Nothing Special   »   [go: up one dir, main page]

JPH107425A - Material suitable for forming material requiring high accuracy - Google Patents

Material suitable for forming material requiring high accuracy

Info

Publication number
JPH107425A
JPH107425A JP16187996A JP16187996A JPH107425A JP H107425 A JPH107425 A JP H107425A JP 16187996 A JP16187996 A JP 16187996A JP 16187996 A JP16187996 A JP 16187996A JP H107425 A JPH107425 A JP H107425A
Authority
JP
Japan
Prior art keywords
film
layer
base material
hard
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16187996A
Other languages
Japanese (ja)
Inventor
Takeshi Sato
健 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP16187996A priority Critical patent/JPH107425A/en
Publication of JPH107425A publication Critical patent/JPH107425A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/38Mixed or graded material layers or zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material suitable for a molding material which requirs high accuracy, for example, reflection surface for far infrared rays, far ultraviolet rays, laser, ultrasonic waves and the like, a mold for molding glass lenses, optical elements, resins, alloys, ceramic powder or the like and a mold for molding bearings and other slide members, optical discs and the like. SOLUTION: In a mold in which a functional layer is formed on a hard base material, a hard material in which a binder metal is not used is used as a mold base material and a hard layer made of, for example, SiC is formed on this mold base material through the plasma CVD technique. Subsequently, nitrogen ions are injected into this hard layer to form a mixed layer between the base material and the hard layer and form a diamond-like carbon(DLC) layer of high adhesion to the SiC layer. Since a binder-less superhard material is used as a base material, the SiC layer is prevented from surface-roughening caused by diffusion of elements of the iron group on molding. The mixing layer formed by injection of nitrogen ions between the base material and the SiC layer forms a chemically bonded layer between the base material and the SiC layer thereby increaasing the adhesion strength to the base material. Further, there occur nitrogen atoms having a larger atomic radius than that of carbon in the mixing layer and oxygen atoms are inhibited from diffusion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、遠赤外線、遠紫外
線、レーザー、超音波等の反射面、ガラスレンズ、光学
素子、樹脂、合金、セラミックス粉末などの成形用型、
軸受その他の摺動部材、光ディスク等の成形用型など、
形状的に精度が要求され、さらには、鏡面の形成に適し
た材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding surface for reflecting surfaces of far infrared rays, far ultraviolet rays, lasers, ultrasonic waves, etc., glass lenses, optical elements, resins, alloys, ceramic powders, etc.
Bearings and other sliding members, molds for molding optical disks, etc.
The present invention relates to a material which requires precision in shape and is suitable for forming a mirror surface.

【0002】[0002]

【従来の技術】近年、光学素子の成形手段として、光学
素子材料を溶融状態で型材によって高圧成形するいわゆ
る直接成形法が採用されるようになった。
2. Description of the Related Art In recent years, a so-called direct molding method for molding an optical element material under high pressure with a mold in a molten state has been adopted as a molding means of an optical element.

【0003】この成形型用材料として、硬度が高く傷が
つきにくく、面精度が良く、耐酸化性に優れ、その上、
耐熱性、熱伝導率が良いことが必要であり、この要求特
性を満たす型構成材として、SiC焼結体基材表面に熱
CVD法によりSiC膜を機能膜として数100μm被
覆したものがある。しかしながら、これは、耐酸化性が
あり傷が入りにくい型材であるが、鏡面加工仕上に時間
がかかったり、このままガラスレンズをプレス成形して
もガラスが成形型表面に付着してしまうという問題があ
る。
[0003] As a material for the molding die, the hardness is high, the scratch is not easily damaged, the surface accuracy is good, and the oxidation resistance is excellent.
It is necessary that the heat resistance and the thermal conductivity are good, and as a mold component material that satisfies these required characteristics, there is a material in which the surface of a SiC sintered body is coated with a SiC film as a functional film by several hundred μm by a thermal CVD method. However, this is a mold material that is resistant to oxidation and is resistant to scratching. However, there is a problem in that it takes a long time to finish mirror finishing, and glass adheres to the surface of the mold even if the glass lens is pressed and formed as it is. is there.

【0004】また、特公平5−40695号公報には、
WC焼結体基材上に、均一の厚みに、C/Siの組成比
が0.7〜1.2のSiC膜を形成した一対の型を用い
て、不活性雰囲気中で、軟化温度以上に加熱したガラス
材を加圧成形することが記載されている。これは、Co
を結合金属とするものであり、結合金属がSiC膜中を
拡散してガラスレンズに付着して使用できなかったり、
局所的に硬度差があり、使用時間と共に表面が粗れてき
たり、SiC膜の密着強度が十分でなく剥離したり、ガ
ラスがSiC膜に付着したりする問題がある。
Further, Japanese Patent Publication No. 5-40695 discloses that
Using a pair of molds in which a SiC film having a C / Si composition ratio of 0.7 to 1.2 is formed in a uniform thickness on a WC sintered body base material, in an inert atmosphere, at a softening temperature or higher. And press forming a heated glass material. This is Co
Is used as a bonding metal, and the bonding metal diffuses through the SiC film and adheres to the glass lens, making it unusable.
There is a local hardness difference, and there is a problem that the surface becomes rough with the use time, the adhesion strength of the SiC film is insufficient, and the glass peels off, and glass adheres to the SiC film.

