Nothing Special   »   [go: up one dir, main page]

JPH1073395A - Refrigerant path array apparatus of heat exchanger for air conditioning equipment - Google Patents

Refrigerant path array apparatus of heat exchanger for air conditioning equipment

Info

Publication number
JPH1073395A
JPH1073395A JP9172401A JP17240197A JPH1073395A JP H1073395 A JPH1073395 A JP H1073395A JP 9172401 A JP9172401 A JP 9172401A JP 17240197 A JP17240197 A JP 17240197A JP H1073395 A JPH1073395 A JP H1073395A
Authority
JP
Japan
Prior art keywords
refrigerant path
heat exchanger
air
counter
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9172401A
Other languages
Japanese (ja)
Inventor
Toshin Kin
東 鎭 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH1073395A publication Critical patent/JPH1073395A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the total bulk relatively by arranging an air-current direction type first refrigerant path block through which passes air with a larger velocity and a counter air-current direction type second refrigerant path block through which passes air with a smaller velocity in combination. SOLUTION: In a first refrigerant path block 70, first-third refrigerant path inflow sections 61, 62 and 63 are installed on the side in the direction of an air current at the upper end of a heat exchanger 60 where air with a larger velocity passes. First- third refrigerant path outflow sections 61a, 62a and 63a are installed on the side in the counter direction of the air current at the upper end of the heat exchanger 60. In a second refrigerant path block 80, fourth and fifth refrigerant path inflow sections 64 and 65 are installed on the side in the counter direction of the air current at the lower end of the heat exchanger 60 where air with a smaller velocity passes. Fourth and fifth refrigerant path outflow sections 64a and 65a are installed on the side in the direction of the air current at the lower end of the heat exchanger 60. Thus, when the heat exchanger 60 combining an air-current direction type and a counter air-current direction type is applied for an evaporator and a condenser, the size thereof can be reduced considerably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機用熱交
換機の冷媒パス配列装置に関するもので、より詳細に
は、熱交換機(例えば、蒸発機や凝縮機)の冷媒パス
(pass)の対向流と向流(例えば、並向流)を併合
し、製品の嵩を最小限に減少させ得ることは勿論、冷房
性能及びエネルギー効率を向上させ得るようにした空気
調和機用熱交換機の冷媒パス配列装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for arranging refrigerant paths for a heat exchanger for an air conditioner, and more particularly, to a refrigerant path arrangement for a heat exchanger (for example, an evaporator or a condenser). Refrigerant path of a heat exchanger for an air conditioner, which is capable of merging a flow and a counter current (for example, a parallel flow) to reduce the bulk of a product to a minimum, as well as improve cooling performance and energy efficiency. It relates to an arrangement device.

【0002】[0002]

【従来の技術】従来の対向流方式の熱交換機10には、
図2(A)に図示したとおり、その上端から下端までの
所定距離に対して、気流方向側に相互に一定した間隔を
置いて、第1乃至第5冷媒パス流入部(11,12,1
3,14,15)を設置し、その上端から下端までの所
定距離に対して、気流反対方向側に相互に一定した間隔
を置いて、第1乃至第5冷媒パス流出部(11a,12
a,13a,14a,15a)を設置する。
2. Description of the Related Art A conventional counter-flow type heat exchanger 10 includes:
As shown in FIG. 2A, the first to fifth refrigerant path inlets (11, 12, 1) are spaced apart from each other at a predetermined distance from the upper end to the lower end in the airflow direction.
3, 14 and 15), and the first to fifth refrigerant path outlets (11a, 12) are spaced apart from each other at a predetermined distance from the upper end to the lower end in a direction opposite to the air flow.
a, 13a, 14a, 15a).

