Nothing Special   »   [go: up one dir, main page]

JPH1090541A - Trench type semiconductor polarized wave rotating element - Google Patents

Trench type semiconductor polarized wave rotating element

Info

Publication number
JPH1090541A
JPH1090541A JP23943296A JP23943296A JPH1090541A JP H1090541 A JPH1090541 A JP H1090541A JP 23943296 A JP23943296 A JP 23943296A JP 23943296 A JP23943296 A JP 23943296A JP H1090541 A JPH1090541 A JP H1090541A
Authority
JP
Japan
Prior art keywords
waveguide
ridge
optical waveguide
polarization
polarized wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23943296A
Other languages
Japanese (ja)
Other versions
JP3485292B2 (en
Inventor
Katsuaki Kyoku
克明 曲
Naoto Yoshimoto
直人 吉本
Takuo Hirono
卓夫 廣野
Uein Rui
ウェイン ルイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23943296A priority Critical patent/JP3485292B2/en
Publication of JPH1090541A publication Critical patent/JPH1090541A/en
Application granted granted Critical
Publication of JP3485292B2 publication Critical patent/JP3485292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor polarized wave rotating element with which a desired rotating angle is obtainable at a short element length and which is high in yield. SOLUTION: The semiconductor polarized wave rotating element which is provided with a rectangular parallelepiped-shaped ridge waveguide extending in an optical waveguide direction on an optical waveguide consisting of a flat planer optical waveguide layer 22 and clad layers 21, 22 holding the optical waveguide layer 22 therein and is formed with grooves 31 alternated with forming positions to the right and left at every specific period of the optical waveguide direction around the ridge waveguide, by which the element is constituted. As a result, the addition of periodic perturbations to the direction orthogonal with the optical waveguide is made possible and asymmetricalness arises in the field distribution of the waveguide and therefore, the coupling efficiency between a TE polarized wave and a TM polarized wave is increased. The efficient rotation of the polarized waves at the short element length is thus made possible, the structure is simplified and the yield of the manufacture is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信、光交換、
光情報処理等に用いる半導体偏波回転素子に関するもの
である。
TECHNICAL FIELD The present invention relates to optical communication, optical switching,
The present invention relates to a semiconductor polarization rotator used for optical information processing and the like.

【0002】[0002]

【従来の技術】光通信、光交換、光情報処理といった光
を利用したシステムの構築には、光ファイバや光導波
路、光スイッチ、光受光器、光増幅器等の光素子が必要
不可欠である。
2. Description of the Related Art Optical devices such as an optical fiber, an optical waveguide, an optical switch, an optical receiver, and an optical amplifier are indispensable for constructing a system using light such as optical communication, optical switching, and optical information processing.

【0003】また、これらの素子は、光ファイバと結合
したり、集積化を行うことで実用的部品にする必要があ
る。特に集積化することは、μm精度で必要とされる光
ファイバと半導体素子との光軸合わせを省くことができ
るので、堅牢となり信頼性の増加が予想できる。
Further, these elements need to be made into practical parts by coupling with an optical fiber or by integrating them. In particular, since the integration can eliminate the optical axis alignment between the optical fiber and the semiconductor element, which is required with a precision of μm, it is robust and reliability can be expected to increase.

【0004】ところで、通常の光ファイバにおいては、
光源からの偏波面を維持する機能は有しておらず、半導
体光スイッチや半導体レーザ型光増幅器と行った光機能
素子に入力されるときには、環境の変化に応じて信号光
の偏波状態が変動する可能性がある。
By the way, in a normal optical fiber,
It does not have the function of maintaining the plane of polarization from the light source, and when input to an optical functional element performed with a semiconductor optical switch or semiconductor laser type optical amplifier, the polarization state of the signal light changes according to environmental changes. May fluctuate.

【0005】しかしながら、上記のような半導体デバイ
スの導波構造は、一般に導波層又は活性層が等方的でな
く、幅が数ミクロンあるのに対して厚みがサブミクロン
オーダーであることや、導波層のスイッチング特性又は
活性層の増幅特性が偏波状態によって異なため、入力信
号光の偏波状態によって出力特性が大きく変動する。
However, the waveguide structure of a semiconductor device as described above generally has a waveguide layer or an active layer that is not isotropic and has a width of several microns but a thickness of a submicron order. Since the switching characteristics of the waveguide layer or the amplification characteristics of the active layer differ depending on the polarization state, the output characteristics vary greatly depending on the polarization state of the input signal light.

【0006】そこで、偏波依存性を解消する方法とし
て、偏波ダイバシティーの例(文献:H.Heidrich, F.Fi
dorra, M.Hamacher, K.Kaiser, K,Li, D.Trommer, and
G.Unterborsch: "Monolithically Integrated Heterody
ne Receivers based on InP",20th European Conferenc
e on Optical Communication(ECOC'94),pp77-80,1994)
が報告されている。
Therefore, as a method of eliminating the polarization dependence, an example of polarization diversity (references: H.Heidrich, F.Fi
dorra, M. Hamacher, K. Kaiser, K, Li, D. Trommer, and
G. Unterborsch: "Monolithically Integrated Heterody
ne Receivers based on InP ", 20th European Conferenc
e on Optical Communication (ECOC'94), pp77-80, 1994)
Have been reported.

【0007】この例では、TE成分で発振する局発光源
の出力にTM成分を持たせるために偏波回転素子を集積
化している。
In this example, a polarization rotation element is integrated in order to provide a TM component to the output of a local light source oscillating by a TE component.

【0008】この偏波回転素子は、図2に示すように、
xz平面内でz軸に対して左右非対称な導波路を備えて
いる。即ち、InP基板11とInPサイドクラッド層
13によってInGaAsP導波層12を挟んでなる平
板上に、x軸方向に階段状となるInPリッジ層14が
形成されている。さらに、このInPリッジ層14は、
特定の周期を持って、その左右を反転させ、z軸方向に
交互に並べられた形をなしている。
[0008] As shown in FIG.
It has a waveguide that is asymmetrical about the z-axis in the xz plane. That is, an InP ridge layer 14 having a step-like shape in the x-axis direction is formed on a flat plate having the InGaAsP waveguide layer 12 interposed between the InP substrate 11 and the InP side cladding layer 13. Further, this InP ridge layer 14
With a specific period, the left and right sides are reversed, and the shape is alternately arranged in the z-axis direction.

【0009】図3は、図2におけるAA線矢視方向断面
である。尚、BB線矢視方向の断面は、図3に対して左
右(y軸に対して)反転した構造となる。
FIG. 3 is a sectional view taken along the line AA in FIG. Note that the cross section in the direction of the arrow BB has a structure which is reversed left and right (with respect to the y axis) with respect to FIG.

【0010】一般に、TE偏波成分はx方向に、TM偏
波成分はy方向(x方向から見て90°の方向)にそれ
ぞれ電界を有しているので、これらは通常は直交してお
り、結合成分を有していない。
Generally, the TE polarization component has an electric field in the x direction, and the TM polarization component has an electric field in the y direction (a direction at 90 ° when viewed from the x direction). And has no binding component.

【0011】そこで、図3に示された左右非対称性を持
たせた構造をとることで、界分布にも非対称性が生じ、
境界部(階段状の段差部分近傍)の接続条件でx方向と
y方向の電界成分が結合を起こすため、TE偏波成分と
TM偏波成分の結合が生じる。
Therefore, by adopting the structure having the left-right asymmetry shown in FIG. 3, the field distribution also has asymmetry,
Since the electric field components in the x direction and the y direction are coupled under the connection condition at the boundary (near the stepped step portion), coupling of the TE polarization component and the TM polarization component occurs.

【0012】この結合成分が、TE偏波成分とTM偏波
成分との間での界分布の移行をもたらし、偏波面に対す
る回転成分を生じさせる。
The coupling component causes a transition of the field distribution between the TE polarization component and the TM polarization component, and generates a rotation component with respect to the polarization plane.

【0013】図3に示す構造とその左右を反転した構造
を並べて1ブロックとし、直線偏波光を入射した場合、
この1ブロックを通過した後は入射状態から角度θだけ
回転された直線偏波光に変換される。
When the structure shown in FIG. 3 and the structure obtained by inverting the structure are arranged to form one block, and linearly polarized light is incident,
After passing through this one block, the light is converted into linearly polarized light rotated by an angle θ from the incident state.

【0014】そこで、図2のように多段にブロック(例
えばn個)を並べることでnθという大きな回転角を得
ることができる。
Thus, a large rotation angle of nθ can be obtained by arranging blocks (for example, n blocks) in multiple stages as shown in FIG.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、図2に
示した構造では、TE偏波成分とTM偏波成分の結合効
率が非常に小さいので回転角θも小さくなり、所望の回
転角を得るには素子長が大きくなってしまう。
However, in the structure shown in FIG. 2, since the coupling efficiency between the TE polarization component and the TM polarization component is very small, the rotation angle θ also becomes small, and it is difficult to obtain a desired rotation angle. Increases the element length.

【0016】尚、図3とその反転した構造を1ブロック
として考える必要があるのは、回折格子の凹凸と同様
に、周期的にTE偏波成分とTM偏波成分の結合に逆位
相(符号の反転)を与えるためである。
It should be noted that FIG. 3 and its inverted structure need to be considered as one block because, similarly to the unevenness of the diffraction grating, the phase of the TE polarization component and the TM polarization component is periodically inverted (sign). Inversion).

【0017】図4は別の断面構造の報告例である。図
中、11はInP基板、12はInGaAsP導波層、
13はInPサイドクラッド層、14はInPリッジ層
である。この構成では、TE偏波成分とTM偏波成分と
の間の結合をもたらすために、導波層12の一部にエッ
チングによって段差を設け、導波路に斜めになった部分
を持たせている。これに伴って界分布の一番強い導波路
部分で斜め成分を有するため、TE偏波成分とTM偏波
成分の結合効率を高めることができる。
FIG. 4 is a report example of another sectional structure. In the figure, 11 is an InP substrate, 12 is an InGaAsP waveguide layer,
13 is an InP side cladding layer, and 14 is an InP ridge layer. In this configuration, a step is provided in a part of the waveguide layer 12 by etching to provide a coupling between the TE polarization component and the TM polarization component, and the waveguide has an oblique portion. . Along with this, since the waveguide portion having the strongest field distribution has an oblique component, the coupling efficiency between the TE polarization component and the TM polarization component can be increased.

【0018】しかし、この斜めの角度を精度よく作製で
きないため、作製の歩留まりを高くすることができない
という問題点が生じていた。
However, since this oblique angle cannot be manufactured with high accuracy, there has been a problem that the manufacturing yield cannot be increased.

【0019】本発明の目的は上記の問題点に鑑み、短い
素子長で所望の回転角を得られる歩留まりの高い半導体
偏波回転素子を提供することにある。
An object of the present invention is to provide a high-yield semiconductor polarization rotator capable of obtaining a desired rotation angle with a short element length in view of the above problems.

【0020】[0020]

【課題を解決するための手段】本発明は上記の目的を達
成するために、半導体基板上に形成されたリッジと、前
記リッジ内又は前記リッジの下部に位置する光導波層と
を1つ以上有し、前記リッジの長手方向の特定周期毎
に、前記リッジを中心として形成位置が左右に入れ替わ
るトレンチを備えたトレンチ型半導体偏波回転素子を提
案する。
According to the present invention, in order to achieve the above object, at least one ridge formed on a semiconductor substrate and at least one optical waveguide layer located in or below the ridge are provided. The present invention proposes a trench-type semiconductor polarization rotator having a trench, the formation position of which is switched to the left and right around the ridge at every specific period in the longitudinal direction of the ridge.

【0021】該トレンチ型半導体偏波回転素子によれ
ば、リッジの左右近傍にトレンチが導波路と平行に掘ら
れており、そのトレンチが特定周期長を有することで、
光導波路と直交する方向に対して周期的摂動を付加する
ことが可能となり、導波路の界分布に非対称性が生じる
ため、TE偏波とTM偏波との結合効果が増加し、短い
素子長で効率よく偏波を回転することができる。
According to the trench type semiconductor polarization rotating element, a trench is dug near the left and right of the ridge in parallel with the waveguide, and the trench has a specific period length.
Periodic perturbation can be added in the direction orthogonal to the optical waveguide, and asymmetry occurs in the field distribution of the waveguide, so that the coupling effect between TE polarization and TM polarization increases, and the short element length Thus, the polarization can be efficiently rotated.

【0022】[0022]

【発明の実施の形態】以下、図面に基づいて本発明の一
実施形態を説明する。図1は本発明の第1の実施形態の
半導体偏波回転素子を示す斜視図、図5は図1における
AA線矢視方向断面図である。この断面図は図3と同様
に、xy平面内のものである。図において、21はIn
P基板(半導体基板)、22はバンドギャップ波長1.
3μm帯のInGaAsP導波層(0.3μm厚)、2
3はInPサイドクラッド層(0.2μm厚)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a semiconductor polarization rotating element according to a first embodiment of the present invention, and FIG. 5 is a sectional view taken along line AA in FIG. This cross-sectional view is in the xy plane as in FIG. In the figure, 21 is In
A P substrate (semiconductor substrate) 22 has a band gap wavelength of 1.
3 μm band InGaAsP waveguide layer (0.3 μm thickness), 2
Reference numeral 3 denotes an InP side cladding layer (0.2 μm thick).

【0023】また、30はリッジ導波路で、InPサイ
ドクラッド層23の上に設けられ、光導波方向に延びる
直方体形状をなし、InPクラッド層24(1.5μm
厚)から構成され、このInPクラッド層の幅は2μm
である。
Reference numeral 30 denotes a ridge waveguide, which is provided on the InP side cladding layer 23, has a rectangular parallelepiped shape extending in the optical waveguide direction, and has an InP cladding layer 24 (1.5 μm
Thickness), and the width of the InP cladding layer is 2 μm.
It is.

【0024】31は溝(トレンチ)で、その深さは1.
0μm程度であり、幅2.0μmにわたり垂直に掘ら
れ、リッジ導波路30から0.5μm離れた左右両側に
長さ100μm間隔でz軸方向に周期定期に設けられて
おり、左右ではその掘られている領域が半周期ずれた構
造となっている。
Reference numeral 31 denotes a trench having a depth of 1.
It is dug vertically over a width of 2.0 μm, and is provided periodically in the z-axis direction at intervals of 100 μm on both the left and right sides separated from the ridge waveguide 30 by 0.5 μm. Are shifted by a half cycle.

【0025】このように溝31をリッジ導波路30の両
側に配列した素子を構成することにより、素子長800
μmで80度の偏波回転を実現した。
By forming an element in which the grooves 31 are arranged on both sides of the ridge waveguide 30 in this manner, an element length of 800
A polarization rotation of 80 degrees was realized at μm.

【0026】前述したように、第1の実施形態の半導体
偏波回転素子によれば、通常の光導波路上にリッジ導波
路30を形成すると共に、溝31をリッジ導波路30の
左右両側に周期的に交互に設けたことによって得られる
非対称性に基づいて、TE偏波とTM偏波との結合効果
が増加し、短い素子長で効率よく偏波を回転することが
できる。さらに構造が簡単であるため、歩留まりの高い
半導体偏波回転素子を得ることができる。
As described above, according to the semiconductor polarization rotator of the first embodiment, the ridge waveguide 30 is formed on the ordinary optical waveguide, and the grooves 31 are periodically formed on both left and right sides of the ridge waveguide 30. The coupling effect between TE polarization and TM polarization is increased based on the asymmetry obtained by alternately providing the polarization, and the polarization can be efficiently rotated with a short element length. Furthermore, since the structure is simple, a semiconductor polarization rotator with a high yield can be obtained.

【0027】次に、本発明の第2の実施形態を説明す
る。図6は、本発明の第2の実施形態の半導体偏波回転
素子を示す断面図である。この断面図は図5と同様に、
xy平面内のものである。図において、第1の実施形態
と同一構成部分は同一符号をもって表す。また、第1の
実施形態と第2の実施形態との相違点は、第1の実施形
態におけるInGaAsP導波層22を除去し、リッジ
導波路30内にInGaAsP導波層を設けたことにあ
る。
Next, a second embodiment of the present invention will be described. FIG. 6 is a sectional view showing a semiconductor polarization rotator according to a second embodiment of the present invention. This cross-sectional view is similar to FIG.
It is in the xy plane. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals. Further, the difference between the first embodiment and the second embodiment is that the InGaAsP waveguide layer 22 in the first embodiment is removed, and the InGaAsP waveguide layer is provided in the ridge waveguide 30. .

【0028】即ち、21はInP基板で、この上にリッ
ジ導波路30が形成されている。また、25はバンドギ
ャップ波長1.3μm帯のInGaAsP導波層(0.
3μm厚)、24,26は導波層25を挟むように設け
られたInPサイドクラッド層(それぞれ0.2μm、
1.0μm厚)であり、これらによってリッジ導波路3
0が構成され、このリッジ幅は2μmである。
That is, reference numeral 21 denotes an InP substrate on which the ridge waveguide 30 is formed. Reference numeral 25 denotes an InGaAsP waveguide layer having a bandgap wavelength of 1.3 μm (0.
24 and 26 are InP side cladding layers (0.2 μm and 24 μm, respectively) provided so as to sandwich the waveguide layer 25.
1.0 μm thick), and the ridge waveguide 3
0, and the ridge width is 2 μm.

【0029】溝31は、深さ1.0μm程度で、幅2.
0μmにわたり垂直に掘られている。このような溝31
をリッジ導波路30から0.5μm離れた左右両側に長
さ200μm間隔でz軸方向に周期的に設け、左右では
その掘られている領域が半周期ずれた構造となってい
る。
The groove 31 has a depth of about 1.0 μm and a width of 2.
It is dug vertically over 0 μm. Such a groove 31
Are periodically provided in the z-axis direction at intervals of 200 μm on both the left and right sides at a distance of 0.5 μm from the ridge waveguide 30, and the left and right sides have a structure in which the dug region is shifted by a half period.

【0030】このようなリッジ導波路30を設けると共
に溝31を形成することにより、素子長1600μmで
80度の偏波回転を実現した。
By providing such a ridge waveguide 30 and forming the groove 31, a polarization rotation of 80 degrees was realized with an element length of 1600 μm.

【0031】次に、本発明の第3の実施形態を説明す
る。図7は、本発明の第3の実施形態の半導体偏波回転
素子を示す断面図である。この断面図は図5と同様に、
xy平面内のものである。図において、第1の実施形態
と同一構成部分は同一符号をもって表す。また、第1の
実施形態と第3の実施形態との相違点は、第3の実施形
態においては、第1の実施形態の構成に加えてリッジ導
波路30内に導波層を形成したことにある。
Next, a third embodiment of the present invention will be described. FIG. 7 is a sectional view showing a semiconductor polarization rotator according to a third embodiment of the present invention. This cross-sectional view is similar to FIG.
It is in the xy plane. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals. Further, the difference between the first embodiment and the third embodiment is that in the third embodiment, a waveguide layer is formed in the ridge waveguide 30 in addition to the configuration of the first embodiment. It is in.

【0032】即ち、21はInP基板、22はバンドギ
ャップ波長1.1μm帯のInGaAsP導波層(0.
3μm厚)、23はInPサイドクラッド層(0.1μ
m厚)、24,26はInPクラッド層(それぞれ0.
1μm、1.1μm厚)であり、25はバンドギャップ
波長1.3μm帯のInGaAsP導波層(0.3μm
厚)であり、リッジ幅は2μmである。
That is, 21 is an InP substrate, and 22 is an InGaAsP waveguide layer (0.
3 μm), 23 is an InP side cladding layer (0.1 μm).
m, and 24 and 26 are InP cladding layers (each of 0.
25 is a InGaAsP waveguide layer (0.3 μm) having a band gap wavelength of 1.3 μm.
Thickness), and the ridge width is 2 μm.

【0033】溝31は、深さ1.0μm程度で幅2.0
μmにわたり垂直に掘られている。このような溝31を
リッジ導波路30から0.5μm離れた左右両側に長さ
90μm間隔でz軸方向に周期的に設け、左右ではその
掘られている領域が半周期ずれた構造となっている。
The groove 31 has a depth of about 1.0 μm and a width of 2.0 μm.
It is dug vertically over μm. Such a groove 31 is periodically provided in the z-axis direction at intervals of 90 μm on both the left and right sides separated from the ridge waveguide 30 by 0.5 μm, and the dug region on the left and right is shifted by a half period. I have.

【0034】このようなリッジ導波路30を設けると共
に溝31を形成することにより、素子長810μmで8
2度の偏波回転を実現した。
By providing such a ridge waveguide 30 and forming the groove 31, an element length of 810 μm and
Twice polarization rotation was realized.

【0035】次に、本発明の第4の実施形態を説明す
る。図8は、本発明の第4の実施形態の半導体偏波回転
素子を示す断面図である。この断面図は図5と同様に、
xy平面内のものである。図において、第3の実施形態
と同一構成部分は同一符号をもって表す。また、第3の
実施形態と第4の実施形態との相違点は、第4の実施形
態においては、第3の実施形態の構成に加えてリッジ導
波路30の上面とInP基板21の下面に電極を形成
し、導波層の屈折率を変化できるようにしたことにあ
る。
Next, a fourth embodiment of the present invention will be described. FIG. 8 is a sectional view showing a semiconductor polarization rotator according to a fourth embodiment of the present invention. This cross-sectional view is similar to FIG.
It is in the xy plane. In the figure, the same components as those of the third embodiment are denoted by the same reference numerals. The difference between the third embodiment and the fourth embodiment is that, in the fourth embodiment, the upper surface of the ridge waveguide 30 and the lower surface of the InP substrate 21 are added to the structure of the third embodiment. An electrode is formed so that the refractive index of the waveguide layer can be changed.

【0036】即ち、21はInP基板、22はバンドギ
ャップ波長1.1μm帯のInGaAsP導波層(0.
3μm厚)、23はInPサイドクラッド層(0.1μ
m厚)、24,26はInPクラッド層(それぞれ0.
1μm、1.1μm厚)であり、25はバンドギャップ
波長1.3μm帯のInGaAsP導波層(0.3μm
厚)であり、リッジ幅は2μmである。
That is, 21 is an InP substrate, and 22 is an InGaAsP waveguide layer (0.
3 μm), 23 is an InP side cladding layer (0.1 μm).
m, and 24 and 26 are InP cladding layers (each of 0.
25 is a InGaAsP waveguide layer (0.3 μm) having a band gap wavelength of 1.3 μm.
Thickness), and the ridge width is 2 μm.

【0037】さらに、InP基板21の下面には例えば
AuGeNiで構成されたn電極32が形成され、リッ
ジ導波路30の上面には例えばAuZnNiで構成され
たp電極33が形成されている。
Further, an n-electrode 32 made of, for example, AuGeNi is formed on the lower surface of the InP substrate 21, and a p-electrode 33 made of, for example, AuZnNi is formed on the upper surface of the ridge waveguide 30.

【0038】また、溝31は、深さ1.0μm程度で、
幅2.0μmにわたり垂直に掘られている。このような
溝31をリッジ導波路30から0.5μm離れた左右両
側に長さ90μm間隔でz軸方向に周期的に設け、左右
ではその掘られている領域が半周期ずれた構造となって
いる。
The groove 31 has a depth of about 1.0 μm.
It is dug vertically over a width of 2.0 μm. Such a groove 31 is periodically provided in the z-axis direction at intervals of 90 μm on both the left and right sides separated from the ridge waveguide 30 by 0.5 μm, and the dug region on the left and right is shifted by a half period. I have.

【0039】前述した構成によれば、電極32,33間
に電圧を印加して電流を流すことにより、導波層の屈折
率を変化できるため、溝31による周期的摂動にたいし
て微調整を行うことが可能となる。これにより、素子長
を810μmとして、電極32,33間に40mAの電
流を流し、86度の偏波回転を実現した。
According to the above-described structure, the refractive index of the waveguide layer can be changed by applying a voltage between the electrodes 32 and 33 to cause a current to flow. Becomes possible. Thus, with the element length set to 810 μm, a current of 40 mA was passed between the electrodes 32 and 33, and a polarization rotation of 86 degrees was realized.

【0040】尚、前述した第1乃至第4の実施形態にお
いては、InP基板21上の導波層形成材料としてIn
GaAsP材料系について記述したが、他の材料系を用
いることによっても、同様な効果を得ることができる
し、材料系を選ぶことによって、任意の動作波長に設定
することが可能である。
In the first to fourth embodiments described above, the material for forming the waveguide layer on the InP substrate 21 is In.
Although the GaAsP material system has been described, a similar effect can be obtained by using another material system, and an arbitrary operating wavelength can be set by selecting a material system.