【0005】さらに、特公平5−40696号公報に
は、その型材として、硬質基材上に、Al23、SiO
2、ZrO2、TiO2等の酸化物の中間層を介して、α
−SiC、アモルファス−SiCを被覆したものが開示
されている。
Further, Japanese Patent Publication No. 5-40696 discloses that a mold material such as Al 2 O 3 , SiO 2
2 , via an intermediate layer of an oxide such as ZrO 2 or TiO 2 , α
-SiC and amorphous-SiC are disclosed.

【0006】係る硬質基材上に被膜を形成する場合、こ
のような酸化物中間層を介在させることは、ガラスから
基材側への酸素の拡散を防止するバリアーとしての効果
はあるが、このような酸化物の中間層を介在させること
によって、この中間層が表面被膜と基材との離型膜とし
て機能することになり、SiC被膜と基材の密着強度が
不足し、SiC膜と中間層と基材との熱膨張係数にも差
があり、さらには、中間層から基材へ酸素が拡散して、
硬質基材が酸化し型表面の粗れを生ずるという欠点が生
じる。
When a film is formed on such a hard base material, interposing such an oxide intermediate layer has an effect as a barrier for preventing diffusion of oxygen from the glass to the base material side. By interposing such an oxide intermediate layer, this intermediate layer functions as a release film between the surface coating and the base material, and the adhesion strength between the SiC coating and the base material is insufficient, and the intermediate layer between the SiC film and the base material is insufficient. There is also a difference in the coefficient of thermal expansion between the layer and the substrate, and furthermore, oxygen diffuses from the intermediate layer to the substrate,
There is a disadvantage that the hard base material is oxidized and the surface of the mold is roughened.

【0007】また、基材が一般の鉄族元素を結合相とし
て有する超硬材料では、700°C前後の高温でガラス
レンズを成形するために、成形時に基材からの鉄族元素
が中間層を通して拡散し型表面の粗れが発生して鏡面を
粗化する恐れもある。
Further, in the case of a superhard material whose base material has a general iron group element as a binder phase, since the glass lens is formed at a high temperature of about 700 ° C., the iron group element from the base material is formed during the forming process. And the surface of the mold may be roughened to roughen the mirror surface.

【0008】[0008]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、このような硬質基材上に機能膜を形成し
た材料において、被膜と基材との密着強度と耐酸化性を
改善することと、短い加工時間で形状的に高精度と光学
的鏡面を有する部材の形成に適した材料の提供にある。
The problem to be solved by the present invention is to improve the adhesion strength between the film and the substrate and the oxidation resistance of such a material having a functional film formed on a hard substrate. Another object of the present invention is to provide a material suitable for forming a member having high precision and an optical mirror surface in a short processing time.

【0009】[0009]

【課題を解決するための手段】この発明は、結合金属を
使用しない硬質材料からなる基材に硬質膜を設けたの
ち、この硬質膜と、前記基材の硬質膜との界面に窒素イ
オンの注入を行って原子レベルでのミキシング層を形成
し、その上にダイヤモンド・ライク・カーボン(DL
C)膜を形成したことを特徴とする。
According to the present invention, after a hard film is provided on a base material made of a hard material not using a bonding metal, nitrogen ions are formed at an interface between the hard film and the hard film of the base material. An atomic level mixing layer is formed by implantation, and diamond-like carbon (DL)
C) A film is formed.

【0010】結合金属を含まない硬質材料としては、A
23−TiC系材料またはAl23−SiC系材料ま
たはWC−TiC−TaC系材料、さらにこれらの材料
の成分のうちTiC、SiC又はTaCの一部あるいは
全部を、TiN、TiC、TiCN、NbC、NbC
N、TaC又はTaCNのうちのいずれか又は2種以上
で置換した材料、WCあるいはWC−TiC−TaC系
の化学蒸着膜を表面に有する材料を用いることができ
る。
As a hard material containing no binding metal, A
l 2 O 3 —TiC-based material or Al 2 O 3 —SiC-based material or WC-TiC-TaC-based material, and furthermore, TiN, TiC, TiCN, NbC, NbC
A material substituted with any one or two or more of N, TaC, and TaCN, and a material having a WC or WC-TiC-TaC-based chemical vapor deposition film on its surface can be used.

【0011】耐酸化性硬質膜は炭化珪素、窒化珪素、炭
酸化珪素、炭酸窒化珪素、窒化チタンアルミニウム、あ
るいはこれらの2種以上の複合膜からなる耐酸化性硬質
膜をプラズマCVD、スパッタ、イオンプレーティング
等によって設ける。
The oxidation-resistant hard film is made of silicon carbide, silicon nitride, silicon carbonate, silicon carbonitride, titanium aluminum nitride, or an oxidation-resistant hard film formed of a composite film of two or more of these materials by plasma CVD, sputtering, ionization, or the like. Provided by plating or the like.

【0012】さらに、プラズマCVD装置やイオンプレ
ーティング装置によりこのダイアモンドライクカーボン
膜の形成後、密着強度の向上を計るべく窒素イオン等を
表面より注入してもよい。また、ダイアモンドライクカ
ーボン膜の形成時に窒素イオンを成膜と同時に注入し、
ダイアモンドライクカーボン膜と耐酸化性硬質膜との密
着強度を向上させることができる。同様にして、前記耐
酸化性硬質膜の型基材との密着強度を向上させるため
に、この発明を利用できる。
Further, after the diamond-like carbon film is formed by a plasma CVD apparatus or an ion plating apparatus, nitrogen ions or the like may be implanted from the surface in order to improve the adhesion strength. Also, when forming a diamond-like carbon film, nitrogen ions are implanted simultaneously with the film formation,
The adhesion strength between the diamond-like carbon film and the oxidation-resistant hard film can be improved. Similarly, the present invention can be used to improve the adhesion strength of the oxidation-resistant hard film to the mold substrate.

【0013】結合金属を含まない硬質材料のうちSiC
−CVD材、Si34−CVD材より低硬度のAl23
−TiC、Al23−SiC、WC−TiC−TaC系
材料、TiC、SiC又はTaCの一部あるいは全部
を、TiN、TiC、TiCN、NbC、NbCN、T
aC又はTaCNのうちのいずれか又は2種以上で置換
した材料、WCあるいはWC−TiC−TaC系の化学
蒸着膜を表面に有する材料は光学的鏡面を得るのに、化
学蒸着法により形成したSiC、Si34等を基材とし
たものより加工時間が少なくて済む。
[0013] Among hard materials containing no binding metal, SiC
-CVD material, Si 3 N 4 than -CVD material a low hardness Al 2 O 3
-TiC, Al 2 O 3 -SiC, WC-TiC-TaC -based material, TiC, a part or all of SiC or TaC, TiN, TiC, TiCN, NbC, NbCN, T
The material substituted by any one or two or more of aC and TaCN, and the material having a WC or WC-TiC-TaC-based chemical vapor deposition film on the surface is used to obtain an optical mirror surface. , it requires less processing time than those with base material Si 3 N 4, or the like.

【0014】これは、Al23、Al23−SiC系の
焼結材料の場合、ダイアモンド砥石で研磨するとき、加
工表面でAl23とTiC、Al23とSiCとの硬度
の差により、仕上げ面の粗さが問題になりそうだが、T
iC、SiCが酸化され、TiO2、SiO2等に変化
し硬度差の問題がないので、研磨精度の優れた面が得ら
れることによる。そして、型基材中に遷移金属の結合層
が存在しないので、成形時の鉄族元素のSiC膜への拡
散による型表面の粗れが防止できる。
In the case of Al 2 O 3 or Al 2 O 3 —SiC based sintered material, when polishing with a diamond grindstone, Al 2 O 3 and TiC and Al 2 O 3 and SiC are mixed on the processed surface. Due to the difference in hardness, the roughness of the finished surface is likely to be a problem.
This is because iC and SiC are oxidized and changed to TiO2, SiO2, etc., and there is no problem of hardness difference, so that a surface with excellent polishing accuracy can be obtained. Since the transition metal bonding layer does not exist in the mold base, it is possible to prevent the mold surface from being roughened due to the diffusion of the iron group element into the SiC film during molding.

【0015】[0015]

【発明の実施の形態】炭化珪素、窒化珪素、炭窒酸化珪
素、窒化チタンアルミニウムを結合金属を含まない硬質
基材にコーティングすると耐酸化性が向上し、SiC基
材にSiCを熱CVDでコーティングした型材と同様に
高温でのガラスレンズ成形に使用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION When silicon carbide, silicon nitride, silicon carbonitride, and titanium aluminum nitride are coated on a hard base material containing no binding metal, oxidation resistance is improved, and SiC base material is coated with SiC by thermal CVD. It can be used for molding glass lenses at high temperatures in the same manner as the molded material.

【0016】窒素イオンの注入により基材と膜との間の
界面に形成された原子的レベルのミキシング層は、基材
と膜との間に化学結合層を形成し、膜の基材に対する密
着強度が向上する。本発明の結合金属を含まない硬質材
料と耐酸化性硬質膜との熱膨張係数の差が少しある材料
でも、界面近傍がイオンの平均浸入深さとなるようにイ
オンのエネルギーを調整すれば、界面に基材と膜の構成
元素および窒素との原子レベルでのミキシング層が形成
され、界面から離れるにつれ注入した窒素原子の濃度が
小さくなるいわゆる傾斜組成を形成し、熱膨張係数差を
緩和することができる。さらに上記硬質膜と結合金属を
含まない硬質基材との界面での窒素イオン注入によるミ
キシング層には、炭素より原子半径が大きい窒素原子が
存在するので酸素の拡散が妨げられる。なお、基材と膜
との界面だけでなく、膜全体に窒素イオンとのミキシン
グ層が形成されるので、前述のような効果により酸素の
拡散が防止され、型基材の耐酸化性が向上し、700°
C以上の高温でのガラスレンズの成形が可能となる。こ
こで、注入イオンとして窒素イオンを用いたが、化学的
安定性、膜へのダメージを考慮すると、他に硼素、炭
素、酸素の各イオンの注入が考えられる。しかし、硼素
イオンを注入すると耐酸化性が向上するが、硼素が膜中
に拡散して型表面に出ると、B23となり被成形材のガ
ラスと付着する可能性がある。また、炭素イオンを注入
すると膜中にフリーカーボンが形成されて耐酸化性が低
下する。酸素イオンを用いると型基材と膜との界面に化
合物を形成するので、密着強度は不活性ガスイオン注入
による界面でのミキシング層より大きいが、酸素の拡散
により基材の耐酸化性に問題がある。窒素イオンを用い
ると前述のように基材と膜との界面に化合物のミキシン
グ層を形成し、結合強度が不活性ガスイオンを注入した
ものより強く、かつ膜中に窒素が存在すると酸素の拡散
を妨げるので、窒素イオンを使用することが有利である
ことを見出した。
The atomic-level mixing layer formed at the interface between the substrate and the film by the implantation of nitrogen ions forms a chemical bonding layer between the substrate and the film, and adheres the film to the substrate. Strength is improved. Even in a material having a small difference in thermal expansion coefficient between the hard material containing no bonding metal of the present invention and the oxidation-resistant hard film, if the energy of the ions is adjusted so that the vicinity of the interface is the average penetration depth of the ions, the interface is improved. Forming a so-called graded composition in which a mixing layer at the atomic level between the base material and the constituent elements of the film and nitrogen is formed, and the concentration of the implanted nitrogen atoms becomes smaller as the distance from the interface increases, thereby reducing the difference in thermal expansion coefficient. Can be. Furthermore, diffusion of oxygen is prevented in the mixing layer formed by nitrogen ion implantation at the interface between the hard film and the hard substrate containing no binding metal, because nitrogen atoms having an atomic radius larger than carbon are present. In addition, since the mixing layer with nitrogen ions is formed not only at the interface between the substrate and the film but also on the entire film, the diffusion of oxygen is prevented by the above-described effects, and the oxidation resistance of the mold substrate is improved. Then 700 °
A glass lens can be formed at a high temperature of C or higher. Here, nitrogen ions are used as the implanted ions. However, in consideration of chemical stability and damage to the film, boron, carbon, and oxygen may be implanted. However, oxidation resistance improves when boron ions are implanted. However, when boron diffuses into the film and comes out of the mold surface, it becomes B 2 O 3 and may adhere to the glass of the molding material. Further, when carbon ions are implanted, free carbon is formed in the film, and the oxidation resistance is reduced. When oxygen ions are used, a compound is formed at the interface between the mold substrate and the film, so that the adhesion strength is higher than that of the mixing layer at the interface due to inert gas ion implantation, but there is a problem with the oxidation resistance of the substrate due to diffusion of oxygen. There is. When nitrogen ions are used, a compound mixing layer is formed at the interface between the base material and the film as described above, and the bond strength is stronger than that when an inert gas ion is implanted, and when nitrogen is present in the film, diffusion of oxygen occurs. It has been found that the use of nitrogen ions is advantageous because it prevents

【0017】さらに、DLC膜を上記硬質膜上に形成す
ることにより、モールド全体として耐酸化性、離型性に
優れたレンズモールドとなる。
Further, by forming a DLC film on the above-mentioned hard film, a lens mold having excellent oxidation resistance and releasability as a whole mold can be obtained.

【0018】ダイアモンドライクカーボン膜を離型膜と
して用いた理由であるが、微視的に見ると膜中の炭素同
士が部分的にダイアモンド結合(SP3結合)をしてい
るため、硬度が高く傷や摩耗に強い。その上、成形時、
この膜の最表面では成形時の熱の影響で化学的に安定な
グラファイトに変化し、ガラスと反応しにくく離型性に
優れている。また、ガラス中又はガラスレンズ成形雰囲
気中の酸素との反応により、ダイアモンドライクカーボ
ン膜表面が消耗していくが、粒界のない、超微細結晶を
しているので、均等に酸化消耗し表面粗れが発生しな
い。
[0018] Although the reason for using a diamond-like carbon film as a release film, since carbon together in Microscopically the film is partially diamond bond (SP 3 bond), high hardness Resistant to scratches and wear. Besides, at the time of molding,
At the outermost surface of this film, it changes to graphite which is chemically stable under the influence of heat at the time of molding, and hardly reacts with glass, and has excellent releasability. In addition, the surface of the diamond-like carbon film is depleted due to the reaction with oxygen in the glass or glass lens molding atmosphere. Does not occur.

【0019】[0019]

【実施例】この発明の材料をレンズ形成用型に適用した
例について説明する。
EXAMPLE An example in which the material of the present invention is applied to a lens forming die will be described.

【0020】表1および表2に示すように、Al23
TiC系セラミック、Al23−SiC系セラミック、
バインダーレス超硬の1種であるWC−3wt%TaC
−2wt%TiC、WC−3wt%Coからなる基材表
面にWC化学蒸着膜を100μm被覆した材料からなる
φ30mm×5mmの形状の基板の片面を#2000と
#8000のダイヤモンド砥石により研磨して表面粗さ
がRtmで7nmの鏡面状態にした。そしてこれらの基
板の鏡面部にプラズマCVD装置、スパッタ装置を用い
て、下地層となる炭化珪素、窒化珪素、炭酸化珪素、炭
酸窒化珪素、窒化チタンアルミニウムからなる各硬質膜
を約100nmの層厚になるように形成した。炭化珪
素、窒化珪素、炭酸化珪素、炭酸窒化珪素、酸窒化珪素
硬質膜形成については、SiH4、CH4、CO2、NH3
を原料として、119.7Paの圧力100Wの出力で
高周波プラズマCVD装置(13.56MHz)を用い
てコーティングを行った。例えば炭化珪素の場合は、S
iH4とCH4を原料として混合比を変えることにより、
表1および表2に示す膜の組成を得ることができ、でき
た膜についていうとSiとCとの比が1:1に近いもの
が熱的安定性が良く、優れた耐酸化性および高温で高硬
度を示した。窒化珪素については、SiH4とNH3を原
料とし、炭酸化珪素についてはSiH4、CH4、CO2
を原料とし、炭酸窒化珪素についてはSiH4、CH4
NH3、CO2を原料とし、酸窒化珪素についてはSiH
4、CO2、NH3を原料として用いた。各膜の各元素の
組成比が0.3以上で3以下としているが、0.3より
小さいと硬さが低下するので好ましくない。また、3よ
り大きくなるとこの膜上に被覆するダイアモンドライク
カーボン膜との密着強度は増加するが耐酸化性は低下す
るので0.3以上で3以下とするのが好ましい。窒化チ
タンアルミ膜については、TiAlNをターゲットとし
て、窒素雰囲気で高周波スパッタ装置(13.56MH
z)を用いAr+を駆動ガスとして400Wの出力で、
0.665〜1.33Paの条件でコーティングした。
As shown in Tables 1 and 2, Al 2 O 3-
TiC ceramic, Al 2 O 3 -SiC ceramic,
WC-3wt% TaC, a kind of binderless carbide
One side of a substrate of φ30 mm × 5 mm made of a material obtained by coating a WC chemical vapor deposition film of 100 μm on the surface of a base material composed of −2 wt% TiC and WC-3 wt% Co is polished with # 2000 and # 8000 diamond grindstones. The surface was mirror-finished with a roughness of 7 nm at Rtm. Then, using a plasma CVD device or a sputtering device, a hard film made of silicon carbide, silicon nitride, silicon carbonate, silicon carbonitride, and titanium aluminum nitride, each of which is an underlayer, having a thickness of about 100 nm was formed on the mirror portion of these substrates. It was formed to become. For forming a silicon carbide, silicon nitride, silicon carbonate, silicon carbonitride, and silicon oxynitride hard film, SiH 4 , CH 4 , CO 2 , NH 3
Was used as a raw material and coating was performed using a high-frequency plasma CVD apparatus (13.56 MHz) at an output of 119.7 Pa and a pressure of 100 W. For example, in the case of silicon carbide, S
By changing the mixing ratio using iH 4 and CH 4 as raw materials,
The compositions of the films shown in Tables 1 and 2 can be obtained. Regarding the resulting films, those having a ratio of Si to C close to 1: 1 have good thermal stability, excellent oxidation resistance and high temperature. Showed high hardness. For silicon nitride, SiH 4 and NH 3 are used as raw materials, and for silicon carbonate, SiH 4 , CH 4 , CO 2
, And SiH 4 , CH 4 ,
Using NH 3 and CO 2 as raw materials, and silicon oxynitride as SiH
4 , CO 2 and NH 3 were used as raw materials. Although the composition ratio of each element in each film is set to 0.3 or more and 3 or less, it is not preferable that the composition ratio is smaller than 0.3 because the hardness decreases. On the other hand, if it is larger than 3, the adhesion strength to the diamond-like carbon film coated on this film increases, but the oxidation resistance decreases. Therefore, it is preferable to set it to 0.3 or more and 3 or less. For a titanium aluminum nitride film, a high frequency sputtering apparatus (13.56 MH) was used in a nitrogen atmosphere with TiAlN as a target.
z), with an output of 400 W using Ar + as a driving gas,
Coating was performed under the conditions of 0.665 to 1.33 Pa.

【0021】[0021]

【表1】 [Table 1]

【表2】 これらの硬質膜は基板表面と同様の鏡面状態を有するも
のであった。
[Table 2] These hard films had the same mirror state as the substrate surface.

【0022】更にこの膜に垂直な方向から、イオン注入
装置を用いて140keVに加速されたN2+を1×10
14〜1×1018N+/cm2の密度で注入した。そして
注入後の表面粗さはイオンの注入量が増加すると、大き
くなり、1×1018+/cm2になるとRtmが約30
0nmになる。硬質膜の表面粗れが起こらない注入量は
1×1015〜1×1016N+/cm2であり、表面粗さ
としてはRtmで10nmである。また、注入量が1×
1015+/cm2以上になると、膜の密着強度がろう付
強度以上になり、しかも膜の表面粗れを起こさずに膜の
密着強度を上げるためには、注入量としては1×1015
〜1×1016N+/cm2が好適である。本実施例では
窒素イオンの注入量として、1×1015+/cm2の場
合を示しているが、1×1015〜1×1016+/cm2
の間でも表1および表2と同様の結果となった。なお、
膜の密着強度については、次で説明するスクラッチ式と
pull−off方式の2通りの方法で測定した。
Further, from the direction perpendicular to the film, N 2+ accelerated to 140 keV was applied to 1 × 10
It was implanted at a density of 14 to 1 × 10 18 N + / cm 2 . The surface roughness after implantation increases as the amount of implanted ions increases, and when it reaches 1 × 10 18 N + / cm 2 , the surface roughness Rtm becomes about 30.
0 nm. The injection amount at which the surface roughness of the hard film does not occur is 1 × 10 15 to 1 × 10 16 N + / cm 2 , and the surface roughness is 10 nm in Rtm. In addition, the injection amount is 1 ×
If it exceeds 10 15 N + / cm 2 , the adhesion strength of the film becomes higher than the brazing strength, and in order to increase the adhesion strength of the film without causing the surface roughness of the film, the injection amount is 1 × 10 5 Fifteen
〜1 × 10 16 N + / cm 2 is preferable. In this embodiment, the case where the implantation amount of nitrogen ions is 1 × 10 15 N + / cm 2 is shown, but 1 × 10 15 to 1 × 10 16 N + / cm 2.
The results were the same as those in Tables 1 and 2. In addition,
The adhesion strength of the film was measured by two methods, a scratch method and a pull-off method described below.