【0003】また、他の対向流方式の熱交換機20に
は、図2(B)に図示したとおり、その上端から下端ま
での距離に対して、気流方向側に第1乃至第4冷媒パス
流入部(21,22,23,24)を設置し、その上端
から下端までの距離に対して、気流反対方向側に第1乃
至第4冷媒パス流出部(21a,22a,23a,24
a)を設置する。
As shown in FIG. 2 (B), the flow of the first to fourth refrigerant paths in the direction of air flow with respect to the distance from the upper end to the lower end of another counter-flow type heat exchanger 20 is also shown. Parts (21, 22, 23, 24) are installed, and the first to fourth refrigerant path outlet parts (21a, 22a, 23a, 24) are located on the side opposite to the airflow with respect to the distance from the upper end to the lower end.
a) is installed.

【0004】そして、向流方式の熱交換機30には、図
3(A)に図示したとおり、その上端から下端までの距
離に対して気流反対方向側に相互に一定した間隔を置い
て、第1乃至第5冷媒パス流入部(31,32,33,
34,35)を設置し、その上端から下端までの距離に
対して気流方向側に相互に一定した間隔を置いて、第1
乃至第5冷媒パス流出部(31a,32a,33a,3
4a,35a)を設置する。
[0006] As shown in FIG. 3A, the counter-current type heat exchanger 30 is provided with a constant distance from each other in the direction opposite to the air flow with respect to the distance from the upper end to the lower end. The first to fifth refrigerant path inflow portions (31, 32, 33,
34, 35) are installed, and at a constant interval from each other on the airflow direction side with respect to the distance from the upper end to the lower end, the first
To the fifth refrigerant path outlet (31a, 32a, 33a, 3
4a, 35a) are installed.

【0005】また、他の向流方式の熱交換機40には、
図3(B)に図示したとおり、その上端から下端までの
距離に対して、気流反対方向側に第1乃至第4冷媒パス
流入部(41,42,43,44)を設置し、その上端
から下端までの距離に対して、気流方向側に第1乃至第
4冷媒パス流出部(41a,42a,43a,44a)
を設置する。
[0005] Further, other countercurrent type heat exchangers 40 include:
As shown in FIG. 3 (B), the first to fourth refrigerant path inflow portions (41, 42, 43, 44) are provided on the side opposite to the airflow with respect to the distance from the upper end to the lower end, and First to fourth refrigerant path outlets (41a, 42a, 43a, 44a) on the airflow direction side with respect to the distance from the lower end to the lower end.
Is installed.

【0006】[0006]

【発明が解決しようとする課題】しかし、このように構
成した従来による空気調和機用熱交換機の冷媒パス配列
装置は、図2(A),(B)に図示したとおり対向流方
式または図3(A),(B)に図示したとおり向流方式
に区分して製造する。このため、蒸発機や凝縮機に適用
する場合には、図2(A),(B)の対向流方式を組合
わせて、または、図3(A),(B)の向流方式を組合
わせて製造するので、蒸発機や凝縮機のサイズが大きく
なり、室内機または室外機の全体嵩が相対的に相当大き
くなった。従って、空気調和機の材料費が上昇すると同
時に、作業性が低下するだけでなく、冷房性能及びエネ
ルギー消費効率を低下させる問題があった。
However, the conventional refrigerant path arranging device for an air conditioner heat exchanger constructed as described above has a counter flow system or a refrigerant flow arranging system as shown in FIGS. 2 (A) and 2 (B). As shown in (A) and (B), it is manufactured by dividing into a countercurrent method. Therefore, when the present invention is applied to an evaporator or a condenser, the countercurrent method shown in FIGS. 2A and 2B or the countercurrent method shown in FIGS. 3A and 3B is used. Since they are manufactured together, the size of the evaporator and the condenser becomes large, and the overall bulk of the indoor unit or the outdoor unit becomes relatively large. Therefore, there has been a problem that not only the material cost of the air conditioner rises, but also the workability decreases, and also the cooling performance and the energy consumption efficiency decrease.

