JPH10335060A - Organic electrroluminescent element - Google Patents
Organic electrroluminescent elementInfo
- Publication number
- JPH10335060A JPH10335060A JP9145093A JP14509397A JPH10335060A JP H10335060 A JPH10335060 A JP H10335060A JP 9145093 A JP9145093 A JP 9145093A JP 14509397 A JP14509397 A JP 14509397A JP H10335060 A JPH10335060 A JP H10335060A
- Authority
- JP
- Japan
- Prior art keywords
- organic electroluminescent
- electroluminescent device
- layer
- cathode
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007789 sealing Methods 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 38
- 230000005525 hole transport Effects 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 21
- 238000002347 injection Methods 0.000 claims description 15
- 239000007924 injection Substances 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 230000001737 promoting effect Effects 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims 2
- 229910001887 tin oxide Inorganic materials 0.000 claims 2
- 229910000410 antimony oxide Inorganic materials 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 229910003437 indium oxide Inorganic materials 0.000 claims 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims 1
- 239000011787 zinc oxide Substances 0.000 claims 1
- 238000003475 lamination Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 113
- 238000000151 deposition Methods 0.000 description 14
- 230000008021 deposition Effects 0.000 description 14
- 238000000295 emission spectrum Methods 0.000 description 12
- 239000004973 liquid crystal related substance Substances 0.000 description 10
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 7
- 238000001771 vacuum deposition Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910016570 AlCu Inorganic materials 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 2
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 150000007857 hydrazones Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 150000004961 triphenylmethanes Chemical class 0.000 description 2
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- FJNCXZZQNBKEJT-UHFFFAOYSA-N 8beta-hydroxymarrubiin Natural products O1C(=O)C2(C)CCCC3(C)C2C1CC(C)(O)C3(O)CCC=1C=COC=1 FJNCXZZQNBKEJT-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017073 AlLi Inorganic materials 0.000 description 1
- 229910017150 AlTi Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- APLQAVQJYBLXDR-UHFFFAOYSA-N aluminum quinoline Chemical compound [Al+3].N1=CC=CC2=CC=CC=C12.N1=CC=CC2=CC=CC=C12.N1=CC=CC2=CC=CC=C12 APLQAVQJYBLXDR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 150000003216 pyrazines Chemical class 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば、自発光型
の薄型平面ディスプレイ等に用いて好適な有機電界発光
素子に関する。The present invention relates to an organic electroluminescent device suitable for use in, for example, a self-luminous thin flat display.
【0002】[0002]
【従来の技術】近年、マルチメディア指向の商品を初め
として、マン−マシンインターフェースの重要性が高ま
っている。人間がより快適に効率良く機械操作するため
には、操作される機械から、充分な量の情報を、正確、
簡潔且つ瞬時に取り出す必要が有る。このため、ディス
プレイ用の様々な表示素子について研究が行われてい
る。2. Description of the Related Art In recent years, the importance of a man-machine interface has been increasing, especially for multimedia-oriented products. In order for humans to operate the machine more comfortably and efficiently, a sufficient amount of information is accurately and accurately obtained from the operated machine.
It must be simple and instantaneous. For this reason, various display elements for displays have been studied.
【0003】また、機械の小型化、薄型化に伴い、表示
素子の小型化、薄型化に対する要求も日々高まってい
る。[0003] Further, with the miniaturization and thinning of machines, the demand for miniaturization and thinning of display elements is increasing every day.
【0004】例えば、液晶ディスプレイは、様々な製品
の表示用インターフェースとして用いられており、ラッ
プトップ型情報処理機器は勿論のこと、小型テレビや時
計、電卓等、我々の日常使用する製品に多く用いられて
いる。For example, a liquid crystal display is used as a display interface for various products, and is widely used in products that we use everyday, such as small-sized televisions, watches, calculators, as well as laptop-type information processing devices. Have been.
【0005】これらの液晶ディスプレイは、液晶の低電
圧駆動、低消費電力という特徴を活かし、小型から大容
量表示デバイスに至るまで、表示素子の中心として研究
されてきた。[0005] These liquid crystal displays, which take advantage of the characteristics of liquid crystal driving at low voltage and low power consumption, have been studied as the main display elements from small to large capacity display devices.
【0006】しかし、液晶ディスプレイは、自発光性で
ないために、バックライトを必要とし、このバックライ
トの駆動に、液晶を駆動するよりも大きな電力を必要と
するため、結果的に、内蔵電池等では使用時間が短くな
って、使用上の制限が出るという欠点が有った。However, a liquid crystal display needs a backlight because it is not self-luminous, and requires more power to drive this backlight than to drive a liquid crystal. However, there is a drawback that the use time is shortened and the use is restricted.
【0007】また、液晶ディスプレイは、視野角が狭い
ため、大型ディスプレイ等の表示素子には適していない
ことも問題であった。Further, the liquid crystal display has a problem that it is not suitable for a display element such as a large display because of a narrow viewing angle.
【0008】更に、液晶ディスプレイは、液晶分子の配
向状態による表示方法なので、視野角の範囲でも、角度
によりコントラストが変化してしまうという問題も有っ
た。Further, since the liquid crystal display is a display method based on the alignment state of liquid crystal molecules, there is a problem that the contrast changes depending on the angle even in the range of the viewing angle.