【0023】ダイアモンドコーンを用いたスクラッチ試
験機でイオン注入前後の前記各硬質膜の密着強度を測定
した結果、密着強度は0.3Nから7N以上に増加して
いることがわかった。エポキシ樹脂による引き剥し試験
ではSEBASTIAN V(米国製)を使用したが、
イオン注入前は10MPa程度の密着強度しかなかった
ものがイオン注入後はエポキシ樹脂で破断し、膜剥離は
起こらず100MPa以上のほぼろう付強度に対応する
密着強度を有することがわかった。これらの試料にホロ
ーカソード式のイオンプレーティング装置を用いてダイ
アモンドライクカーボン膜を100nm被覆した。この
ダイアモンドライクカーボン膜をラマン分光分析装置で
測定したが、グラファイトのピークの波数の位置よりダ
イアモンドのピークの波数の位置で高くなるスペクトル
を示した。また、硬さはビッカース硬さで約3900で
あった。炭化珪素膜を下地としたダイアモンドライクカ
ーボン膜を被覆したものの密着性は非常に高いが、窒化
チタンアルミ膜とダイアモンドライクカーボン膜の密着
強度が十分でないので、窒化チタンアルミ膜を下地とし
た物にはダイアモンドライクカーボン膜形成後、窒素イ
オンを1×1015+/cm2、140KeVのエネルギ
ーで注入して密着強度を向上させた。そしてSF5相当
のガラスゴブレットをN2雰囲気中、700°Cの温度
で4.905MPaの荷重で5000個成形して、酸素
の拡散の状態をX線光電子分光法で調査した結果が、窒
素イオンの注入を行なったものは基材まで酸素が拡散し
ていなかったが、注入していないものは膜が剥離したり
基材まで酸素の拡散が見られ表面が粗れてきていた。バ
インダーレス超硬に直接ダイアモンドライクカーボン膜
を形成したものは、100個成形した時点で膜が剥離し
た。膜の剥離を起こす前の型についてX線光電子分光法
により調査したところ基材中に膜を通して酸素の拡散が
生じ基材の酸化が進んでいた。WC−6wt%Coから
なるφ30mm×5mmの形状の基板について上記と同
様のサンプルを作ってガラスを成形する試験をしたが、
この場合結合相のCoが膜中に拡散するので型表面が粗
れてきたことがわかった。更に、ガラス表面に染み出し
たCoが付着しガラスの透光性に影響を及ぼすようにな
る。このように結合金属を含まない本発明のような硬質
基材を使用することが有効であることがわかる。
As a result of measuring the adhesion strength of each of the hard films before and after ion implantation with a scratch tester using a diamond cone, it was found that the adhesion strength was increased from 0.3N to 7N or more. In the peeling test using epoxy resin, SEBASTIAN V (made in the United States) was used.
It was found that those having only an adhesion strength of about 10 MPa before the ion implantation were broken by the epoxy resin after the ion implantation and did not peel off the film, and had an adhesion strength corresponding to a brazing strength of about 100 MPa or more. These samples were coated with a diamond-like carbon film of 100 nm using a hollow cathode type ion plating apparatus. The diamond-like carbon film was measured with a Raman spectrometer, and showed a spectrum that was higher at the position of the diamond peak wavenumber than at the position of the graphite peak wavenumber. The hardness was about 3900 in Vickers hardness. Although the adhesion of the diamond-like carbon film coated with a silicon carbide film is very high, the adhesion strength between the titanium aluminum nitride film and the diamond-like carbon film is not sufficient. After the formation of a diamond-like carbon film, nitrogen ions were implanted at 1 × 10 15 N + / cm 2 at an energy of 140 KeV to improve the adhesion strength. Then, 5000 glass goblets equivalent to SF5 were formed in an N 2 atmosphere at a temperature of 700 ° C. and a load of 4.905 MPa, and the state of diffusion of oxygen was investigated by X-ray photoelectron spectroscopy. In the case of injection, oxygen was not diffused to the substrate, but in the case of not injected, the film was peeled or oxygen was diffused to the substrate, and the surface became rough. In the case where a diamond-like carbon film was directly formed on a binder-less carbide, 100 films were peeled off at the time of molding. When the mold before peeling of the film was examined by X-ray photoelectron spectroscopy, oxygen was diffused through the film in the substrate and oxidation of the substrate proceeded. A test was conducted to form a glass by forming a sample similar to the above for a substrate of WC-6 wt% Co having a shape of φ30 mm × 5 mm.
In this case, it was found that the mold surface became rough because Co of the binder phase diffused into the film. In addition, Co oozes out on the glass surface and affects the translucency of the glass. Thus, it is found that it is effective to use a hard base material such as the present invention which does not contain a bonding metal.

