Nothing Special   »   [go: up one dir, main page]

JPH1046208A - Production of ti-ni base alloy sintered body - Google Patents

Production of ti-ni base alloy sintered body

Info

Publication number
JPH1046208A
JPH1046208A JP8215341A JP21534196A JPH1046208A JP H1046208 A JPH1046208 A JP H1046208A JP 8215341 A JP8215341 A JP 8215341A JP 21534196 A JP21534196 A JP 21534196A JP H1046208 A JPH1046208 A JP H1046208A
Authority
JP
Japan
Prior art keywords
sintered body
powder
tini
plasma sintering
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8215341A
Other languages
Japanese (ja)
Inventor
Akihisa Furukawa
明久 古川
Hiroshi Ishikawa
洋 石川
Kiyoshi Yamauchi
清 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP8215341A priority Critical patent/JPH1046208A/en
Publication of JPH1046208A publication Critical patent/JPH1046208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the regulation of the compsn. in a sintered body and to furthermore attain the uniformization of the compsn. and the improvement of the sintered density, at the time of producing a Ti-Ni base alloy sintered body, by mixing Ti and Ni raw material powder and subjecting it to discharge plasma sintering. SOLUTION: Ti powder produced by an atomizing process and Ni powder produced by a carbonyl process are mixed. While it is compacted under about 20MPa in a vacuum, discharge plasma sintering is executed. In this way, the realative density of the sintered body can be regulated to about ±95% in the case of a powdery mixture with an atomic weight ratio of 50; 50. More preferably, the powdery mixture is mechanically alloyed in an atmosphere of an argon gas, is thereafter filled into a mold made of carbon for sintering and is subjected to discharge plasma sintering. Thus, the intrusion of oxygen can be suppressed, and moreover, the relative density can be increased to about 98%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、形状記憶及び超弾
性材料であるTiNi系合金焼結体の製造方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for producing a TiNi-based alloy sintered body that is a shape memory and superelastic material.

【0002】[0002]

【従来の技術】これまでは、TiNi系合金製造の主流
は溶解鋳造法であるが、必ず溶解工程を経ることから、
製造ロット毎及び製造ロット内の組成の均一性が悪いこ
とはよく知られているところである。
2. Description of the Related Art Until now, the mainstream of TiNi-based alloy production has been the melting casting method, but since it always goes through a melting step,
It is well known that the uniformity of the composition for each production lot and within the production lot is poor.

【0003】実際に、TiNi系合金の中で、機能材料
として世の中に出ている形状記憶合金や超弾性合金の場
合に機能として変態温度の制御が特に重要であるが、溶
解鋳造法の場合、Ni組成が0.1%は変動するが、そ
の場合の変態温度も10℃程変動する。
[0003] In practice, in the case of shape memory alloys and superelastic alloys that are widely used as functional materials among TiNi-based alloys, control of the transformation temperature is particularly important as a function. Although the Ni composition fluctuates by 0.1%, the transformation temperature in that case also fluctuates by about 10 ° C.

【0004】工業的な観点に立つと、変態温度、つまり
形状が回復する温度は、±2℃程度に抑えたいところで
ある。
From an industrial point of view, the transformation temperature, that is, the temperature at which the shape recovers, is desired to be suppressed to about ± 2 ° C.

【0005】そこで、このような溶解鋳造法による組成
制御性の悪さを改善するために、粉末治金法の一種であ
る素粉末混合法により、Ti粉末とNi粉末それぞれを
混合した混合粉末をプレス・焼結してTiNi系形状記
憶合金を製造することが検討されている。
Therefore, in order to improve the poor controllability of the composition by the melt casting method, a mixed powder obtained by mixing a Ti powder and a Ni powder by a powder mixing method, which is a kind of powder metallurgy, is pressed. Production of a TiNi-based shape memory alloy by sintering is being studied.

【0006】例えば、チューブのように複雑形状の製品
の場合、粉末治金法による製造の検討は、非常に工業的
であって、現在においても検討は、様々に進んでいる。
[0006] For example, in the case of a product having a complicated shape such as a tube, the study of the production by the powder metallurgy method is very industrial, and various studies have been made at present.

【0007】これまでのTiNi系合金製造の主流であ
る溶解鋳造法によって、そのような複雑形状はできない
ことから、その必要性がさらに高まってきている。
[0007] Such a complicated shape cannot be formed by the melting and casting method, which has been the mainstream of the production of TiNi-based alloys, and thus the necessity has been further increased.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、実際検
討をしてみると、TiNi焼結体の相対密度が90%を
越えるものは得られていない。
However, when actually examined, no TiNi sintered body having a relative density exceeding 90% has been obtained.