【0009】また、駆動方式から考えると、液晶ディス
プレイの駆動方式の一つであるアクティブマトリクス方
式は、動画を扱うに充分な応答速度を示すが、TFT
(薄膜トランジスタ)駆動回路を用いる必要が有るた
め、画素欠陥の発生により画面サイズの大型化が困難で
あった。また、TFT駆動回路を用いることは、コスト
の点から考えても、あまり好ましいものではなかった。Further, considering the driving method, the active matrix method, which is one of the driving methods of the liquid crystal display, shows a response speed sufficient to handle moving images.
Since it is necessary to use a (thin film transistor) drive circuit, it has been difficult to increase the screen size due to the occurrence of pixel defects. In addition, using a TFT drive circuit is not very preferable in terms of cost.
【0010】一方、液晶ディスプレイの別の駆動方式で
ある単純マトリクス方式は、低コストである上に画面サ
イズの大型化が比較的容易であるという特長を持つ反
面、動画を扱うに充分な応答速度を有していないという
欠点が有った。On the other hand, the simple matrix system, which is another driving system for the liquid crystal display, has the features of being low in cost and relatively easy to enlarge the screen size, but has a sufficient response speed for handling moving images. However, there was a drawback that it did not have
【0011】これに対し、自発光性表示素子は、プラズ
マ表示素子、無機電界発光素子、有機電界発光素子等が
研究されている。On the other hand, as a self-luminous display element, a plasma display element, an inorganic electroluminescent element, an organic electroluminescent element and the like have been studied.
【0012】プラズマ表示素子は、低圧ガス中でのプラ
ズマ発光を表示に用いたもので、大型化、大容量化に適
しているものの、薄型化やコストの面での問題を抱えて
いる。また、駆動に高電圧の交流バイアスを必要とする
ため、携帯用デバイス等には適していない。The plasma display element uses plasma emission in a low-pressure gas for display, and is suitable for increasing the size and capacity, but has problems in terms of thinning and cost. Further, since a high voltage AC bias is required for driving, it is not suitable for a portable device or the like.
【0013】無機電界発光素子は、当初、緑色発光ディ
スプレイ等が商品化されたが、プラズマ表示素子と同
様、交流バイアス駆動であり、駆動に数百V必要だった
ため、殆ど受け入れられなかった。技術的な発展によ
り、今日では、カラーディスプレイ表示に必要なR
(赤)、G(緑)、B(青)の三原色の発光に成功はし
ているが、無機材料であるために、例えば、分子設計に
よる発光波長等の制御は困難であり、フルカラー化は困
難であると思われる。As the inorganic electroluminescent device, a green light-emitting display and the like were initially commercialized, but, like the plasma display device, were driven by an AC bias and required several hundred volts for driving, and thus were hardly accepted. Due to technological development, today, R
Although emission of the three primary colors (red), G (green), and B (blue) has been successful, since it is an inorganic material, for example, it is difficult to control the emission wavelength and the like by molecular design. Seems difficult.
【0014】一方、有機化合物による電界発光現象は、
1960年代前半に、強く蛍光を発するアントラセン単
結晶へのキャリア注入による発光現象が発見されて以
来、長い期間、研究されてきたが、低輝度、単色で、し
かも単結晶であったため、有機材料へのキャリア注入と
いう基礎的研究の段階でしかなかった。On the other hand, the electroluminescence phenomenon caused by an organic compound is as follows.
It has been studied for a long time since the light emission phenomenon caused by carrier injection into an anthracene single crystal that emits strong fluorescence was discovered in the early 1960s. Was only at the stage of basic research called carrier injection.
【0015】しかし、1987年に Eastman Kodak社の
Tang らが、低電圧駆動、高輝度発光が可能なアモルフ
ァス発光層を有する積層構造の有機薄膜電界発光素子を
発表して以来、各方面で、RGB三原色の発光、安定
性、輝度上昇、積層構造、作製法等の研究開発が盛んに
行われるようになった。However, in 1987 Eastman Kodak
Since Tang et al. Announced a stacked organic thin-film electroluminescent device with an amorphous light-emitting layer capable of low-voltage driving and high-brightness light emission, the RGB primary colors of light emission, stability, increased brightness, and stacked structure have been developed in various fields. Research and development of manufacturing methods have been actively conducted.
【0016】更に、有機材料の特長である分子設計等に
より様々な新規材料が発明され、直流低電圧駆動、薄
型、自発光性等の優れた特徴を有する有機電界発光素子
のカラーディスプレイへの応用研究も盛んに行われてい
る。Furthermore, various new materials have been invented by molecular design, which is a feature of organic materials, and the application of organic electroluminescent devices having excellent characteristics such as low-voltage DC drive, thinness, and self-luminous properties to color displays. Research is also being actively conducted.
【0017】図5に、従来の有機電界発光素子の一例を
示す。FIG. 5 shows an example of a conventional organic electroluminescent device.
【0018】この有機電界発光素子10は、透明ガラス
基板6上に、ITO(Indium Tin Oxide) 透明電極5、
ホール輸送層4、発光層3、電子輸送層2及び陰極1
を、例えば、真空蒸着法で順次成膜したものである。The organic electroluminescent device 10 has an ITO (Indium Tin Oxide) transparent electrode 5 on a transparent glass substrate 6.