【0024】なお、TiC、SiC又はTaCの一部あ
るいは全部を、TiN、TiC、TiCN、NbC、N
bCN、TaC又はTaCNのうちのいずれか又は2種
以上で置換した材料およびWC化学蒸着膜の代わりにW
C−TiC−TaC系化学蒸着膜を被覆した材料を使用
したところ、表1および表2と同様の結果となった。上
記のもので窒化物、炭窒化物で置換した素材は、粒成長
抑制の効果により粒径の微細な材料が得られ、面粗度が
数オングストロームオーダーまで容易に加工できる素材
が得られるので有利である。
Note that part or all of TiC, SiC or TaC is converted to TiN, TiC, TiCN, NbC,
a material substituted with any one or more of bCN, TaC or TaCN and W instead of the WC chemical vapor deposition film
When a material coated with a C-TiC-TaC-based chemical vapor deposition film was used, the same results as in Tables 1 and 2 were obtained. The materials substituted with nitrides and carbonitrides in the above are advantageous because a material with a fine grain size can be obtained by the effect of suppressing grain growth and a material that can be easily processed to a surface roughness of the order of several angstroms is obtained. It is.

【0025】以上、この発明の材料をレンズ形成用型に
適用した例について説明したが、この材料が有する強度
と耐食性、それに、鏡面の形成能などの優れた特性を利
用して、上記実施例に記載の要領で、レンズ形成用型に
限らず、レーザー、超音波等の反射面、各種摺動材等の
鏡面の形成用として使用することができる。
In the above, an example in which the material of the present invention is applied to a mold for forming a lens has been described. By taking advantage of the excellent properties of this material such as strength and corrosion resistance, and the ability to form a mirror surface, the above-described embodiment was used. In the manner described in (1), the present invention is not limited to a mold for forming a lens, but can be used for forming a reflecting surface such as a laser or an ultrasonic wave, or a mirror surface such as various sliding materials.

【0026】[0026]

【発明の効果】本発明によって以下の効果を奏する。According to the present invention, the following effects can be obtained.

【0027】(1)機能膜の基材に対する密着強度が増
加し、膜剥離による寿命の短命化を阻止できる。
(1) The adhesion strength of the functional film to the base material is increased, and the shortening of the life due to film peeling can be prevented.

【0028】(2)窒素イオンの注入により、膜中の酸
素の拡散速度が遅くなり耐酸化性が向上し、超硬質型の
寿命が延びる。
(2) Due to the implantation of nitrogen ions, the diffusion rate of oxygen in the film is reduced, the oxidation resistance is improved, and the life of the super hard type is extended.

【0029】(3)本発明の型の機能膜としてSiC膜
を適用した場合、熱膨張率がSiC膜に近いDLC膜を
SiC膜上に形成することにより膜の密着性が優れてい
る。
(3) When a SiC film is applied as a functional film of the type of the present invention, a DLC film having a coefficient of thermal expansion close to that of the SiC film is formed on the SiC film, so that the adhesion of the film is excellent.

【0030】(4)SiC−CVDレンズモールドと比
較すると、光学的鏡面を得るための加工時間が短く、上
記耐酸化性硬質膜の被覆により700°C以上の高温で
の耐酸化性に優れ、基材に結合金属を含まないので基材
からの遷移金属元素の拡散がない。
(4) Compared to the SiC-CVD lens mold, the processing time for obtaining an optical mirror surface is shorter, and the coating of the oxidation-resistant hard film is excellent in oxidation resistance at a high temperature of 700 ° C. or more. Since the base material does not contain a binding metal, there is no diffusion of a transition metal element from the base material.

【0031】(5)したがって、ガラスの成形用型材、
レーザー、超音波等の反射面、各種摺動材等の鏡面の形
成などに好適に使用できる。
(5) Therefore, a glass molding material,
It can be suitably used for forming a reflecting surface such as a laser or an ultrasonic wave, or a mirror surface such as various sliding materials.