【0007】従って、本発明は、前記問題点を解決する
ためのもので、その目的は、蒸発機や凝縮機のサイズを
相当に縮めて、室内機または室外機の全体嵩を相対的に
小さく製造できるようにすることは勿論、材料費を減ら
して作業性を高めると同時に、冷房性能及びエネルギー
消費効率を向上させ得るようにした空気調和機用熱交換
機の冷媒パス配列装置を提供することにある。
Accordingly, the present invention has been made to solve the above problems, and has as its object to considerably reduce the size of an evaporator or a condenser and to reduce the overall bulk of an indoor unit or an outdoor unit. To provide a refrigerant path arrangement device for a heat exchanger for an air conditioner, which is capable of improving the cooling performance and the energy consumption efficiency while reducing the material cost, as well as making it possible to manufacture. is there.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、請求項1記載の第1の発明は、空気調和機用熱交換
機の冷媒パス配列装置において、前記熱交換機の冷媒パ
ス配列装置は、その所定部位に風速の大きい風が通過す
る向流方式の第1冷媒パス群と、風速の小さい風が通過
する対向流方式の第2冷媒パス群とを併合して配設する
ことを要旨とする。従って、蒸発機や凝縮機のサイズを
相当に縮めて、室内機または室外機の全体嵩を相対的に
小さく製造できるようにすることは勿論、材料費を減ら
して作業性を高めると同時に、冷房性能及びエネルギー
消費効率を向上できる。
According to a first aspect of the present invention, there is provided a refrigerant path arrangement device for a heat exchanger for an air conditioner, wherein the refrigerant path arrangement device for the heat exchanger comprises: In addition, the first refrigerant path group of the counterflow type through which the wind having the high wind speed passes through the predetermined portion and the second refrigerant path group of the counterflow type through which the wind having the low wind speed passes are combined and disposed. And Accordingly, the size of the evaporator or the condenser can be considerably reduced, so that the overall volume of the indoor unit or the outdoor unit can be made relatively small. Performance and energy consumption efficiency can be improved.

【0009】請求項2記載の第2の発明は、前記第1冷
媒パス群は、風速の大きい風が通過する熱交換機の上端
に対して、所定の気流方向側に設置する第1乃至第3冷
媒パス流入部と、前記熱交換機の上端に対して、所定の
気流反対方向側に設置する第1乃至第3冷媒パス流出部
とを備えることを要旨とする。
In a second aspect of the present invention, the first refrigerant path group is disposed on a predetermined airflow direction side with respect to an upper end of a heat exchanger through which a wind having a high wind speed passes. The gist of the invention is to include a refrigerant path inflow section and first to third refrigerant path outflow sections installed on a side opposite to a predetermined airflow with respect to an upper end of the heat exchanger.

【0010】請求項3記載の第3の発明は、前記第2冷
媒パス群は、風速の小さい風が通過する熱交換機の下端
に対して、所定の気流反対方向側に設置する第4及び第
5冷媒パス流入部と、前記熱交換機の下端に対して、所
定の気流方向側に設置する第4乃至第5冷媒パス流出部
とを備えることを要旨とする。
According to a third aspect of the present invention, the second refrigerant path group is disposed on a side opposite to a predetermined airflow with respect to a lower end of the heat exchanger through which the wind having a low wind speed passes. The gist is to provide a fifth refrigerant path inflow section and fourth to fifth refrigerant path outflow sections installed on a predetermined airflow direction side with respect to a lower end of the heat exchanger.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施の形態によ
る空気調和機用熱交換機の冷媒パス配列装置に関し、添
付図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a refrigerant path arrangement device for a heat exchanger for an air conditioner according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

【0012】図1で参照符号60は、装置上端に風速の
大きい風が通過する向流方式の第1冷媒パス群70と、
装置下端に風速の小さい風が通過する対向流方式の第2
冷媒パス群80とが併合され配列設置される熱交換機を
示したものである。一方、前記熱交換機60は、図1の
図示のとおり、説明の便宜のため、蒸発機の例を挙げて
説明する。
In FIG. 1, reference numeral 60 designates a counter-current type first refrigerant path group 70 through which a wind having a high wind speed passes at the upper end of the apparatus.
The second counter-current type, in which a low wind speed passes through the lower end of the device
This figure shows a heat exchanger in which refrigerant path groups 80 are merged and arranged. On the other hand, the heat exchanger 60 will be described with reference to an example of an evaporator for convenience of description as shown in FIG.

【0013】図1の図示のとおり、第1冷媒パス群70
には、風速の大きい風が通過する前記熱交換機60の上
端に対して、気流方向側に第1乃至第3冷媒パス流入部
(61,62,63)が設置され、前記熱交換機60の
上端に対して、気流反対方向側に第1乃至第3冷媒パス
流出部(61a,62a,63a)が設置されている。
As shown in FIG. 1, the first refrigerant path group 70
The first to third refrigerant path inlets (61, 62, 63) are provided on the airflow direction side with respect to the upper end of the heat exchanger 60 through which the wind having a high wind speed passes. On the other hand, the first to third refrigerant path outlets (61a, 62a, 63a) are provided on the side opposite to the airflow.

【0014】また、前記第2冷媒パス群80には、風速
の小さい風が通過する前記熱交換機60の下端に対し
て、気流反対方向側に第4及び第5冷媒パス流入部(6
4,65)が設置され、前記熱交換機60の下端に対し
て、気流方向側に第4及び第5冷媒パス流出部(64
a,65a)が設置されている。
The second refrigerant path group 80 has a fourth and fifth refrigerant path inlets (6) on the opposite side of the air flow with respect to the lower end of the heat exchanger 60 through which the wind having a low wind speed passes.
4, 65), and the fourth and fifth refrigerant path outlets (64) are provided on the airflow direction side with respect to the lower end of the heat exchanger 60.
a, 65a).

【0015】次に、蒸発機パス別の本発明と従来に対す
るテスト測定装置は、表1に示すとおりである。
Next, the test measuring apparatus for the present invention and the conventional one for each evaporator path are as shown in Table 1.

【0016】[0016]

【表1】 この結果は、蒸発機として使用する熱交換機60を基準
としたもので、熱交換機60のサイズは、4列20段
に、長さ500mm、幅600mmの同一試料を使用し
て測定したもので、測定ポイントは図1乃至図3におい
て、それぞれ第2冷媒パス流出口(12a,22a,3
2a,42a,62a)を基準として測定したものであ
る。
[Table 1] The results are based on the heat exchanger 60 used as an evaporator. The size of the heat exchanger 60 is measured using the same sample having a length of 500 mm and a width of 600 mm in 4 rows and 20 stages. The measurement points in FIGS. 1 to 3 are the second refrigerant path outlets (12a, 22a, 3
2a, 42a, 62a).

【0017】前記表1のとおり、本発明の冷房能力は従
来のそれと対比する時、2.1乃至6%の向上があり、
エネルギー消費効率(EER)は0.028乃至0.1
13kcal/h.wの向上があるので、本発明の対向
流方式と向流方式とを併合した熱交換機60は、冷房能
力及びエネルギー消費効率面から、従来の対向流方式と
向流方式とにそれぞれ区分された熱交換機(10,2
0,30.40)より向上されることが分かる。
As shown in Table 1, the cooling capacity of the present invention is 2.1 to 6% higher than that of the conventional cooling capacity.
Energy consumption efficiency (EER) is 0.028 to 0.1
13 kcal / h. Since there is an improvement in w, the heat exchanger 60 in which the counter-current method and the counter-current method of the present invention are combined is divided into the conventional counter-current method and the counter-current method in terms of cooling capacity and energy consumption efficiency. Heat exchanger (10, 2
0, 30.40).

【0018】また、対向流方式と向流方式とを併合した
熱交換機60を、蒸発機または凝縮機に適用して使用す
る場合、サイズを相当に縮め得るので、室内機または室
外機の全体嵩を相対的に小さく製造できることは勿論、
それによる材料費を減らして、作業性を高めることがで
きる。
Further, when the heat exchanger 60 combining the counter-flow method and the counter-flow method is applied to an evaporator or a condenser and used, the size can be considerably reduced. Can be manufactured relatively small,
Accordingly, material costs can be reduced and workability can be improved.

