後の相対密度は88%と低く、抗折力も100M
Pa以下で、ターゲット加工時にクラックの発生が見ら
れた。また、1500℃で焼成した焼結体の相対密度は
約97%と比較的高密度となったが、平均粒径は68μ
mと大きくなり、抗折力は約140MPaと低かった。
これらのターゲット材を用いて成膜した薄膜中のパーテ
ィクル数は、いずれも4個/cm2 以上と多かった。The sintered body fired at 1300 ° C. for 10 hours had a very fine average particle size of 1 μm or less.
The relative density after HIP is as low as 88%, and the transverse rupture strength is 100M.
At Pa or less, cracks were observed during target processing. The relative density of the sintered body fired at 1500 ° C. was relatively high at about 97%, but the average particle size was 68 μm.
m, and the transverse rupture strength was as low as about 140 MPa.
The number of particles in a thin film formed using these target materials was as large as 4 particles / cm 2 or more.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【発明の効果】以上説明したように、本発明によれば、
Bax Sr1-x TiO3-y の組成式で表されるターゲッ
ト材の相対密度を97%以上、そして平均粒径を3μm
以下とすることによって機械的強度を向上させ、ターゲ
ット加工歩留まりの向上、加工時の汚染を防止すること
ができる。また、このターゲットを使用することによっ
て、パーティクル欠陥の非常に少ない薄膜をスパッタリ
ング法で得ることができ、半導体メモリの歩留まり、及
び信頼性を向上することができる。As described above, according to the present invention,
The relative density of the target material represented by the composition formula of Ba x Sr 1-x TiO 3-y is 97% or more, and the average particle size is 3 μm.
By performing the following, the mechanical strength can be improved, the target processing yield can be improved, and contamination during processing can be prevented. Further, by using this target, a thin film having very few particle defects can be obtained by a sputtering method, and the yield and reliability of the semiconductor memory can be improved.
Claims (1)
し、0≦x<1、0≦y<0.5)で表されるペロブス
カイト型複合酸化物焼結体から成るスパッタリング用タ
ーゲット材において、焼結体の相対密度が97%以上で
あり、また、焼結体の平均結晶粒径が3μm以下である
ことを特徴とするスパッタリング用ターゲット材。1. A sputtering method comprising a perovskite-type composite oxide sintered body represented by the general formula Ba x Sr 1-x TiO 3-y (where 0 ≦ x <1, 0 ≦ y <0.5) A target material for sputtering, wherein the relative density of the sintered body is 97% or more, and the average crystal grain size of the sintered body is 3 μm or less.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28320297A JP4017220B2 (en) | 1997-10-01 | 1997-10-01 | BaxSr1-xTiO3-y target material for sputtering |
US09/162,661 US6245203B1 (en) | 1997-10-01 | 1998-09-29 | BaxSr1-xTiO3-y target materials for sputtering |
TW087116156A TW509728B (en) | 1997-10-01 | 1998-09-29 | BaxSr1-xTiO3-y target materials for sputtering |
KR1019980041324A KR100308609B1 (en) | 1997-10-01 | 1998-10-01 | BaxSr1-xTiO3-y TARGET MATERIALS FOR SPUTTERING |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28320297A JP4017220B2 (en) | 1997-10-01 | 1997-10-01 | BaxSr1-xTiO3-y target material for sputtering |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007150931A Division JP2007223899A (en) | 2007-06-06 | 2007-06-06 | MANUFACTURING METHOD OF BaxSr1-xTiO3-y TARGET MATERIAL FOR SPATTERING |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11106258A true JPH11106258A (en) | 1999-04-20 |
JP4017220B2 JP4017220B2 (en) | 2007-12-05 |
Family
ID=17662456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28320297A Expired - Lifetime JP4017220B2 (en) | 1997-10-01 | 1997-10-01 | BaxSr1-xTiO3-y target material for sputtering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4017220B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002038263A (en) * | 2000-07-25 | 2002-02-06 | Ulvac Japan Ltd | Sputtering device |
JP2002241180A (en) * | 2001-02-09 | 2002-08-28 | Chubu Kiresuto Kk | Production process of high-density, metal oxide sintered compact target |
JP2007223899A (en) * | 2007-06-06 | 2007-09-06 | Nikko Kinzoku Kk | MANUFACTURING METHOD OF BaxSr1-xTiO3-y TARGET MATERIAL FOR SPATTERING |