【0041】また、作製の都合上エッチングストップ層
としてのInPやInGaAsPの薄層を用いることも
可能である。
It is also possible to use a thin layer of InP or InGaAsP as an etching stop layer for convenience of fabrication.

【0042】さらにまた、導波層の位置も、リッジ導波
路30中のどの位置(例えば最上部、中央、最下部な
ど)に配することも可能であるし、リッジ導波路30中
に複数の導波層を持たせることも可能である。
Further, the position of the waveguide layer can be arranged at any position (for example, the top, center, bottom, etc.) in the ridge waveguide 30. It is also possible to have a waveguide layer.

【0043】また、リッジ導波路30中に複数の導波層
を有する場合において、各導波層の組成が異なっていて
も、また全てが同一組成であってもかまわない。
In the case where a plurality of waveguide layers are provided in the ridge waveguide 30, the composition of each waveguide layer may be different, or all the waveguide layers may have the same composition.

【0044】また、第4の実施形態において電極32,
33を設けた例を説明したが、第4の実施形態と同様に
他の実施形態の構成に電極を付加しても、第4の実施形
態と同様の効果が得られることは言うまでもない。
Further, in the fourth embodiment, the electrodes 32,
Although the example in which 33 is provided has been described, it is needless to say that the same effect as in the fourth embodiment can be obtained even if an electrode is added to the configuration of another embodiment as in the fourth embodiment.

【0045】[0045]

【発明の効果】以上説明したように本発明によれば、通
常の光導波路の上にリッジを形成すると共に該リッジの
長手方向の特定周期毎に、前記リッジを中心として形成
位置が左右に入れ替わるトレンチを形成することによ
り、光導波路と直交する方向に対して周期的摂動を付加
することが可能となり、導波路の界分布に非対称性が生
じるため、TE偏波とTM偏波との結合効果が増加し、
短い素子長で効率よく偏波を回転することができる。さ
らに、構造が簡単であるため歩留まり良く作製すること
ができる。
As described above, according to the present invention, a ridge is formed on a normal optical waveguide, and the formation position is switched to the left and right with the ridge as a center at every specific period in the longitudinal direction of the ridge. By forming the trench, it becomes possible to add a periodic perturbation in a direction orthogonal to the optical waveguide, and asymmetry occurs in the field distribution of the waveguide, so that the coupling effect between the TE polarization and the TM polarization. Increases,
Polarization can be efficiently rotated with a short element length. Furthermore, since the structure is simple, it can be manufactured with high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の半導体偏波回転素子
を示す斜視図
FIG. 1 is a perspective view showing a semiconductor polarization rotator according to a first embodiment of the present invention.

【図2】従来例の半導体偏波回転素子を示す外観斜視図FIG. 2 is an external perspective view showing a conventional semiconductor polarization rotating element.

【図3】図2におけるAA線矢視方向断面図FIG. 3 is a sectional view taken along line AA in FIG. 2;

【図4】他の従来例の半導体偏波回転素子を示す断面図FIG. 4 is a cross-sectional view showing another conventional semiconductor polarization rotating element.

【図5】本発明の第1の実施形態の半導体偏波回転素子
を示す断面図
FIG. 5 is a sectional view showing a semiconductor polarization rotator according to the first embodiment of the present invention;

【図6】本発明の第2の実施形態の半導体偏波回転素子
を示す断面図
FIG. 6 is a sectional view showing a semiconductor polarization rotating element according to a second embodiment of the present invention.

【図7】本発明の第3の実施形態の半導体偏波回転素子
を示す断面図
FIG. 7 is a sectional view showing a semiconductor polarization rotator according to a third embodiment of the present invention;

【図8】本発明の第3の実施形態の半導体偏波回転素子
を示す断面図
FIG. 8 is a sectional view showing a semiconductor polarization rotating element according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