【0032】(6)とくに、この発明の材料をガラスの
成形用型材適用したとき、DLC膜はガラスとの離型性
に優れ、表面の成形したガラスレンズに曇りや粗れのな
い鏡面状態が優れた製品を得ることができる。
(6) In particular, when the material of the present invention is applied to a glass molding die, the DLC film has excellent mold releasability from glass, and the glass lens molded on the surface has a mirror-like state without fogging or roughness. Excellent products can be obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 結合金属を使用しない硬質材料からなる
基材に硬質膜を設けたのち、この硬質膜と、前記基材と
硬質膜との界面に窒素イオンの注入を行って原子レベル
でのミキシング層を形成し、その上にダイヤモンド・ラ
イク・カーボン膜を形成したことを特徴とする高精度を
要求される成形部材に適した材料。
After a hard film is provided on a base material made of a hard material not using a bonding metal, nitrogen ions are implanted into the hard film and an interface between the base material and the hard film to form an atomic level. A material suitable for a molded member requiring high precision, wherein a mixing layer is formed, and a diamond-like carbon film is formed thereon.
【請求項2】 結合金属を含まない硬質材料が、Al2
3−TiC系材料、Al23−SiC系材料、WC−
TiC−TaC系材料又はWCあるいはWC−TiC−
TaC系の化学蒸着膜を表面に有する材料であることを
特徴とする請求項1に記載の高精度を要求される成形部
材に適した材料。
2. The hard material containing no bonding metal is Al 2
O 3 -TiC based material, Al 2 O 3 -SiC-based material, WC
TiC-TaC-based material or WC or WC-TiC-
2. The material according to claim 1, wherein the material is a material having a TaC-based chemical vapor deposition film on its surface.
【請求項3】 Al23−TiC系材料およびWC−T
iC−TaC系材料のTiCの一部又は全部を、Ti
N、TiCN、NbC、NbCN、TaC又はTaCN
のうちのいずれか1種又は2種以上で置換したことを特
徴とする請求項2に記載の高精度を要求される成形部材
に適した材料。
3. An Al 2 O 3 —TiC-based material and WC-T
Part or all of TiC of the iC-TaC-based material is
N, TiCN, NbC, NbCN, TaC or TaCN
3. A material suitable for a molded member requiring high accuracy according to claim 2, wherein the material is replaced by one or more of the following.
【請求項4】 Al23−SiC系材料のSiCの一部
あるいは全部を、TiN、TiC、TiCN、NbC、
NbCN、TaC又はTaCNのうちのいずれか1種又
は2種以上で置換した材料であることを特徴とする請求
項2に記載の高精度を要求される成形部材に適した材
料。
4. A method according to claim 1, wherein part or all of the SiC of the Al 2 O 3 —SiC-based material is converted to TiN, TiC, TiCN, NbC,
The material suitable for a molded member requiring high precision according to claim 2, characterized in that it is a material substituted with one or more of NbCN, TaC and TaCN.
【請求項5】 WC−TiC−TaC系材料中のTaC
の一部あるいは全部を、TiN、TiC、TiCN、N
bC、NbCN、又はTaCNのうちのいずれか1種又
は2種以上で置換した材料であることを特徴とする請求
項2に記載の高精度を要求される成形部材に適した材
料。
5. TaC in a WC-TiC-TaC-based material
A part or all of TiN, TiC, TiCN, N
3. The material suitable for a molded member requiring high precision according to claim 2, wherein the material is substituted with one or more of bC, NbCN, and TaCN.
【請求項6】 硬質膜が炭化珪素又は窒化珪素又は炭酸
化珪素又は炭窒酸化珪素又は窒化チタンアルミニウム、
あるいはこれらの2種以上の多層膜からなることを特徴
とする請求項1から請求項5のいずれかに記載の高精度
を要求される成形部材に適した材料。
6. The hard film is made of silicon carbide or silicon nitride or silicon carbonate or silicon carbonitride or titanium aluminum nitride.
The material suitable for a molded member requiring high precision according to any one of claims 1 to 5, wherein the material is composed of two or more of these multilayer films.
JP16187996A 1996-06-21 1996-06-21 Material suitable for forming material requiring high accuracy Withdrawn JPH107425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16187996A JPH107425A (en) 1996-06-21 1996-06-21 Material suitable for forming material requiring high accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16187996A JPH107425A (en) 1996-06-21 1996-06-21 Material suitable for forming material requiring high accuracy

Publications (1)

Publication Number Publication Date
JPH107425A true JPH107425A (en) 1998-01-13

Family

ID=15743729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16187996A Withdrawn JPH107425A (en) 1996-06-21 1996-06-21 Material suitable for forming material requiring high accuracy

Country Status (1)

Country Link
JP (1) JPH107425A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084727A (en) * 2000-08-25 2002-03-22 Samsung Electro Mech Co Ltd Hydrodynamic pressure bearing motor
JP2004205016A (en) * 2002-12-26 2004-07-22 Nsk Ltd Linear motion device
JP2007161497A (en) * 2005-12-09 2007-06-28 Canon Inc Method for producing molding die for optical element, and molding die for optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084727A (en) * 2000-08-25 2002-03-22 Samsung Electro Mech Co Ltd Hydrodynamic pressure bearing motor
JP2004205016A (en) * 2002-12-26 2004-07-22 Nsk Ltd Linear motion device
JP2007161497A (en) * 2005-12-09 2007-06-28 Canon Inc Method for producing molding die for optical element, and molding die for optical element
JP4596476B2 (en) * 2005-12-09 2010-12-08 キヤノン株式会社 Manufacturing method of optical element molding die and optical element molding die

Similar Documents

Publication Publication Date Title
JP2002144110A (en) Surface coat boron nitride sintered body tool
US7789598B2 (en) Surface coated cutting tool
JPH107425A (en) Material suitable for forming material requiring high accuracy
JPH0297640A (en) Sintered hard alloy for precision mold and coated sintered hard alloy for precision mold
JPS61281030A (en) Mold for molding optical element
JP2583581B2 (en) Mold for optical element molding
JP2621010B2 (en) Mold for metal plastic working
JP3841186B2 (en) Mold for optical element molding
JPS62132734A (en) Mold for forming optical element
JPH0524865A (en) Mold for forming optical glass element
JP2000144298A (en) Diamond-containing hard member and its production
JP2971226B2 (en) Method for manufacturing glass optical element molding die
JP2962905B2 (en) Method for manufacturing glass optical element molding die
JP3149149B2 (en) Optical element molding die
JP2997357B2 (en) Glass optical element molding die and manufacturing method thereof
JP2964367B2 (en) Mold for optical element molding
JP2661345B2 (en) Mold for optical glass element
JPH0665718A (en) Mold material for forming
JP2007254216A (en) Coated mold for forming optical element and its producing method
JPH04338121A (en) Metallic mold for forming optical element
JPH0214881A (en) Surface deposited carbonaceous material
JPH0557508A (en) Vapor-phase synthetic diamond coated cutting tool
JPH09291378A (en) Coated cemented carbide
JPH0578145A (en) Fusing preventing coating film
CN113512716A (en) Preparation method of titanium carbonitride/aluminum oxide composite coating for repairing substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902