Hole transport layer 4, light emitting layer 3, electron transport layer 2, and cathode 1
Are sequentially formed by, for example, a vacuum evaporation method.
【0019】この有機電界発光素子10において、陽極
であるITO透明電極5と陰極1との間に直流電圧7を
印加すると、ITO透明電極5から注入されたキャリア
としてのホール(正孔)がホール輸送層4を経て、一
方、陰極1から注入された電子が電子輸送層2を経て夫
々移動し、発光層3において、それら電子−正孔対の再
結合が生じ、そこから所定波長の発光8が生じて、それ
を透明ガラス基板6の側から観察できる。In this organic electroluminescent device 10, when a DC voltage 7 is applied between the ITO transparent electrode 5 as an anode and the cathode 1, holes (holes) as carriers injected from the ITO transparent electrode 5 become holes. On the other hand, electrons injected from the cathode 1 move through the electron transport layer 2 via the transport layer 4, and recombination of these electron-hole pairs occurs in the light emitting layer 3. Occurs, which can be observed from the transparent glass substrate 6 side.
【0020】発光層3には、例えば、アントラセン、ナ
フタリン、フェナントレン、ピレン、クリセン、ペリレ
ン、ブタジエン、クマリン、アクリジン、スチルベン等
の発光物質を用いることができる。For the light emitting layer 3, for example, light emitting substances such as anthracene, naphthalene, phenanthrene, pyrene, chrysene, perylene, butadiene, coumarin, acridine, and stilbene can be used.
【0021】図6に、従来の別の有機電界発光素子を示
すが、この有機電界発光素子20では、電子輸送層2が
発光層を兼ねている。FIG. 6 shows another conventional organic electroluminescent device. In this organic electroluminescent device 20, the electron transport layer 2 also serves as a light emitting layer.
【0022】図7に、図6の有機電界発光素子20を用
いた平面ディスプレイの構成例を示す。FIG. 7 shows a configuration example of a flat display using the organic electroluminescent device 20 of FIG.
【0023】図示の如く、電子輸送層2とホール輸送層
4とからなる有機積層構造が、陰極1と陽極5の間に配
される。陰極1及び陽極5は、互いに交差するストライ
プ状に設けられ、夫々、輝度信号回路34及びシフトレ
ジスタ内蔵の制御回路35により選択されて信号電圧が
印加される。これにより、選択された陰極1及び陽極5
が交差する位置(画素)の有機積層構造が発光する。As shown in the figure, an organic laminated structure including an electron transport layer 2 and a hole transport layer 4 is disposed between a cathode 1 and an anode 5. The cathode 1 and the anode 5 are provided in a stripe shape crossing each other, and selected by a luminance signal circuit 34 and a control circuit 35 with a built-in shift register, respectively, to which a signal voltage is applied. Thus, the selected cathode 1 and anode 5
The organic laminated structure at the position (pixel) where the light crosses emits light.
【0024】[0024]
【発明が解決しようとする課題】上述のような有機電界
発光素子のカラーディスプレイへの応用を行う上で、R
GB三原色の安定した発光は必要不可欠な条件である。In applying the organic electroluminescent device as described above to a color display, R
Stable light emission of the three primary colors of GB is an essential condition.
【0025】ところが、有機電界発光素子を長時間駆動
すると、ダークスポットと呼ばれる非発光点が発生し、
このダークスポットの成長が、有機電界発光素子の寿命
を短くしている原因の一つであった。However, when the organic electroluminescent device is driven for a long time, a non-light emitting point called a dark spot is generated.
This growth of dark spots was one of the causes of shortening the life of the organic electroluminescent device.
【0026】ダークスポットは、一般に、駆動直後は肉
眼では見えない程度の大きさで発生し、これを核とし
て、連続駆動により成長していくことが知られている。It is generally known that a dark spot is generated with a size that is invisible to the naked eye immediately after driving, and grows by continuous driving with this as a nucleus.
【0027】また、ダークスポットは、駆動を行わない
保存状態でも発生し、経時的に成長することが知られて
いる。It is known that dark spots are generated even in a storage state where driving is not performed and grow with time.
【0028】そこで、本発明の目的は、駆動状態及び長
期保存状態におけるダークスポットの発生を極力抑え、
長期保存可能で且つ長時間の安定した発光が得られる有
機電界発光素子を提供することである。Accordingly, an object of the present invention is to minimize the occurrence of dark spots in the driving state and the long-term storage state,
An object of the present invention is to provide an organic electroluminescent device which can be stored for a long period of time and can emit light stably for a long time.
【0029】[0029]
【課題を解決するための手段】上述した課題を解決すべ
く、本発明では、発光領域を含む有機積層構造が陽極と
陰極との間に設けられた有機電界発光素子において、少
なくとも前記陰極が、アルミニウムと、アルミニウムの
仕事関数よりも大きい仕事関数を有する少なくとも1種
の材料とを含有した陰極封止層により外部から保護され
ている。In order to solve the above-mentioned problems, according to the present invention, in an organic electroluminescent device in which an organic laminated structure including a light-emitting region is provided between an anode and a cathode, at least the cathode comprises: It is protected from the outside by a cathode sealing layer containing aluminum and at least one material having a work function higher than that of aluminum.
【0030】[0030]
【発明の実施の形態】以下、本発明を好ましい実施の形
態に従い説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described according to preferred embodiments.
【0031】〔第1の実施の形態〕図1に、本発明の第
1の実施の形態による有機電界発光素子の構成を模式的
に示す。[First Embodiment] FIG. 1 schematically shows the structure of an organic electroluminescent device according to a first embodiment of the present invention.
【0032】この第1の実施の形態による有機電界発光
素子30では、透明ガラス基板6上に、ITO透明電極
5をスパッタ法により形成し、その上に、順次、ホール
輸送層4、発光層3及び電子輸送層2を真空蒸着法によ
り積層して有機積層構造Aを形成し、更に、その上に、
陰極1を真空蒸着法により形成する。そして、それらの
上に、陰極1の外部からの保護及び外部への電極取り出
しを兼ねた陰極封止層9を、やはり、真空蒸着法により
形成する。In the organic electroluminescent device 30 according to the first embodiment, an ITO transparent electrode 5 is formed on a transparent glass substrate 6 by a sputtering method, and a hole transport layer 4 and a light emitting layer 3 are sequentially formed thereon. And the electron transport layer 2 are laminated by a vacuum deposition method to form an organic laminated structure A, and further thereon,
The cathode 1 is formed by a vacuum deposition method. Then, a cathode sealing layer 9 which also serves to protect the cathode 1 from the outside and take out the electrode to the outside is formed thereon by a vacuum evaporation method.
【0033】この時、陰極1及び陰極封止層9には、ア
ルミニウム(Al)系の材料を用いるのが好ましい。そ
の理由は、有機電界発光素子の整流性には陰極材料が関
与し、Alは、逆バイアスにおいて殆ど電流を通すこと
なく、整流性が良いからである。At this time, it is preferable to use an aluminum (Al) -based material for the cathode 1 and the cathode sealing layer 9. The reason for this is that the cathode material is involved in the rectification of the organic electroluminescent device, and Al has a good rectification with almost no current flowing in reverse bias.
【0034】有機電界発光素子の整流性は、表示デバイ
スを作製する際には重要で、特に、単純マトリクス駆動
型表示素子を作製するには、良い整流性を得ることが必
要不可欠な条件となる。The rectifying property of the organic electroluminescent device is important when manufacturing a display device, and in particular, obtaining a good rectifying property is an essential condition for manufacturing a simple matrix drive type display element. .
【0035】ところが、陰極1又は陰極封止層9に、A
lの単体を用いると、ダークスポットの発生、成長が顕
著に現れる。However, the cathode 1 or the cathode sealing layer 9 has A
When 1 alone is used, the generation and growth of dark spots appear remarkably.
【0036】これは、ダークスポットの発生要因が、有
機層と接している陰極の剥離や酸化、有機層を形成して
いる分子のコンフォメーションの変化、更に、発光に伴
う熱緩和過程での有機層の劣化等によるものだけではな
く、特に、陰極材料によるヒロック(陰極材料がスパイ
ク状に結晶成長して、有機層中に侵入すること)による
ところが大きいからだと考えられる。This is because dark spots are caused by peeling and oxidation of the cathode in contact with the organic layer, changes in the conformation of the molecules forming the organic layer, and the organic relaxation during the thermal relaxation process accompanying light emission. This is probably because not only the deterioration of the layer and the like, but also the hillock (cathode material grows in a spike shape and penetrates into the organic layer) due to the cathode material is large.
【0037】陰極1をAl単体で構成すると、陰極1と
電子輸送層2との界面にヒロックが発生する。また、こ
れを防止するために、陰極1を、Alよりも仕事関数が
小さい材料で構成すると、今度は、外部からの酸素や水
分等の侵入により、陰極1と電子輸送層2との界面にヒ
ロックが発生する。この時、陰極1を保護する陰極封止
層9をAl単体で構成していると、この外部からの酸素
や水分等の侵入を殆ど防げない。When the cathode 1 is composed of Al alone, hillocks are generated at the interface between the cathode 1 and the electron transport layer 2. In order to prevent this, if the cathode 1 is made of a material having a work function smaller than that of Al, then the interface between the cathode 1 and the electron transport layer 2 is caused by invasion of oxygen, moisture, and the like from the outside. Hillocks occur. At this time, if the cathode sealing layer 9 for protecting the cathode 1 is made of Al alone, entry of oxygen or moisture from the outside can hardly be prevented.
【0038】そこで、本実施の形態では、陰極1を、A
lよりも仕事関数が小さい材料で構成すると同時に、陰
極封止層9を、Alを主成分とし、且つ、Alの仕事関
数よりも大きな仕事関数を有する少なくとも1種の材料
を含有した材料で構成する。Therefore, in the present embodiment, the cathode 1 is
and at the same time, the cathode sealing layer 9 is made of a material containing Al as a main component and containing at least one material having a work function larger than the work function of Al. I do.
【0039】この時、陰極1を構成する、Alよりも仕
事関数が小さい材料としては、例えば、リチウム(L
i)、インジウム(In)、マグネシウム(Mg)、ス
トロンチウム(Sr)、カルシウム(Ca)、カリウム
(K)、ナトリウム(Na)、バリウム(Ba)等を単
独、若しくは、他の金属(特に、Al)との合金として
用いることができる。At this time, the material constituting the cathode 1 having a work function smaller than that of Al is, for example, lithium (L
i), indium (In), magnesium (Mg), strontium (Sr), calcium (Ca), potassium (K), sodium (Na), barium (Ba), etc. alone or other metals (particularly Al ) Can be used as an alloy.
【0040】また、陰極封止層9に用いる、Alの仕事
関数よりも大きな仕事関数を有する材料としては、Al
の仕事関数φ≒4.19〔eV〕よりも0.02eV以
上大きい仕事関数を有する材料で、且つ、Alと合金化
し得る材料を用いるのが好ましく、例えば、シリコン
(Si:φ≒4.40〔eV〕)、銅(Cu:φ≒4.
51〔eV〕)、クロム(Cr:φ≒4.44〔e
V〕)、ニッケル(Ni:φ≒5.25〔eV〕)、ガ
リウム(Ga:φ≒4.45〔eV〕)、モリブデン
(Mo:φ≒4.21〔eV〕)、白金(Pt:φ≒
5.63〔eV〕)、金(Au:φ≒5.32〔e
V〕)、銀(Ag:φ≒4.34〔eV〕)、炭素
(C:φ≒4.81〔eV〕)、鉄(Fe:φ≒4.2
4〔eV〕)、アンチモン(Sb:φ≒4.56〔e
V〕)、錫(Sn:φ≒4.42〔eV〕)、タングス
テン(W:φ≒4.55〔eV〕)、亜鉛(Zn:φ≒
4.33〔eV〕)、ルテニウム(Ru:φ≒4.86
〔eV〕)、カドミウム(Cd:φ≒4.22〔e
V〕)、タンタル(Ta:φ≒4.22〔eV〕)、コ
バルト(Co:φ≒4.97〔eV〕)、ヒ素(As:
φ≒4.79〔eV〕)、ニオブ(Nb:φ≒4.66
〔eV〕)、パラジウム(Pd:φ≒4.95〔e
V〕)、ビスマス(Bi:φ≒4.26〔eV〕)等を
用いることができる。The material used for the cathode sealing layer 9 and having a work function larger than the work function of Al is Al.
It is preferable to use a material having a work function 0.02 eV or more larger than the work function φ ≒ 4.19 [eV] and a material that can be alloyed with Al, for example, silicon (Si: φ ≒ 4.40). [EV]), copper (Cu: φ ≒ 4.
51 [eV]), chromium (Cr: φ ≒ 4.44 [e]
V]), nickel (Ni: φ ≒ 5.25 [eV]), gallium (Ga: φ ≒ 4.45 [eV]), molybdenum (Mo: φ ≒ 4.21 [eV]), platinum (Pt: φ ≒
5.63 [eV]), gold (Au: φ ≒ 5.32 [e]
V]), silver (Ag: φ ≒ 4.34 [eV]), carbon (C: φ ≒ 4.81 [eV]), iron (Fe: φ ≒ 4.2)
4 [eV]), antimony (Sb: φ ≒ 4.56 [e]
V]), tin (Sn: φ ≒ 4.42 [eV]), tungsten (W: φ ≒ 4.55 [eV]), zinc (Zn: φ ≒)
4.33 [eV]), ruthenium (Ru: φ ≒ 4.86)
[EV]), cadmium (Cd: φ ≒ 4.22 [e
V]), tantalum (Ta: φ ≒ 4.22 [eV]), cobalt (Co: φ ≒ 4.97 [eV]), arsenic (As:
φ ≒ 4.79 [eV]), niobium (Nb: φ ≒ 4.66)
[EV]), palladium (Pd: φ ≒ 4.95 [e
V]), bismuth (Bi: φ ≒ 4.26 [eV]) or the like can be used.
【0041】これらの材料は、陰極封止層9中に少なく
とも1種類存在すれば良く、複数種類存在しても良い。At least one of these materials may be present in the cathode sealing layer 9, and a plurality of these materials may be present.
【0042】この時、陰極封止層9におけるこれらの材
料の含有量は、1種類につき0.05wt%以上、5wt%
未満であるのが好ましい。従って、例えば、2種類の材
料を用いる場合には、合計で、10wt%未満まで含有さ
せることができる。但し、これらの材料の含有量が多過
ぎると、Alの整流性が低下し過ぎる虞が有り、また、
ダークスポットの発生量も却って増加する虞が有るの
で、これらの材料全体の含有量は、0.05wt%以上、
5wt%未満であるのがより好ましい。At this time, the content of these materials in the cathode sealing layer 9 is 0.05 wt% or more and 5 wt%
It is preferably less than. Therefore, for example, when two types of materials are used, the total content can be less than 10 wt%. However, if the content of these materials is too large, there is a risk that the rectifying properties of Al may be too low,
Since the generation amount of dark spots may be increased, the content of these materials as a whole is 0.05 wt% or more,
More preferably, it is less than 5% by weight.
【0043】本実施の形態では、陰極1及び陰極封止層
9を、夫々、上述の材料で構成することにより、駆動時
及び長期保存後の駆動時、有機電界発光素子のダークス
ポットの発生及び成長を大幅に抑制することができる。In the present embodiment, by forming the cathode 1 and the cathode sealing layer 9 from the above-described materials, respectively, the occurrence of dark spots and the occurrence of dark spots of the organic electroluminescent device during driving and after long-term storage are reduced. Growth can be greatly suppressed.
【0044】なお、安定性を更に高めるために、ゲルマ
ニウム(Ge)酸化物、AuGe等で陰極封止層9を更
に覆って保護し、これにより、大気中の酸素等の影響を
更に排除するのが好ましい。また、真空に引いた状態で
素子を駆動するようにしても良い。In order to further enhance the stability, the cathode sealing layer 9 is further covered and protected with germanium (Ge) oxide, AuGe, or the like, thereby further eliminating the influence of atmospheric oxygen and the like. Is preferred. Further, the element may be driven while being evacuated.
【0045】また、陽極の透明電極5には、上述したI
TO(In2 O3 +5〜10wt%SnO2 )の他に、N
ESA(商品名:SnO2 +Sb2 O3 )やZAO(商
品名:ZnO+1〜2wt%Al2 O3 )等を用いること
ができる。或いは、これらの積層膜で構成しても良い。
更に、陽極には、真空準位からの仕事関数が大きいAu
等を用いることもできる。The transparent electrode 5 serving as an anode has the above-mentioned I
In addition to TO (In 2 O 3 + 5-10 wt% SnO 2 ), N
ESA (trade name: SnO 2 + Sb 2 O 3 ), ZAO (trade name: ZnO + 1 to 2 wt% Al 2 O 3 ), or the like can be used. Or you may comprise with these laminated films.
In addition, Au has a large work function from the vacuum level on the anode.
Etc. can also be used.
【0046】更に、上記有機電界発光層を有する素子に
おいて、アノード電極、ホール輸送層、発光層、電子輸
送層の材料に特に限定要件は無い(以下の実施の形態で
も同様)。例えば、ホール輸送性発光層であるならば、
ベンジジン誘導体、スチリルアミン誘導体、トリフェニ
ルメタン誘導体、ヒドラゾン誘導体等のホール輸送性発
光材料を用いてもよい。同様に、電子輸送層には、ペリ
レン誘導体、ビススチリル誘導体、ピラジン誘導体等の
電子輸送性有機物質を用いてもよい。Further, in the device having the above-mentioned organic electroluminescent layer, there is no particular limitation on the materials of the anode electrode, the hole transport layer, the light emitting layer, and the electron transport layer (the same applies to the following embodiments). For example, if it is a hole transporting light emitting layer,
A hole-transporting light-emitting material such as a benzidine derivative, a styrylamine derivative, a triphenylmethane derivative, or a hydrazone derivative may be used. Similarly, an electron transporting organic substance such as a perylene derivative, a bisstyryl derivative, or a pyrazine derivative may be used for the electron transporting layer.
【0047】また、アノード電極、ホール輸送層、発光
層、電子輸送層は、それぞれが複数層からなる積層構造
であってももちろんよい。The anode electrode, the hole transport layer, the light emitting layer and the electron transport layer may of course have a laminated structure composed of a plurality of layers.
【0048】また、本実施の形態における各有機層は、
蒸着以外にも、昇華又は気化を伴う他の成膜方法でも形
成可能である。Further, each organic layer in this embodiment is
In addition to vapor deposition, other film formation methods involving sublimation or vaporization can be used.
【0049】なお、モノカラー用の有機EL素子は勿
論、発光材料を選択することによって、R、G、Bの三
色を発光するフルカラー用、又はマルチカラー用の有機
EL素子を作製することができる。その他、ディスプレ
イ用としてだけでなく、光源用としても使用可能な有機
EL素子に適用できるとともに、他の光学的用途にも適
用することができる。By selecting a light emitting material as well as a mono-color organic EL element, a full-color or multi-color organic EL element emitting three colors of R, G, and B can be manufactured. it can. In addition, the present invention can be applied to an organic EL element that can be used not only for a display but also for a light source and also for other optical uses.
【0050】〔第2の実施の形態〕図2に、本発明の第
2の実施の形態による有機電界発光素子の構成を模式的
に示す。[Second Embodiment] FIG. 2 schematically shows the structure of an organic electroluminescent device according to a second embodiment of the present invention.
【0051】この第2の実施の形態による有機電界発光
素子40では、電子輸送層2を、発光層を兼ねた電子輸
送性発光材料で構成し、上述した第1の実施の形態にお
ける発光層3を省略している。これ以外の構成は、上述
した第1の実施の形態と実質的に同じである。In the organic electroluminescent device 40 according to the second embodiment, the electron transporting layer 2 is made of an electron transporting luminescent material also serving as a light emitting layer, and the light emitting layer 3 in the first embodiment described above is used. Is omitted. Other configurations are substantially the same as those of the above-described first embodiment.
【0052】このような電子輸送性発光材料としては、
例えば、下記〔化1〕に構造式を示すアルミキノリン錯
体Alq3 (8-hydroxy quinorine aluminum) を用いる
ことができる。As such an electron transporting light emitting material,
For example, aluminum quinoline complex Alq 3 (8-hydroxy quinorine aluminum) represented by the following chemical formula 1 can be used.
【0053】[0053]
【化1】 Embedded image
【0054】〔第3の実施の形態〕図3に、本発明の第
3の実施の形態による有機電界発光素子の構成を模式的
に示す。[Third Embodiment] FIG. 3 schematically shows the structure of an organic electroluminescent device according to a third embodiment of the present invention.
【0055】この第3の実施の形態による有機電界発光
素子50では、陽極であるITO透明電極5とホール輸
送層4との間に、ホール注入効率を高めるためのホール
注入層12を設けている。これ以外の構成は、上述した
第2の実施の形態と実質的に同じである。In the organic electroluminescent device 50 according to the third embodiment, the hole injection layer 12 for improving the hole injection efficiency is provided between the ITO transparent electrode 5 as the anode and the hole transport layer 4. . Other configurations are substantially the same as those of the above-described second embodiment.
【0056】このようなホール注入層12は、例えば、
下記〔化2〕に構造式を示すm−MTDATA(4,4',
4"-tris(3-methylphenylphenylamino)triphenylamine)
で構成することができる。Such a hole injection layer 12 is formed by, for example,
M-MTDATA (4,4 ′,
4 "-tris (3-methylphenylphenylamino) triphenylamine)
Can be configured.
【0057】[0057]
【化2】 Embedded image
【0058】〔第4の実施の形態〕図4に、本発明の第
4の実施の形態による有機電界発光素子の構成を模式的
に示す。[Fourth Embodiment] FIG. 4 schematically shows the structure of an organic electroluminescent device according to a fourth embodiment of the present invention.
【0059】この第4の実施の形態による有機電界発光
素子60では、ホール輸送層4を、発光層を兼ねたホー
ル輸送性発光材料で構成し、上述した第1の実施の形態
における発光層3を省略している。また、ITO透明電
極5とホール輸送層4との間に、上述した第3の実施の
形態と同様のホール注入層12を設け、更に、ホール輸
送層4と電子輸送層2との間に、電子−正孔の再結合に
よるエキシトン(exciton : 励起子)の生成を促進する
ためのエキシトン生成促進層13を設けている。これ以
外の構成は、上述した第1の実施の形態と実質的に同じ
である。In the organic electroluminescent device 60 according to the fourth embodiment, the hole transporting layer 4 is made of a hole transporting luminescent material also serving as a light emitting layer, and the light emitting layer 3 in the first embodiment described above is used. Is omitted. Further, a hole injection layer 12 similar to that of the third embodiment described above is provided between the ITO transparent electrode 5 and the hole transport layer 4, and further, between the hole transport layer 4 and the electron transport layer 2. An exciton generation promoting layer 13 for promoting generation of exciton (exciton: exciton) by recombination of electrons and holes is provided. Other configurations are substantially the same as those of the above-described first embodiment.
【0060】ホール輸送性発光材料としては、例えば、
ベンジジン誘導体、スチリルアミン誘導体、トリフェニ
ルメタン誘導体、ヒドラゾン誘導体等を用いることがで
きる。具体的には、例えば、下記〔化3〕に構造式を示
すTPD(N,N’−diphenyl−N,N’−bis(3-meth
ylphenyl)-1,1'-biphenyl-4,4'-diamine) や、As the hole transporting luminescent material, for example,
Benzidine derivatives, styrylamine derivatives, triphenylmethane derivatives, hydrazone derivatives and the like can be used. Specifically, for example, TPD (N, N'-diphenyl-N, N'-bis (3-meth
ylphenyl) -1,1'-biphenyl-4,4'-diamine)
【0061】[0061]
【化3】 Embedded image
【0062】下記〔化4〕に構造式を示すα−NPD
(α-naphtyl phenyl diamine)等を用いることができ
る。Α-NPD whose structural formula is shown in the following [Formula 4]
(Α-naphtyl phenyl diamine) and the like can be used.
【0063】[0063]
【化4】 Embedded image
【0064】また、エキシトン生成促進層13は、例え
ば、下記〔化5〕に構造式を示すバソクプロイン(2,9-
dimethyl-4,7-diphenyl-1,10-penanthroline) で構成す
ることができる。The exciton generation promoting layer 13 is made of, for example, bathocuproine (2,9-
dimethyl-4,7-diphenyl-1,10-penanthroline).
【0065】[0065]
【化5】 Embedded image
【0066】なお、以上に説明した各実施の形態におい
て、陰極1、電子輸送層2、発光層3、ホール輸送層
4、陽極5、陰極封止層9等は、各々が複数の層からな
る積層構造であっても良い。In each of the embodiments described above, each of the cathode 1, the electron transport layer 2, the light emitting layer 3, the hole transport layer 4, the anode 5, the cathode sealing layer 9, and the like is composed of a plurality of layers. It may have a laminated structure.
【0067】また、陰極封止層9は、陰極1を外部から
保護するように覆っていれば充分であり、他の部分は必
ずしも覆っていなくても良い。It is sufficient that the cathode sealing layer 9 covers the cathode 1 so as to protect the cathode 1 from the outside, and the other portions do not necessarily have to be covered.
【0068】[0068]
【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.
【0069】実施例1 30mm×30mmの透明ガラス基板上に膜厚約100
nmのITO膜が設けられたITO基板を用い、その上
に、SiO2 膜を蒸着して、2mm×2mmの発光領域
以外をSiO2 膜によりマスクした有機電界発光素子用
基板を作製した。 Example 1 A film having a thickness of about 100 was formed on a 30 mm × 30 mm transparent glass substrate.
Using an ITO substrate provided with an ITO film having a thickness of 10 nm, a SiO 2 film was deposited on the ITO substrate to produce a substrate for an organic electroluminescent device in which a region other than a 2 mm × 2 mm light emitting region was masked with the SiO 2 film.