21…InP基板(半導体基板)、22…InGaAs
P導波層、23…InPサイドクラッド層、24,26
…InPクラッド層、25…InGaAsP導波層、3
0…リッジ導波路、31…溝(トレンチ)、32,33
…電極。
21: InP substrate (semiconductor substrate), 22: InGaAs
P waveguide layer, 23... InP side cladding layer, 24, 26
... InP cladding layer, 25 ... InGaAsP waveguide layer, 3
0: Ridge waveguide, 31: Groove (trench), 32, 33
…electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ルイ ウェイン 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Louis Wayne Nippon Telegraph and Telephone Corporation 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成されたリッジと、前
記リッジ内又は前記リッジの下部に位置する光導波層と
を1つ以上有し、 前記リッジの長手方向の特定周期毎に、前記リッジを中
心として形成位置が左右に入れ替わるトレンチを備えた
ことを特徴とするトレンチ型半導体偏波回転素子。
1. A ridge formed on a semiconductor substrate and at least one optical waveguide layer located in or below the ridge, wherein the ridge is provided at a specific period in the longitudinal direction of the ridge. A trench type semiconductor polarization rotator comprising a trench whose formation position is switched right and left around the center.
JP23943296A 1996-09-10 1996-09-10 Trench type semiconductor polarization rotator Expired - Lifetime JP3485292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23943296A JP3485292B2 (en) 1996-09-10 1996-09-10 Trench type semiconductor polarization rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23943296A JP3485292B2 (en) 1996-09-10 1996-09-10 Trench type semiconductor polarization rotator

Publications (2)

Publication Number Publication Date
JPH1090541A true JPH1090541A (en) 1998-04-10
JP3485292B2 JP3485292B2 (en) 2004-01-13

Family

ID=17044695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23943296A Expired - Lifetime JP3485292B2 (en) 1996-09-10 1996-09-10 Trench type semiconductor polarization rotator

Country Status (1)

Country Link
JP (1) JP3485292B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029369B2 (en) * 2006-02-09 2012-09-19 日本電気株式会社 Optical waveguide
CN104950392A (en) * 2015-07-14 2015-09-30 华中科技大学 Silicon-based chip integrated polarization rotating device with high process tolerance
WO2023032885A1 (en) * 2021-08-30 2023-03-09 国立大学法人東京大学 Optical waveguide element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644620B2 (en) * 2021-05-24 2023-05-09 Globalfoundries U.S. Inc. Switchable polarization rotators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029369B2 (en) * 2006-02-09 2012-09-19 日本電気株式会社 Optical waveguide
CN104950392A (en) * 2015-07-14 2015-09-30 华中科技大学 Silicon-based chip integrated polarization rotating device with high process tolerance
CN104950392B (en) * 2015-07-14 2018-11-09 华中科技大学 The integrated big process allowance polarization rotator part of silicon base chip
WO2023032885A1 (en) * 2021-08-30 2023-03-09 国立大学法人東京大学 Optical waveguide element

Also Published As

Publication number Publication date
JP3485292B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
US6385376B1 (en) Fused vertical coupler for switches, filters and other electro-optic devices
CA2367828C (en) An optical crosspoint switch using vertically coupled waveguide structure
JPH1114847A (en) Coupled waveguide structure
US5255334A (en) Directional coupler type optical device and a driving method therefor
WO1993015423A1 (en) Device and method for polarization-independent processing of a signal comprising a combined wave-guide and polarisation converter
US5119449A (en) Optical directional coupler switch
JP3485292B2 (en) Trench type semiconductor polarization rotator
JPH01116530A (en) Optical switching element and optical switching matrix comprising the same
JP3446929B2 (en) Semiconductor polarization rotator
JPH1078521A (en) Semiconductor polarization rotating element
JPH04261523A (en) Integrated optical directional coupler
JPH1078519A (en) Semiconductor polarization rotating element
JP2662059B2 (en) Integrated semiconductor device having photoelectric switch element
JPH1078520A (en) Semiconductor polarization rotating element
KR100277698B1 (en) Grating-assisted codirectional vertical coupler semiconductor optical filter
JPH1090542A (en) Bury-in semiconductor optical device
JP3409605B2 (en) Semiconductor polarization rotator
JP3393531B2 (en) Wave plate type semiconductor polarization control device
JP2897371B2 (en) Semiconductor waveguide polarization controller
JP2626208B2 (en) Semiconductor waveguide polarization controller
JP3409606B2 (en) Semiconductor polarization rotator
JPH1126882A (en) Wavelength plate integrated type polarized wave independent semiconductor amplifier
JPH10332964A (en) Array waveguide grating element
JP2705134B2 (en) Directional coupler type waveguide optical switch
JPH04234020A (en) Polarization independent type semiconductor optical switch

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term