【0009】その原因としては、TiとNiの相互拡散
係数の違いによって、気孔が発生しやすいこと等が考え
られる。
It is considered that the cause is that pores are easily generated due to the difference in the mutual diffusion coefficient between Ti and Ni.

【0010】そこで、発明の技術的課題は、TiNi系
合金の素粉末混合法で製造した焼結体の相対密度が90
%にも満たないというような技術的な欠点を解消し、9
0%を越える相対密度が得られるTiNi焼結体の製造
方法を提供することにある。
Therefore, the technical problem of the present invention is that the relative density of a sintered body manufactured by the TiNi-based alloy powder mixing method is 90%.
% Of technical shortcomings such as less than 9%
It is an object of the present invention to provide a method for producing a TiNi sintered body capable of obtaining a relative density exceeding 0%.

【0011】[0011]

【課題を解決するための手段】Ti粉末とNi粉末を混
合した混合粉末を加圧焼結の一種である放電プラズマ焼
結することによって、緻密なTiNi合金焼結体が得ら
れる。
A dense TiNi alloy sintered body can be obtained by subjecting a mixed powder obtained by mixing a Ti powder and a Ni powder to spark plasma sintering, which is a kind of pressure sintering.

【0012】放電プラズマ焼結は、カーボン製のモール
ドに粉体を充填して加圧焼結を行うもので、カーボン製
モールドに直接電流を流し、カーボンを発熱体として粉
体を昇温する。そのため、放電プラズマ焼結機は、急速
昇温が可能で成形と焼結を短時間で行えるという特徴を
持つ。
In the spark plasma sintering, a powder is filled in a carbon mold and pressure sintering is performed. An electric current is directly applied to the carbon mold to heat the powder using carbon as a heating element. Therefore, the spark plasma sintering machine has a feature that the temperature can be rapidly increased and the molding and sintering can be performed in a short time.

【0013】また、加熱の際に流れる電流は、粉体粒子
間の空隙にプラズマを発生させ、そのプラズマは、粉体
表面を活性化させて拡散を促進する。
The current flowing during heating generates plasma in the gaps between the powder particles, and the plasma activates the powder surface to promote diffusion.

【0014】さらに、高密度な焼結体を得るために素粉
末を使用せず、TiNi合金粉末を使用し放電プラズマ
焼結することによって、TiNi合金焼結体が得られ
る。ここで、アトマイズ法等によってTiNi合金粉末
を製造することが考えられるが、アトマイズ法の場合
は、まず溶解鋳造法によってTiNi合金を製造しなけ
ればならないことから、組成制御がしにくいという問題
がある。
Further, a TiNi alloy sintered body can be obtained by performing spark plasma sintering using a TiNi alloy powder without using a raw powder in order to obtain a high density sintered body. Here, it is conceivable to manufacture a TiNi alloy powder by an atomizing method or the like. However, in the case of the atomizing method, a TiNi alloy must first be manufactured by a melting casting method, and thus there is a problem that it is difficult to control the composition. .

【0015】そこで、TiNi系合金焼結体の製造方法
において、Ti粉末とNi粉末それぞれを混合した後、
その混合粉末から機械的合金化法により得られたTiN
i系合金粉末を使用し、その粉末を放電プラズマ焼結す
ることで組成が均一で緻密なTiNi系合金焼結体が得
られる。
Therefore, in a method of manufacturing a TiNi-based alloy sintered body, after mixing each of Ti powder and Ni powder,
TiN obtained by mechanical alloying from the mixed powder
By using an i-based alloy powder and subjecting the powder to spark plasma sintering, a dense TiNi-based alloy sintered body having a uniform composition can be obtained.

【0016】即ち、本発明によれば、TiNi系合金焼
結体の製造方法において、Ti及びNiの原料粉末を混
合した後、その混合粉末を放電プラズマ焼結することを
特徴とするTiNi系合金焼結体の製造方法が得られ
る。
That is, according to the present invention, in a method for producing a TiNi-based alloy sintered body, a TiNi-based alloy is characterized in that after mixing Ti and Ni raw powders, the mixed powder is subjected to spark plasma sintering. A method for manufacturing a sintered body is obtained.