JP2017014551A (en) * | 2015-06-29 | 2017-01-19 | Tdk株式会社 | Sputtering target |
-
1997
- 1997-10-01 JP JP28320297A patent/JP4017220B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002038263A (en) * | 2000-07-25 | 2002-02-06 | Ulvac Japan Ltd | Sputtering device |
JP2002241180A (en) * | 2001-02-09 | 2002-08-28 | Chubu Kiresuto Kk | Production process of high-density, metal oxide sintered compact target |
JP2007223899A (en) * | 2007-06-06 | 2007-09-06 | Nikko Kinzoku Kk | MANUFACTURING METHOD OF BaxSr1-xTiO3-y TARGET MATERIAL FOR SPATTERING |
JP2017014551A (en) * | 2015-06-29 | 2017-01-19 | Tdk株式会社 | Sputtering target |
Also Published As
Publication number | Publication date |
---|---|
JP4017220B2 (en) | 2007-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100550231C (en) | Electronic device and manufacture method thereof | |
CN110330332B (en) | Low-temperature sintering piezoelectric ceramic material without sintering aid and preparation method thereof | |
CN110128127B (en) | Bismuth ferrite-barium titanate-based lead-free piezoelectric ceramic with high piezoelectric performance and high-temperature stability and preparation method thereof | |
KR100477166B1 (en) | Oxide sinter and process for producing the same | |
US7915189B2 (en) | Yttrium oxide material, member for semiconductor-manufacturing apparatus, and method for producing yttrium oxide material | |
JP4017220B2 (en) | BaxSr1-xTiO3-y target material for sputtering | |
CN107285760B (en) | Preparation method of low-loss giant dielectric constant ceramic material | |
JP2990494B2 (en) | Multilayer ceramic capacitors | |
JP2017179415A (en) | Piezoelectric ceramic sputtering target, non-lead piezoelectric thin film and piezoelectric thin film element using the same | |
CN112062556B (en) | Calcium zirconate-strontium zirconate-barium zirconate solid solution ceramic material and preparation method thereof | |
JP2007223899A (en) | MANUFACTURING METHOD OF BaxSr1-xTiO3-y TARGET MATERIAL FOR SPATTERING | |
JP4544501B2 (en) | Conductive oxide sintered body, sputtering target comprising the sintered body, and methods for producing them | |
Takeuchi et al. | Rapid preparation of lead titanate sputtering target using spark‐plasma sintering | |
KR100308609B1 (en) | BaxSr1-xTiO3-y TARGET MATERIALS FOR SPUTTERING | |
CN110563460A (en) | Large-size preparation method of sensitive element material for pyroelectric sensor | |
JP3749631B2 (en) | BaxSr1-xTiO3-α sputtering target and method for producing the same | |
JP2004307247A (en) | Electroconductive oxide sintered compact, its manufacturing method, and sputtering target obtained by using the oxide sintered compact | |
JP2006256934A (en) | High-dielectric material and its manufacturing method | |
JPH11131223A (en) | Dielectric sputtering target | |
JPH068204B2 (en) | Method for manufacturing dielectric porcelain | |
JP2002226268A (en) | Method for manufacturing strontium/ruthenium oxide sintered compact and sintered compact | |
JP2001003164A (en) | Sputtering target for forming high dielectric film free from generation of cracking even in the case of high speed film formation | |
JP2003073173A (en) | Method of manufacturing sintered compact and sintered compact and spattering terget using it | |
CN108530068B (en) | Barium-calcium co-doped substituted La2NiO4Giant dielectric ceramic and preparation method thereof | |
JP3117247B2 (en) | Method of manufacturing piezoelectric ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061018 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070606 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070911 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070918 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |