Nothing Special   »   [go: up one dir, main page]

JPH1057985A - Water quality purifying method - Google Patents

Water quality purifying method

Info

Publication number
JPH1057985A
JPH1057985A JP8238466A JP23846696A JPH1057985A JP H1057985 A JPH1057985 A JP H1057985A JP 8238466 A JP8238466 A JP 8238466A JP 23846696 A JP23846696 A JP 23846696A JP H1057985 A JPH1057985 A JP H1057985A
Authority
JP
Japan
Prior art keywords
water
cylinder
air
bottom layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8238466A
Other languages
Japanese (ja)
Inventor
Hirokazu Tsuji
博和 辻
Shuji Miyaoka
修二 宮岡
Mamoru Ishigaki
衛 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP8238466A priority Critical patent/JPH1057985A/en
Publication of JPH1057985A publication Critical patent/JPH1057985A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and inexpensively purify water quality by covering the water bottom in the water region of seas, lakes and marshes and rivers, etc., with a covering material such as sands, and feeding surface water in this region into a bottom layer with a prescribed water transportation means. SOLUTION: In the case that this method is applied to a closed water region 1 such that exchange of seawater with the open sea is performed with only a floodgate, the sea bottom 2 of the closed water region 1 is covered with sands 3 and also an intermittently air pumping cylinder 4 is disposed on sands 3. The air pumping cylinder 4 is composed of a cylinder 6 and an air room 8, and by mooring the bottom end of the cylinder 6 to a sinker 11 via a chain 10, the cylinder 6 is stood on one's own legs nearly vertically with a self-supporting float 5 attached on the upper end. Air is fed into the air room 8 from a compressor via an air feed pipe, and by ejecting the air in the air room with one blow into the cylinder 6, the water in the cylinder 6 is raised, while it is pushed up, and the water near the bottom layer is made to flow in from a water suction port 9 of the cylinder 6 and then a circulation flow flowing from the surface layer to the bottom layer and from the bottom layer to the surface layer is generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海、湖沼、河川等
の水質を浄化する水質浄化工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification method for purifying water in seas, lakes, marshes, rivers and the like.

【0002】[0002]

【従来の技術】海、湖沼、河川等の水域、特に閉鎖性水
域においては、水質の富栄養化による水質汚濁が問題と
なっている。すなわち、リンや窒素といった栄養塩類の
濃度が増加すると、日射量が多い表層においては植物プ
ランクトンや藻類が異常に繁殖し、底層においては死ん
だ藻類等の有機物分解で多量の酸素が消費され無酸素状
態となる。
2. Description of the Related Art Water pollution due to eutrophication of water quality has become a problem in waters such as the sea, lakes and rivers, particularly in closed waters. That is, when the concentration of nutrients such as phosphorus and nitrogen increases, phytoplankton and algae grow abnormally in the surface layer with high solar radiation, and in the bottom layer, a large amount of oxygen is consumed by the decomposition of organic matter such as dead algae, resulting in anoxia. State.

【0003】このような表層での藻類の異常発生は、水
道の浄化処理場で濾過装置を目詰まりさせたり、水道水
を緑色に染めたり、かび臭を付けたりといった弊害をも
たらす一方、底層での貧酸素化は、高等水生生物の死滅
や、嫌気性の環境となってアンモニアや硫化水素などが
底泥や水中の有機物から溶出し、水道水が異臭を放つと
いった弊害をもたらす。そして、上層と底層とが循環せ
ず成層化する夏期においては、かかる傾向がいっそう顕
著となる。
[0003] Such abnormal occurrence of algae on the surface layer causes adverse effects such as clogging of a filtration device in a water purification treatment plant, dyeing of tap water in green, and adding a musty odor. Hypoxia causes the disadvantage that higher aquatic organisms are killed and anaerobic environment causes ammonia and hydrogen sulfide to elute from bottom mud and organic matter in water, and that tap water emits an odor. And, in the summer season when the upper layer and the bottom layer are stratified without circulation, such a tendency becomes more remarkable.

【0004】[0004]

【発明が解決しようとする課題】かかる水質汚濁を改善
するため、例えば、流入負荷の低減、底泥の浚渫、藻類
除去、底質被覆、湖水循環等の方法が試みられている
が、いったん富栄養化した水域については、水域内で栄
養塩類の循環系ができあがっていて流入負荷を低減した
だけでは水質を改善するのは困難であり、底泥を浚渫し
た場合、その浚渫土は産業廃棄物として処理しなければ
ならず、藻類を除去するにあたっては、藻類の増殖より
も速いペースでこれを除去するのは実質的に不可能であ
るという問題を生じていた。
In order to improve such water pollution, for example, methods such as reduction of inflow load, sediment dredging, algae removal, sediment coating and lake water circulation have been tried. For nutrient water bodies, it is difficult to improve water quality only by reducing the inflow load due to the establishment of a circulating system of nutrients in the water bodies.If the bottom mud is dredged, the dredged soil will become industrial waste. In removing algae, there has been a problem that it is practically impossible to remove the algae at a faster pace than the growth of the algae.

【0005】一方、底質被覆や湖水循環については、一
定の効果が得られることがわかってきたものの、前者に
ついては、被覆したとはいえその内部から少しずつ有機
物が溶出して酸素を消費するし、夏期においては表層で
大量発生した植物プランクトンが死骸となってあらたに
水底に沈降堆積するので、結局、底層での貧酸素化を長
期間防止することは困難であるという問題や、後者につ
いては、水循環を行うとはいえ、底泥に沈降した有機物
の酸素消費が避けられず、したがって、底層付近での貧
酸素化を抑制するには限度があるとともに、一定の効果
を上げるには、充実した水循環施設が必要となり、水質
改善によって大きな経済波及効果が見込まれるといった
ような価値が見いだせない限り、現実に採用するのは困
難であるという問題も生じていた。
On the other hand, although it has been found that a certain effect can be obtained with respect to sediment coverage and lake water circulation, in the former, organic substances are gradually eluted from the inside of the former and oxygen is consumed even though it is coated. However, in the summer months, phytoplankton, which is abundantly generated in the surface layer, becomes a dead body and newly settles down on the water floor, which makes it difficult to prevent hypoxia in the bottom layer for a long time. Although water circulation is performed, oxygen consumption of organic matter settled in the bottom mud is inevitable, so there is a limit to suppress anoxia near the bottom layer, and to raise a certain effect, The question is that it is difficult to actually adopt the system unless it is necessary to find a value that would require substantial water circulation facilities and a large economic ripple effect by improving water quality. Also it has occurred.

【0006】本発明は、上述した事情を考慮してなされ
たもので、低コストで効率的な水質浄化が可能な水質浄
化工法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a water purification method capable of efficiently purifying water at low cost.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の水質浄化工法は請求項1に記載したよう
に、海、湖沼、河川等の水域の水底を砂等の被覆材で覆
うとともに、該水域内の表層水を所定の水移送手段で底
層に送り込むものである。
In order to achieve the above object, the water purification method of the present invention covers a water bottom of a water area such as a sea, a lake, a river or a river with a covering material such as sand. At the same time, the surface water in the water area is sent to the bottom layer by a predetermined water transfer means.

【0008】また、本発明の水質浄化工法は、前記水域
内に所定の水循環装置を設置して前記水移送手段とし、
前記表層水を該水循環装置で発生させた循環流に乗せて
前記底層に送り込むものである。
Further, in the water purification method of the present invention, a predetermined water circulating device is installed in the water area to serve as the water transfer means,
The surface water is carried on the circulating flow generated by the water circulation device and sent to the bottom layer.

【0009】本発明の水質浄化工法においては、水底の
底泥が被覆材で覆われるため、底泥内の有機物による酸
素消費が抑制される。また、表層水を底層に送り込むこ
とによって表層付近の富酸素水が底層に流れ込むととも
に、植物プランクトンや藻類が日射量の大きい表層付近
から日射量の少ない底層に送り込まれることによって、
表層付近で異常繁殖することがなくなり、有機物として
の死骸の堆積量も減少する。
In the water purification method of the present invention, the bottom mud on the water bottom is covered with the covering material, so that the consumption of oxygen by organic matter in the bottom mud is suppressed. Also, by sending surface water to the bottom layer, oxygen-rich water near the surface layer flows into the bottom layer, and phytoplankton and algae are sent from the vicinity of the surface layer with high solar radiation to the bottom layer with low solar radiation,
Abnormal breeding near the surface layer is eliminated, and the amount of dead carcass as organic matter is reduced.

【0010】すなわち、底層では、被覆材による底泥で
の酸素消費の抑制作用、水移送による有機物の沈降量の
減少作用並びに同じく水移送による富酸素水の供給作用
が互いに相乗し合って溶存酸素濃度が大幅に増加する。
That is, in the bottom layer, the action of suppressing oxygen consumption in the bottom mud by the coating material, the action of reducing the amount of sedimentation of organic matter by transferring water, and the action of supplying oxygen-rich water by transferring water are also synergistic with each other to dissolve dissolved oxygen. The concentration increases significantly.

【0011】水移送手段としては、表層水を底層に送り
込むことができるのであればいかなる手段でもよく、例
えば、水域内に所定の水循環装置を設置して水移送手段
とし、表層水を該水循環装置で発生させた循環流に乗せ
て底層に送り込むようにすることができる。
As the water transfer means, any means can be used as long as surface water can be sent to the bottom layer. For example, a predetermined water circulation device is installed in the water area to serve as a water transfer device, and the surface water is used as the water circulation device. It can be sent to the bottom layer by carrying on the circulating flow generated in the above.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る水質浄化工法
の実施の形態について、添付図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the water purification method according to the present invention will be described below with reference to the accompanying drawings.

【0013】図1(a)は、本実施形態に係る水質浄化工
法を、防潮堤(図示せず)で囲まれ水門でのみ外海との
海水交換が行われる閉鎖性水域1に適用した例を示した
ものである。同図でわかるように、本実施形態の水質浄
化工法においては、閉鎖性水域1の海底2を被覆材とし
ての砂3で被覆するとともに、該砂3の上に水循環装置
としての間欠式空気揚水筒4を設置してある。
FIG. 1 (a) shows an example in which the water purification method according to the present embodiment is applied to a closed water body 1 in which seawater is exchanged with the open sea only at a sluice surrounded by a seawall (not shown). It is shown. As can be seen from the figure, in the water purification method of the present embodiment, the seabed 2 of the closed water area 1 is covered with sand 3 as a covering material, and an intermittent air pump as a water circulating device is provided on the sand 3. A canteen 4 is installed.

【0014】ここで、砂3は、砂撒船等を用いて海上か
ら投下し、これを海底2に堆積している有機汚泥を撹乱
しないように例えば50cm程度の厚みに精度よく撒
く。
Here, the sand 3 is dropped from the sea using a sanding ship or the like, and the sand 3 is accurately spread to a thickness of, for example, about 50 cm so as not to disturb the organic sludge deposited on the seabed 2.

【0015】間欠式空気揚水筒4は、図1(b)に示すよ
うに、中空の筒体6と、該筒体の下端近傍に設置された
空気室8とから概ね構成され、筒体6の下端をチェーン
10を介してシンカー11に係留すれば、上端に取り付
けた自立用フロート5によって、水中でほぼ鉛直に自立
するようになっている。
As shown in FIG. 1 (b), the intermittent air pump 4 is generally composed of a hollow cylinder 6 and an air chamber 8 installed near the lower end of the cylinder. Is moored to the sinker 11 via the chain 10, the self-supporting float 5 attached to the upper end makes it stand substantially vertically in water.

【0016】かかる間欠式空気揚水筒4においては、地
上に設置されたコンプレッサ(図示せず)から送気管7
を介して空気室8に連続的に空気が送られるが、該空気
室内に一定量の空気が蓄積されると、空気室8内の空気
は、逆サイホン作用によって筒体6内に一気に噴出し
(細線矢印)、これが空気弾12となって筒体6内の水
を押し上げながら上昇するとともに、筒体6の下端の吸
水口9からは底層付近の水が流入する。
In the intermittent air pump 4, a compressor (not shown) installed on the ground supplies an air supply pipe 7.
Is continuously sent to the air chamber 8 through the air chamber. When a certain amount of air is accumulated in the air chamber, the air in the air chamber 8 gushes into the cylindrical body 6 at once by the reverse siphon action. (Thin line arrows), which become air bullets and rise while pushing up the water in the cylindrical body 6, and water near the bottom layer flows in through the water inlet 9 at the lower end of the cylindrical body 6.