【0017】また、本発明によれば、TiNi系合金焼
結体の製造方法において、Ti及びNiの原料粉末を混
合した後、その混合粉末を機械的合金化法により合金化
して得られた粉末を放電プラズマ焼結することを特徴と
するTiNi系合金焼結体の製造方法が得られる。
Further, according to the present invention, in a method for producing a TiNi-based alloy sintered body, a powder obtained by mixing raw powders of Ti and Ni and then alloying the mixed powder by a mechanical alloying method. , And a method for producing a TiNi-based alloy sintered body, characterized in that the method comprises the steps of:

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0019】まず、本発明の第1の実施の形態について
説明する。
First, a first embodiment of the present invention will be described.

【0020】本発明の第1の実施の形態において、使用
した粉末はアトマイズ法によって製造されたTi粉末
(粒径45μm)と、カルボニル法によって製造された
Ni粉末(粒径4μm)である。それらの粉末を50:
50(at%)の割合(形状記憶特性を示す組成範囲)
で混合したTiNi混合粉末を、放電プラズマ焼結用の
カーボン製モールドに充填し、放電プラズマ焼結した。
焼結条件としては、真空中において20MPaで圧縮し
ながら、50℃/minの昇温速度で加熱し1000℃
で5分間保持した。
In the first embodiment of the present invention, the powder used is a Ti powder (particle diameter 45 μm) produced by an atomizing method and a Ni powder (particle diameter 4 μm) produced by a carbonyl method. 50 of those powders:
50 (at%) ratio (composition range showing shape memory characteristics)
Was mixed in a carbon mold for spark plasma sintering, followed by spark plasma sintering.
The sintering conditions were as follows: heating at a heating rate of 50 ° C./min while compressing at 20 MPa in a vacuum;
For 5 minutes.

【0021】その結果、焼結体の相対密度については、
95%程度と高い値を示した。このことから、本発明の
第1の実施の形態により得られた焼結体は、実用に供す
ることができると考えられる。
As a result, regarding the relative density of the sintered body,
The value was as high as about 95%. From this, it is considered that the sintered body obtained according to the first embodiment of the present invention can be put to practical use.

【0022】次に、本発明の第2の実施の形態について
説明する。
Next, a second embodiment of the present invention will be described.

【0023】本発明の第2の実施の形態において、機械
的合金化法は回転式ボールミル法によって行い、ポット
はSUS304製、使用ボール(直径17mm)はSU
J−2製を使用した。使用した粉末はアトマイズ法によ
って製造されたTi粉末(粒径45μm)と、カルボニ
ル法によって製造されたNi粉末(粒径4μm)であ
る。それらの粉末を50:50(at%)の割合(形状
記憶特性を示す組成範囲)で混合した粉末で、アルゴン
ガス雰囲気において100rpmの回転速度で機械的合
金化を300Hr行った。混合粉末の全重量とボールの
全重量との重量比は1:50とした。このようにして得
られたTi−Ni合金粉末は、アルゴンガス雰囲気で合
金化したために、酸素の混入量を少量(0.1%以下)
に抑制することができた。また、これを熱処理(700
℃×30分:急熱水冷)した試料についてX線回折を行
ったところ、明らかにTiNi単相しか検出されなかっ
た。得られた合金粉末を放電プラズマ焼結用のカーボン
製モールドに充填し、放電プラズマ焼結した。焼結条件
としては、真空中において20MPaで圧縮しながら、
50℃/minの昇温速度で加熱し1000℃で5分間
保持した。
In the second embodiment of the present invention, the mechanical alloying method is performed by a rotary ball mill method, the pot is made of SUS304, and the ball (diameter 17 mm) is made of SU.
J-2 was used. The powders used were a Ti powder (particle diameter 45 μm) produced by the atomization method and a Ni powder (particle diameter 4 μm) produced by the carbonyl method. These powders were mixed at a ratio of 50:50 (at%) (composition range showing shape memory characteristics), and were mechanically alloyed for 300 hours at a rotation speed of 100 rpm in an argon gas atmosphere. The weight ratio of the total weight of the mixed powder to the total weight of the balls was 1:50. Since the Ti—Ni alloy powder thus obtained was alloyed in an argon gas atmosphere, the amount of mixed oxygen was small (0.1% or less).
Could be suppressed. This is heat treated (700
When subjected to X-ray diffraction for the sample which had been cooled rapidly by hot water (30 ° C. × 30 minutes), only a TiNi single phase was clearly detected. The obtained alloy powder was filled in a carbon mold for spark plasma sintering, and spark plasma sintering was performed. As the sintering conditions, while compressing at 20 MPa in a vacuum,
The sample was heated at a rate of 50 ° C./min and kept at 1000 ° C. for 5 minutes.