【0019】[0019]

【発明の効果】以上説明したとおり、本発明による空気
調和機用熱交換機の冷媒パス配列装置によると、熱交換
機が対向流方式と向流方式とを併合した構造からなって
いるので、前記熱交換機を蒸発機や凝縮機に適用する場
合、サイズを相当に縮めて、室内機または室外機の全体
嵩を相対的に小さくすることができ、材料費を減らし作
業性を高めると同時に、冷房性能及びエネルギー消費効
率を向上させ得る効果がある。
As described above, according to the refrigerant path arranging apparatus of the heat exchanger for an air conditioner according to the present invention, the heat exchanger has a structure in which the counter-current system and the counter-current system are combined. When the exchanger is applied to an evaporator or a condenser, the size can be considerably reduced, and the overall bulk of the indoor unit or the outdoor unit can be relatively reduced, thereby reducing material costs and improving workability, and at the same time, cooling performance In addition, there is an effect that the energy consumption efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の対向流と向流とを併合した蒸発機の冷
媒パス状態を示した概略図である。
FIG. 1 is a schematic view showing a refrigerant path state of an evaporator in which a counterflow and a counterflow are combined according to the present invention.

【図2】従来の対向流方式による蒸発機の冷媒パス状態
を示した概略図である。
FIG. 2 is a schematic diagram showing a state of a refrigerant path of a conventional counterflow type evaporator.

【図3】従来方式の向流方式による蒸発機の冷媒パス状
態を示した概略図である。
FIG. 3 is a schematic diagram showing a refrigerant path state of a conventional countercurrent type evaporator.

【符号の説明】[Explanation of symbols]

60 熱交換機 61,62,63.64,65 第1乃至第5冷媒パス
流入部 61a,62a,63a,64a,65a 第1乃至第
5冷媒パス流出部 70,80 第1及び第2冷媒パス群
60 heat exchanger 61,62,63.64,65 first to fifth refrigerant path inlets 61a, 62a, 63a, 64a, 65a first to fifth refrigerant path outlets 70,80 first and second refrigerant path group

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気調和機用熱交換機の冷媒パス配列装
置において、 前記熱交換機の冷媒パス配列装置は、その所定部位に風
速の大きい風が通過する向流方式の第1冷媒パス群と、
風速の小さい風が通過する対向流方式の第2冷媒パス群
とを併合して配設することを特徴とする空気調和機用熱
交換機の冷媒パス配列装置。
1. A refrigerant path arranging device for a heat exchanger for an air conditioner, wherein the refrigerant path arranging device of the heat exchanger comprises a first counter-current refrigerant path group through which a wind having a high wind speed passes through a predetermined portion thereof.
A refrigerant path arranging apparatus for a heat exchanger for an air conditioner, wherein a counter flow type second refrigerant path group through which a wind having a low wind speed passes is provided in combination therewith.
【請求項2】 前記第1冷媒パス群は、風速の大きい風
が通過する熱交換機の上端に対して、所定の気流方向側
に設置する第1乃至第3冷媒パス流入部と、前記熱交換
機の上端に対して、所定の気流反対方向側に設置する第
1乃至第3冷媒パス流出部とを備えることを特徴とする
請求項1記載の空気調和機用熱交換機の冷媒パス配列装
置。
2. The first refrigerant path group includes first to third refrigerant path inflow portions provided on a predetermined airflow direction side with respect to an upper end of a heat exchanger through which a wind having a high wind speed passes; The refrigerant path arranging device for a heat exchanger for an air conditioner according to claim 1, further comprising first to third refrigerant path outlets provided on a side opposite to a predetermined airflow with respect to an upper end of the refrigerant path.
【請求項3】 前記第2冷媒パス群は、風速の小さい風
が通過する熱交換機の下端に対して、所定の気流反対方
向側に設置する第4及び第5冷媒パス流入部と、前記熱
交換機の下端に対して、所定の気流方向側に設置する第
4乃至第5冷媒パス流出部とを備えることを特徴とする
請求項1記載の空気調和機用熱交換機の冷媒パス配列装
置。
3. The second refrigerant path group includes fourth and fifth refrigerant path inflow portions provided on the opposite side of a predetermined airflow with respect to a lower end of the heat exchanger through which the wind having a low wind speed passes; The refrigerant path arrangement device for a heat exchanger for an air conditioner according to claim 1, further comprising a fourth to a fifth refrigerant path outlets provided on a predetermined airflow direction side with respect to a lower end of the exchanger.
JP9172401A 1996-08-14 1997-06-27 Refrigerant path array apparatus of heat exchanger for air conditioning equipment Pending JPH1073395A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1996-33750 1996-08-14
KR1019960033750A KR100210076B1 (en) 1996-08-14 1996-08-14 Coolant pass arrangement device in heat exchanger

Publications (1)

Publication Number Publication Date
JPH1073395A true JPH1073395A (en) 1998-03-17

Family

ID=19469609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9172401A Pending JPH1073395A (en) 1996-08-14 1997-06-27 Refrigerant path array apparatus of heat exchanger for air conditioning equipment

Country Status (3)

Country Link
JP (1) JPH1073395A (en)
KR (1) KR100210076B1 (en)
CN (1) CN1173629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014767A3 (en) * 2000-08-15 2002-05-23 American Standard Int Inc Stepped heat exchanger coils
WO2004016996A1 (en) * 2002-08-14 2004-02-26 Multibrás S.A. Eletrodomésticos Evaporator for a refrigeration system
US20220397312A1 (en) * 2021-06-09 2022-12-15 LGL France S.A.S. Counter-current flow in both ac and hp modes for part load optimization

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490722B1 (en) * 2004-07-23 2005-05-19 엘지전자 주식회사 A condenser of refrigerator
JP5985387B2 (en) * 2012-12-28 2016-09-06 カルソニックカンセイ株式会社 Combined heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014767A3 (en) * 2000-08-15 2002-05-23 American Standard Int Inc Stepped heat exchanger coils
WO2004016996A1 (en) * 2002-08-14 2004-02-26 Multibrás S.A. Eletrodomésticos Evaporator for a refrigeration system
US7073347B2 (en) 2002-08-14 2006-07-11 Multibras S.A. Eletrodomesticos Evaporator for a refrigeration system
US20220397312A1 (en) * 2021-06-09 2022-12-15 LGL France S.A.S. Counter-current flow in both ac and hp modes for part load optimization

Also Published As

Publication number Publication date
KR19980014665A (en) 1998-05-25
KR100210076B1 (en) 1999-07-15
CN1173629A (en) 1998-02-18

Similar Documents

Publication Publication Date Title
Kabeel et al. Experimental study of a novel integrated system of indirect evaporative cooler with internal baffles and evaporative condenser
US4907646A (en) Heat exchanger
KR20050022534A (en) Heat exchanger
CN103968475B (en) Dehumidifying device
EP3805687B1 (en) Refrigerant distributor, heat exchanger, and air conditioner
US6139425A (en) High efficiency air mixer
JP4411986B2 (en) Dehumidifier
JP6466047B1 (en) Heat exchanger and air conditioner
JPH1073395A (en) Refrigerant path array apparatus of heat exchanger for air conditioning equipment
CN201387182Y (en) Heat exchanger and air conditioner
JP3851403B2 (en) Indoor unit for air conditioner
CN205536222U (en) Mobile air conditioner
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
CN111512099B (en) Heat exchanger and refrigeration cycle device
CN206478751U (en) Single-row evaporator and air conditioner indoor unit
CN212457371U (en) High-efficiency heat exchanger
JPH10196984A (en) Air conditioner
CN1323267C (en) Multistage evaporation type air conditioner
JPH073203Y2 (en) Heat exchanger for air conditioner
JPH046442A (en) Control apparatus for constant temperature and constant humidity
Sadi Experimental Study of Maisotsenko Cross-Flow Cooler and Numerical Solution of Air in Mass and Heat Exchanger
CN218495173U (en) Heat exchange mechanism with air inlet on multiple surfaces, refrigerating air conditioning unit and vehicle-mounted liquid cooling source
JPS63161360A (en) Refrigeration cycle
Al-Badri et al. A Study on Thermal Effectiveness of Multi-Stages Evaporative Air Cooling
CN2757042Y (en) Multi stage evaporation tpye air conditioner