【0017】かかる一連の動作は、空気室8内の空気が
一定量に達する毎に間欠的に行われ、かくして、閉鎖性
水域1内では、図1(a)の太線矢印で示すように、表層
から底層、底層から表層へと流れる大きな循環流が生じ
る。
Such a series of operations is performed intermittently every time the air in the air chamber 8 reaches a certain amount. Thus, in the closed water body 1, as shown by the thick arrow in FIG. A large circulating flow occurs from the surface layer to the bottom layer and from the bottom layer to the surface layer.

【0018】なお、間欠式空気揚水筒4は、閉鎖性水域
1内での自然循環が行われずに成層化が生じる春から秋
にかけては連続的に運転するようにするのがよい。
The intermittent air pump 4 is preferably operated continuously from spring to autumn, when stratification occurs without natural circulation in the closed water body 1.

【0019】本実施形態の水質浄化工法においては、海
底2の底泥が被覆材である砂3で覆われるため、底泥内
の有機物による酸素消費が抑制される。
In the water purification method according to the present embodiment, since the bottom mud on the seabed 2 is covered with the sand 3 as a covering material, oxygen consumption by organic matter in the bottom mud is suppressed.

【0020】また、間欠式空気揚水筒4を作動させる
と、筒体6の下端の吸水口9から取り込まれた底層付近
の貧酸素水が、上述した空気弾の作用で上昇して筒体6
の上端開口から放出され、さらに表層付近まで上昇して
該表層付近の富酸素水と混合する。そして、かかる混合
水は、循環流に乗ってやがて降下し、底層へと流れ込
む。
When the intermittent air pump 4 is operated, the oxygen-deficient water near the bottom layer taken in from the water inlet 9 at the lower end of the cylinder 6 rises due to the above-mentioned air bomb and rises in the cylinder 6.
Is discharged from the upper end opening and further rises to near the surface layer to mix with oxygen-rich water near the surface layer. Then, the mixed water descends on the circulating flow and flows into the bottom layer.

【0021】また、閉鎖性水域1の表層水が底層に送り
込まれることによって、植物プランクトンや藻類も、日
射量の大きい表層付近から日射量の少ない底層付近に送
り込まれることとなるので、藻類等は、表層付近にて大
量発生するおそれが少なくなり、有機物としての死骸の
堆積量も減少する。
Further, when the surface water in the closed water body 1 is sent to the bottom layer, phytoplankton and algae are also sent from the vicinity of the surface layer having a large amount of solar radiation to the vicinity of the bottom layer of a small amount of solar radiation. In addition, the risk of mass generation near the surface layer is reduced, and the amount of dead carcass as organic matter is also reduced.

【0022】以上説明したように、本実施形態の水質浄
化工法によれば、砂3による底泥での酸素消費の抑制作
用、水循環による有機物の沈降量の減少作用並びに同じ
く水循環による富酸素水の供給作用によって、海底2近
傍での溶存酸素濃度を大幅に増加させることが可能とな
る。そして、かかる溶存酸素濃度の増加については、覆
砂のみで得られる効果と水循環のみで得られる効果の単
なる総和ではなく、それらの相乗効果によって大幅な増
加が期待できる。
As described above, according to the water purification method of this embodiment, the effect of suppressing the consumption of oxygen in the bottom mud by the sand 3, the effect of reducing the amount of sedimentation of organic matter by the water circulation, and the function of the oxygen-rich water By the supply operation, the dissolved oxygen concentration near the seabed 2 can be greatly increased. Regarding the increase of the dissolved oxygen concentration, not only the sum of the effect obtained only with the sand cover but the effect obtained only with the water circulation, but a significant increase can be expected due to their synergistic effect.

【0023】すなわち、覆砂のみでは、底泥の酸素消費
を抑制することができても、表層からあらたに沈降する
有機物の酸素消費まで抑制することはできず、そのた
め、せっかく覆砂工事を行ってもわずかな期間で底層が
再び貧酸素化してしまうおそれがあったが、水循環を併
用すれば、表層での藻類や植物プランクトンの繁殖が抑
制されるとともに表層の富酸素水が底層まで流入するこ
とにより、これら藻類等の死骸は、沈降途中において速
やかに好気分解され、覆砂の上にはあまり堆積しなくな
り、覆砂による底泥の酸素消費抑制を長期間維持するこ
とができる。
That is, even if the sand cover alone can suppress the oxygen consumption of the bottom mud, it cannot control the oxygen consumption of the organic substances newly settling from the surface layer. Even in a short period of time, the bottom layer may become hypoxic again, but if water circulation is also used, the growth of algae and phytoplankton on the surface layer will be suppressed and the oxygen-rich water on the surface will flow into the bottom layer As a result, these dead bodies of algae and the like are rapidly aerobicly decomposed during sedimentation, do not accumulate much on the sand cover, and the oxygen consumption of the bottom mud by the sand cover can be maintained for a long time.