【0024】その結果、焼結体の相対密度については、
98%と高い値を示し、本発明の第1の実施の形態の原
料粉末を混合しただけのものよりもさらに相対密度が向
上した。また、得られた焼結体を、さらに加工を施し溶
体化処理を行った後、実際に形状回復温度を調べると、
約80℃であり、溶解鋳造法でのものと大差なかった。
このことから、本発明により得られた焼結体は、十分実
用に供することができると考えられる。
As a result, regarding the relative density of the sintered body,
The value was as high as 98%, and the relative density was further improved as compared with the case of simply mixing the raw material powder of the first embodiment of the present invention. In addition, after the obtained sintered body was further processed and subjected to solution treatment, the actual shape recovery temperature was investigated.
The temperature was about 80 ° C., which was not much different from that obtained by the melt casting method.
From this, it is considered that the sintered body obtained by the present invention can be sufficiently put to practical use.

【0025】以下、次に、本発明の第3の実施の形態に
ついて説明する。
Next, a third embodiment of the present invention will be described.

【0026】本発明の第3の実施の形態において、機械
的合金化法は回転式ボールミル法によって行い、ポット
はSUS304製、使用ボール(直径17mm)はSU
J−2製を使用した。使用した粉末はアトマイズ法によ
って製造されたTi粉末(粒径45μm)と、さらにN
i−X、X=Cr、Fe、Co、Cu、V、Mnからな
るグループから選択された少なくとも一種の金属で置換
したNi−X合金粉末(溶解鋳造法で得られた合金を粗
粉砕及び微紛砕し、水素中で300℃で熱処理した粒径
10μmのNi−X粉末)である。それらのTi粉末と
NiX合金粉末を50:50(at%)の割合(形状記
憶特性を示す組成範囲)で混合したTi−Ni−X混合
粉末(Ti50Ni50合金のNiの一部をXで置換し
たもの)で、アルゴンガス雰囲気において100rpm
の回転速度で機械的合金化法を300Hr行った。ここ
で、混合粉末の全重量とボールの全重量との重量比は
1:50とした。このようにして得られたTi−Ni−
X合金粉末は酸素の混入量を実施例2のように少量
(0.1%以下)抑制することができた。また、得られ
た合金粉末を放電プラズマ焼結用のカーボン製モールド
に充填し、放電プラズマ焼結した。この時、焼結の条件
としては、真空中において20MPaで圧縮しながら、
50℃/minの昇温速度で加熱し1000℃で5分間
保持した。本発明の第3の実施の形態より得られたTi
NiX合金焼結体の、それぞれの相対密度を表1に示
す。
In the third embodiment of the present invention, the mechanical alloying method is performed by a rotary ball mill method, the pot is made of SUS304, and the ball (diameter 17 mm) is made of SU.
J-2 was used. The powder used was a Ti powder (45 μm particle size) produced by an atomizing method,
i-X, X = Ni-X alloy powder substituted with at least one metal selected from the group consisting of Cr, Fe, Co, Cu, V, and Mn (the alloy obtained by the melt casting method is roughly pulverized and finely divided). (Ni-X powder having a particle size of 10 μm which was crushed and heat-treated at 300 ° C. in hydrogen). A Ti-Ni-X mixed powder in which the Ti powder and the NiX alloy powder are mixed at a ratio of 50:50 (at%) (composition range showing the shape memory characteristic) (a part of Ni of Ti50Ni50 alloy is replaced with X). 100 rpm in an argon gas atmosphere.
The mechanical alloying method was performed at a rotation speed of 300 hr. Here, the weight ratio of the total weight of the mixed powder to the total weight of the balls was 1:50. The thus obtained Ti-Ni-
The X alloy powder was able to suppress the amount of oxygen mixed in a small amount (0.1% or less) as in Example 2. Further, the obtained alloy powder was filled in a carbon mold for spark plasma sintering, and spark plasma sintering was performed. At this time, the sintering conditions were as follows, while compressing in vacuum at 20 MPa.
The sample was heated at a rate of 50 ° C./min and kept at 1000 ° C. for 5 minutes. Ti obtained from the third embodiment of the present invention
Table 1 shows the relative density of each of the NiX alloy sintered bodies.

【0027】 [0027]

【0028】表1に示すように、いずれの合金焼結体も
相対密度が98%以上と高い値を示すことから、Niの
一部を第3元素で置換しても十分実用に供することが分
かった。
As shown in Table 1, since the relative density of each of the sintered alloys is as high as 98% or more, even if a part of Ni is replaced by the third element, it can be sufficiently put to practical use. Do you get it.

【0029】[0029]

【発明の効果】以上、説明したように本発明によれば、
機械的合金化法により作製したTiNi系合金粉末を放
電プラズマ焼結して焼結体を製造すると実用に供するこ
とのできる相対密度の高い、酸素含有量も溶解鋳造法の
ものと同等のTiNi系合金焼結体が製造できる。
As described above, according to the present invention,
A TiNi-based alloy powder produced by a mechanical alloying method can be put to practical use by producing a sintered body by spark plasma sintering. The TiNi-based alloy has a high relative density and an oxygen content equivalent to that of the melt casting method. An alloy sintered body can be manufactured.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 TiNi系合金焼結体の製造方法におい
て、Ti及びNiの原料粉末を混合した後、その混合粉
末を放電プラズマ焼結することを特徴とするTiNi系
合金焼結体の製造方法。
1. A method for producing a TiNi-based alloy sintered body, comprising mixing raw powders of Ti and Ni and then subjecting the mixed powder to spark plasma sintering. .
【請求項2】 TiNi系合金焼結体の製造方法におい
て、Ti及びNiの原料粉末を混合した後、その混合粉
末を機械的合金化法により合金化して得られた粉末を放
電プラズマ焼結することを特徴とするTiNi系合金焼
結体の製造方法。
2. In a method for producing a TiNi-based alloy sintered body, after mixing raw powders of Ti and Ni, the powder obtained by alloying the mixed powder by a mechanical alloying method is subjected to spark plasma sintering. A method for producing a TiNi-based alloy sintered body, characterized in that:
JP8215341A 1996-07-26 1996-07-26 Production of ti-ni base alloy sintered body Pending JPH1046208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8215341A JPH1046208A (en) 1996-07-26 1996-07-26 Production of ti-ni base alloy sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8215341A JPH1046208A (en) 1996-07-26 1996-07-26 Production of ti-ni base alloy sintered body

Publications (1)

Publication Number Publication Date
JPH1046208A true JPH1046208A (en) 1998-02-17

Family

ID=16670704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8215341A Pending JPH1046208A (en) 1996-07-26 1996-07-26 Production of ti-ni base alloy sintered body

Country Status (1)

Country Link
JP (1) JPH1046208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513207A (en) * 2011-03-07 2014-05-29 スネクマ Process of local repair of damaged thermomechanical parts and parts repaired according to the process, in particular turbine parts
US10000827B2 (en) * 2011-10-21 2018-06-19 University Of Limerick Method of forming a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy
CN115386755A (en) * 2022-06-21 2022-11-25 中南大学 Preparation method of low-cost element mixed NiTi shape memory alloy through high-temperature homogenization treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513207A (en) * 2011-03-07 2014-05-29 スネクマ Process of local repair of damaged thermomechanical parts and parts repaired according to the process, in particular turbine parts
US10000827B2 (en) * 2011-10-21 2018-06-19 University Of Limerick Method of forming a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy
US10563291B2 (en) 2011-10-21 2020-02-18 University Of Limerick Method of forming a sintered nickel-titanium-rare earth (Ni—Ti—Re) alloy
CN115386755A (en) * 2022-06-21 2022-11-25 中南大学 Preparation method of low-cost element mixed NiTi shape memory alloy through high-temperature homogenization treatment

Similar Documents

Publication Publication Date Title
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
JP2005533182A (en) Method for producing sputtering target doped with boron / carbon / nitrogen / oxygen / silicon
JPH01142002A (en) Alloy steel powder for powder metallurgy
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JPH1046208A (en) Production of ti-ni base alloy sintered body
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH02259029A (en) Manufacture of aluminide
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JPH04371536A (en) Production of tial intermetallic compound powder
JPH01184203A (en) Alloy powder for injected-compacting
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
JP2002212607A (en) Method for producing high melting point alloy
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPS6358896B2 (en)
JPS61159539A (en) Manufacture of shape memory alloy
JPH0633165A (en) Manufacture of sintered titanium alloy
JPH0421730A (en) Manufacture of powder-sintered titanium and powder-sintered titanium base alloy
CN113249604A (en) High purity intermetallic compound Nb3Al block and preparation method thereof
JPH1088253A (en) Production of titanium-nickel alloy sintered compact
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH04183835A (en) Manufacture of ni-ti alloy member
JPS6358897B2 (en)
JPS62256902A (en) Intermetallic al3ti powder and its production