【0024】また、水循環のみでは、大規模な循環施設
としない限り、底層の貧酸素化を解消することは困難で
あったが、底泥の覆砂と併用すれば、底泥での酸素消費
を抑制しつつ、底層付近に富酸素水を供給することがで
きるので、底層での溶存酸素濃度を高い値に維持するこ
とが可能となる。
In addition, it was difficult to eliminate hypoxia in the bottom layer by using only water circulation unless a large-scale circulation facility was used. , And oxygen-rich water can be supplied near the bottom layer, so that the dissolved oxygen concentration in the bottom layer can be maintained at a high value.

【0025】したがって、水深が大きく夏期に成層化が
生じ、水温躍層を境に水温が急激に変化するような湖沼
や海では、自然循環がほとんど行われず、そのため、表
層での藻類や植物プランクトンの大量発生並びに底層付
近での貧酸素化が深刻であったが、本実施形態に係る水
質浄化工法を適用すれば、表層においては、藻類等の繁
殖が抑制されて海面の透明度が高まり景観が改善される
とともに、底層においては、溶存酸素濃度が大幅に増加
して水生生物の棲息環境が著しく改善され、また、底泥
からのアンモニアや硫化水素の溶出も抑制されるので、
異臭が漂うこともなくなる。しかも、覆砂と水循環との
相乗効果によって、水循環設備、本実施形態では間欠式
空気揚水筒の規模をかなり縮小することが可能となり、
それに伴って運転コストも節約することができる。
Therefore, natural circulation hardly occurs in lakes and seas where the water depth is large and stratification occurs in the summer and the water temperature changes rapidly at the boundary of the thermocline, so that algae and phytoplankton on the surface layer Mass production and anoxia near the bottom layer were serious, but if the water purification method according to this embodiment is applied, on the surface layer, propagation of algae and the like would be suppressed and the transparency of the sea surface would increase, and the landscape In addition to the improvement, in the bottom layer, the dissolved oxygen concentration greatly increases and the habitat of aquatic organisms is remarkably improved, and the elution of ammonia and hydrogen sulfide from the bottom mud is also suppressed,
There is no odor. Moreover, the synergistic effect of sand covering and water circulation makes it possible to considerably reduce the scale of the water circulation equipment, in this embodiment, the intermittent air pumping cylinder,
Accordingly, operating costs can be reduced.

【0026】次に、覆砂や水循環が溶存酸素濃度にどの
ような影響を与えるかを予測したので、以下にその概略
を述べる。
Next, the effect of the sand covering and the water circulation on the dissolved oxygen concentration was predicted, and the outline will be described below.

【0027】図2は、シミュレーションに用いたモデル
を示したものである。同図でわかるように、本シミュレ
ーションでは、閉鎖性水域を、水深5m、水面積20万
m2、底面積10万m2、水量100万m3の上層水塊と、水
深5m、水面積10万m2、底面積10万m2、水量50万
m3の下層水塊とに分け、上層水塊については、港外との
間で一日あたりQin m3の海水交換を行い、上層水塊と
下層水塊との間では、一日あたりQm3の水循環を行うも
のと仮定して、以下の反応基礎式および混合基礎式に基
づいて溶存酸素濃度の経時変化を算定した。
FIG. 2 shows a model used for the simulation. As can be seen from the figure, in this simulation, the closed water area was defined as having a water depth of 5 m and a water area of 200,000.
m 2 , bottom area 100,000 m 2 , water volume 1 million m 3 upper water mass, water depth 5 m, water area 100,000 m 2 , bottom area 100,000 m 2 , water volume 500,000
divided into a lower water mass of m 3, for the upper water mass performs water exchange per day Qin m 3 with the outside the port, between the upper water mass and lower water mass, Qm per day Assuming that the water circulation in Step 3 was performed, the change with time of the dissolved oxygen concentration was calculated based on the following reaction basic formula and mixing basic formula.

【0028】まず、反応基礎式は、 上層水塊; (d/dt)[DOH] = -kwH・[DOH] - DmH・SH 下層水塊; (d/dt)[DOL] = -kwL ・[DOL] - DmL ・SL 次に、混合基礎式は、 上層水塊;[DOH(t+Δt)]=([DOH(t)]・(VH-Qin・Δt-Q・
Δt)+[DOin]・Qin・Δt+[DOL(t)]・Q・Δt) / VH 下層水塊;[DOL(t+Δt)]=([DOL(t)]・(VL-Q・Δt)+[DOH
(t)]・Q・Δt) / VL ここで、 [DOin], [DOH], [DOL] ; 港外、上層、下層の各溶存酸
素濃度 kwH, kwL; 上層、下層における水の酸素消費速度係数 DmH, DmL; 上層、下層における底泥の酸素消費速度 SH, SL; 上層、下層の底面積 VH, VL; 上層、下層の水量 図3は、シミュレーションの結果を示したものであり、
同図(a)乃至(c)は、覆砂を行わないで(DmH, DmL とも0.
2 g/m2/hr)、上層と下層との交換水量Qを1万、15
万、30万m3と変化させたものである。
First, the basic reaction formula is as follows: Upper water mass; (d / dt) [DOH] = -kwH • [DOH]-DmH • SH Lower water mass; (d / dt) [DOL] = -kwL · [ DOL]-DmL ・ SL Next, the basic mixing formula is: Upper water mass; [DOH (t + Δt)] = ([DOH (t)] ・ (VH-Qin ・ Δt-Q ・
Δt) + [DOin] ・ Qin ・ Δt + [DOL (t)] ・ Q ・ Δt) / VH Lower water mass; [DOL (t + Δt)] = ([DOL (t)] ・ (VL-Q ・ Δt ) + [DOH
(t)] ・ Q ・ Δt) / VL where [DOin], [DOH], [DOL]; dissolved oxygen concentrations in the outer, upper and lower layers kwH and kwL; oxygen consumption rate of water in upper and lower layers Coefficients DmH, DmL; Oxygen consumption rate of sediment in upper and lower layers SH, SL; Bottom area of upper and lower layers VH, VL; Water volume of upper and lower layers Figure 3 shows the results of simulation,
Figures (a) to (c) show no sand covering (both DmH and DmL are 0.
2 g / m 2 / hr), the exchange water volume Q between the upper and lower layers is 10,000, 15
10,000,000, which was varied between 300,000 m 3.

【0029】かかる計算結果から、交換水量を増加させ
れば下層水の溶存酸素濃度は増加するが、30万m3の条
件においても下層の溶存酸素濃度は2mg/リットルを維
持できないことがわかる。
From the above calculation results, it can be seen that the dissolved oxygen concentration in the lower layer water increases with an increase in the amount of exchanged water, but the dissolved oxygen concentration in the lower layer cannot be maintained at 2 mg / liter even under the condition of 300,000 m 3 .

【0030】同図(d)は、覆砂を行って(DmH, DmL とも
0.02 g/m2/hr)、上層と下層との交換水量Qを1万m3
した場合の計算結果である。かかる結果から、覆砂単独
では、下層水の溶存酸素濃度を回復することが困難であ
ることがわかる。
FIG. 3 (d) shows that sand covering was performed (for both DmH and DmL).
0.02 g / m 2 / hr), and the calculation results when the exchange water amount Q between the upper layer and the lower layer is 10,000 m 3 . From these results, it can be seen that it is difficult to recover the dissolved oxygen concentration of the underlayer water using only the cover sand.

【0031】同図(e)および(f)は、覆砂を行って(DmH,
DmL とも0.02 g/m2/hr)、上層と下層との交換水量Qを
15、30万m3にした場合の計算結果である。かかる結
果から、覆砂と水循環とを併用した場合、上下層とも溶
存酸素濃度が非常に高くなっており、しかも覆砂と水循
環との相乗効果によって、単に(b)+(d)あるいは(c)+(d)
の総和以上の効果が得られていることがわかる。
FIGS. 3 (e) and 3 (f) show that sand covering is performed (DmH,
DmL is 0.02 g / m 2 / hr), and the calculation results are obtained when the exchange water amount Q between the upper layer and the lower layer is 150,000 and 300,000 m 3 . From these results, when the sand cover and the water cycle are used together, the dissolved oxygen concentration in both the upper and lower layers is extremely high, and furthermore, due to the synergistic effect of the sand cover and the water cycle, only (b) + (d) or (c) ) + (d)
It can be seen that an effect equal to or greater than the sum of

【0032】本実施形態では、水循環装置として間欠式
空気揚水筒を用いたが、必ずしも間欠式とする必要はな
く、海底近傍に設置した多孔管を介して空気を連続的に
噴出させるようにしてもよい。
In this embodiment, an intermittent air pump is used as the water circulating device. However, it is not always necessary to use an intermittent air pump, and air is continuously blown out through a perforated pipe installed near the sea floor. Is also good.

【0033】また、本実施形態では、水循環装置をもっ
て水移送手段としたが、本発明の水移送手段は、表層水
を底層に送り込むことができるすべての手段を含むもの
であり、例えば本実施形態の水循環装置に代えて、図4
に示すように、取水口21を表層側に連通させ、放水口
22を底層側に連通させたポンプ23を採用してもよ
い。かかる構成においては、表層水をいったんポンプ2
3で吸い上げ、これを底層に送り込むようにすればよ
い。
In the present embodiment, the water circulating device is used as the water transfer means. However, the water transfer means of the present invention includes all means capable of sending the surface water to the bottom layer. Fig. 4
As shown in (2), a pump 23 in which the water intake port 21 communicates with the surface layer side and the water discharge port 22 communicates with the bottom layer side may be adopted. In such a configuration, the surface water is once pump 2
It is sufficient to suck up at 3 and send it to the bottom layer.

【0034】かかる構成においても、本実施形態と同様
の効果を得ることができるが、ここではその説明を省略
する。
With this configuration, the same effect as that of the present embodiment can be obtained, but the description is omitted here.

【0035】[0035]

【発明の効果】以上述べたように、本発明の水質浄化工
法は、海、湖沼、河川等の水域の水底を砂等の被覆材で
覆うとともに、該水域内の表層水を所定の水移送手段で
底層に送り込むので、覆砂と水移送との相乗効果によっ
て水域内の溶存酸素濃度を高く維持することが可能とな
り、したがって、低コストで効率的な水質浄化を行うこ
とが可能となる。
As described above, according to the water purification method of the present invention, the bottom of the water area such as the sea, lake, marsh or river is covered with the covering material such as sand and the surface water in the water area is transferred to the predetermined water. Since the water is sent to the bottom layer by means, the dissolved oxygen concentration in the water area can be kept high by the synergistic effect of the sand covering and the water transfer, and therefore, it is possible to carry out the water purification efficiently at low cost.

【0036】[0036]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態に係る水質浄化工法を示した図であ
り、(a)は全体図、(b)は間欠式空気揚水筒を示した詳細
図。
FIG. 1 is a view showing a water purification method according to the present embodiment, wherein (a) is an overall view and (b) is a detailed view showing an intermittent air pumping cylinder.

【図2】シミュレーションを行ったモデル図。FIG. 2 is a model diagram obtained by performing a simulation.

【図3】シミュレーション結果を示したグラフであり、
(a)乃至(c)は、覆砂を行わないで(DmH, DmL とも0.2 g/
m2/hr)、上層と下層との交換水量Qを1万、15万、3
0万m3と変化させた場合の計算結果、d)は、覆砂を行っ
て(DmH, DmL とも0.02 g/m2/hr)、上層と下層との交換
水量Qを1万m3にした場合の計算結果、(e)および(f)
は、覆砂を行って(DmH, DmL とも0.02 g/m2/hr)、上層
と下層との交換水量Qを15、30万m3にした場合の計
算結果をそれぞれ示したグラフ。
FIG. 3 is a graph showing a simulation result;
(a) to (c) were performed without sand covering (both DmH and DmL were 0.2 g /
m 2 / hr), the exchange water volume Q between the upper and lower layers is 10,000, 150,000, 3
The calculation result when changing to 100,000 m 3 , d) is to cover the sand (DmH and DmL are both 0.02 g / m 2 / hr), and the exchange water amount Q between the upper layer and the lower layer is reduced to 10,000 m 3 (E) and (f)
Graph showing performing Kutsugaesuna (DMH, DmL with 0.02 g / m 2 / hr) , a calculation result when the replacement water Q between the upper layer and the lower layer 15, 30 ten thousand m 3, respectively.

【図4】変形例に係る水質浄化工法を実施している様子
を示した概略図。
FIG. 4 is a schematic view showing a state in which a water purification method according to a modification is being performed.

【符号の説明】[Explanation of symbols]

1 閉鎖性水域 2 海底(水底) 3 砂(被覆材) 4 間欠式空気揚水筒(水循環装置、
水移送手段) 21 ポンプ(水移送手段)
1 Closed water area 2 Sea bottom (water bottom) 3 Sand (covering material) 4 Intermittent air pumping cylinder (water circulation device,
Water transfer means) 21 Pump (water transfer means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 海、湖沼、河川等の水域の水底を砂等の
被覆材で覆うとともに、該水域内の表層水を所定の水移
送手段で底層に送り込むことを特徴とする水質浄化工
法。
1. A water purification method comprising: covering a water bottom of a water area such as a sea, a lake, a river, or a river with a covering material such as sand, and sending surface water in the water area to a bottom layer by a predetermined water transfer means.
【請求項2】 前記水域内に所定の水循環装置を設置し
て前記水移送手段とし、前記表層水を該水循環装置で発
生させた循環流に乗せて前記底層に送り込む請求項1記
載の水質浄化工法。
2. A water purification system according to claim 1, wherein a predetermined water circulating device is installed in said water area to serve as said water transfer means, and said surface water is sent to said bottom layer by being circulated on a circulating flow generated by said water circulating device. Construction method.
JP8238466A 1996-08-21 1996-08-21 Water quality purifying method Pending JPH1057985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8238466A JPH1057985A (en) 1996-08-21 1996-08-21 Water quality purifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8238466A JPH1057985A (en) 1996-08-21 1996-08-21 Water quality purifying method

Publications (1)

Publication Number Publication Date
JPH1057985A true JPH1057985A (en) 1998-03-03

Family

ID=17030659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8238466A Pending JPH1057985A (en) 1996-08-21 1996-08-21 Water quality purifying method

Country Status (1)

Country Link
JP (1) JPH1057985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae

Similar Documents

Publication Publication Date Title
US7691262B2 (en) System for treating wastewater having a controlled reaction-volume module usable therein
CN110028150B (en) Modularization coupling sewage treatment system
CN109942156B (en) Biological filter based mariculture tail water treatment system and application method thereof
CN110171917A (en) A kind of integrated shore bank band system and its application of river and lake silt treatment in situ
CN106277338A (en) Ecological purification system for river regulation
US10570040B2 (en) Water treatment reactor
CN206447739U (en) A kind of wet field facilities for treating sewage
CN103819005A (en) Artificial wetland processing system constructed by ecological bags
CN110745943B (en) Method for denitrification based on short-term hunger and denitrification biological filter system
CN109020064A (en) The ecological restoring method of black and odorous water
CN101585650B (en) Diaphragm suspension floating chain aeration pollution water body restoration method and device thereof
CN104591509A (en) Effective denitrification device of industrial aquaculture tail water
CN107827324B (en) Urban sewage comprehensive treatment system
CN112723543B (en) Floating type multifunctional water quality purification device and application method thereof
CN105236687A (en) Sewage treatment device and method for self-cleaning type micro-aeration vertical baffled wetland
JP3939664B2 (en) Purification method and system for lakes and the like
CN101054239A (en) Method and device for treating flowing polluted water body
JPH1057985A (en) Water quality purifying method
JP2008000745A (en) Method for purifying water
CN111137989B (en) Mariculture wastewater treatment and recycling system and technology
CN101054238A (en) Method and device for treating flowing polluted water body
CN205099555U (en) From clear aeration integrated constructed wetland sewage treatment system that declines
CN114249414B (en) Cruising type water body restoration device for river and lake bottom mud
CN212198699U (en) Device for efficiently removing phosphorus content in eutrophic water body
CN211255414U (en) Denitrification biological filter of PVA filter material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060426