【0070】次に、その有機電界発光素子用基板上に、
ホール輸送層としてTPDを、真空蒸着法により、真空
下で約50nmの膜厚に蒸着(蒸着速度約0.2〜0.
4nm/sec )し、更に、そのTPDの上に、電子輸送
性を持った発光材料であるAlq3 を電子輸送性発光層
として約50nmの膜厚に蒸着(蒸着速度約0.2〜
0.4nm/sec )した。Next, on the organic electroluminescent device substrate,
TPD is deposited as a hole transport layer to a thickness of about 50 nm under vacuum by a vacuum deposition method (a deposition rate of about 0.2 to 0.1 mm).
4 nm / sec), and Alq 3 , which is a light-emitting material having an electron-transport property, is deposited as an electron-transport light-emitting layer on the TPD to a thickness of about 50 nm (a deposition rate of about 0.2 to 10 nm).
0.4 nm / sec).
【0071】しかる後、その上に、陰極としてLiを約
2nmの膜厚に蒸着(蒸着速度〜0.3nm/sec )
し、更に、その上に、陰極封止層としてAlSiCu
(Si:約1wt%、Cu:約0.5wt%)を約200n
mの膜厚に蒸着した。更に、封止を完全に行うために、
AuGe電極を約200nmの膜厚に蒸着し、有機電界
発光素子を作製した。Thereafter, Li is deposited thereon as a cathode to a thickness of about 2 nm (deposition rate: 0.3 nm / sec).
And further thereon, AlSiCu as a cathode sealing layer.
(Si: about 1 wt%, Cu: about 0.5 wt%) about 200 n
m was deposited. Furthermore, in order to completely seal,
An AuGe electrode was deposited to a thickness of about 200 nm to produce an organic electroluminescent device.
【0072】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約520nm、CI
E色度座標上での座標は(0.32,0.54)であ
り、良好な緑色発光を呈した。また、電流密度100m
A/cm2 での輝度は約6400cd/m2 であった。
発光スペクトルの形状から、Alq3 からの発光である
ことは明らかであった。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.32, 0.54), indicating good green light emission. In addition, the current density is 100 m
The luminance at A / cm 2 was about 6400 cd / m 2 .
From the shape of the emission spectrum, it was clear that the emission from the Alq 3.
【0073】この有機電界発光素子を、気温約20℃、
相対湿度約30%の大気中で、5mA/cm2 の電流密
度で定電流駆動したところ(初期輝度約200cd/m
2 )、駆動後1時間では、発光面に、肉眼で観察できる
ダークスポットは無く、倍率10倍のファインダーを通
して観察しても、ダークスポットは認められなかった。The organic electroluminescent device was heated at a temperature of about 20 ° C.
When driven at a constant current of 5 mA / cm 2 in an atmosphere having a relative humidity of about 30% (initial luminance of about 200 cd / m 2).
2 ) One hour after driving, there was no dark spot on the light emitting surface that could be observed with the naked eye, and no dark spot was observed when observed through a finder with a magnification of 10 times.
【0074】実施例2 実施例1と同様の有機電界発光素子用基板を用い、その
上に、ホール注入層としてm−MTDATAを、真空蒸
着法により、真空下で約30nmの膜厚に蒸着(蒸着速
度約0.2〜0.4nm/sec )し、その上に、ホール
輸送層としてα−NPDを、真空蒸着法により、真空下
で約30nmの膜厚に蒸着(蒸着速度約0.2〜0.4
nm/sec )し、更に、その上に、電子輸送性発光層と
してAlq3 を約50nmの膜厚に蒸着した。 Example 2 An organic electroluminescent device substrate similar to that of Example 1 was used, and m-MTDATA was deposited thereon as a hole injection layer by vacuum evaporation to a thickness of about 30 nm under vacuum. A vapor deposition rate of about 0.2 to 0.4 nm / sec), and α-NPD as a hole transport layer is deposited thereon by vacuum vapor deposition to a thickness of about 30 nm under vacuum (vapor deposition rate of about 0.2). ~ 0.4
nm / sec), and Alq 3 was deposited thereon as an electron transporting light emitting layer to a thickness of about 50 nm.
【0075】しかる後、その上に、陰極としてLiを約
2nmの膜厚に蒸着(蒸着速度〜0.3nm/sec )
し、更に、その上に、陰極封止層としてAlCu(C
u:約1wt%)を約200nmの膜厚に蒸着した。更
に、封止を完全に行うために、AuGe電極を約200
nmの膜厚に蒸着し、有機電界発光素子を作製した。After that, Li is deposited thereon as a cathode to a thickness of about 2 nm (deposition rate: 0.3 nm / sec).
Further, an AlCu (C
u: about 1 wt%) to a thickness of about 200 nm. Further, in order to complete the sealing, the AuGe electrode is set to about 200 μm.
The organic electroluminescent device was manufactured by vapor deposition to a thickness of nm.
【0076】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約520nm、CI
E色度座標上での座標は(0.32,0.55)であ
り、良好な緑色発光を呈した。また、電流密度400m
A/cm2 での輝度は約26000cd/m2 であっ
た。発光スペクトルの形状から、Alq3 からの発光で
あることは明らかであった。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.32, 0.55), indicating good green light emission. In addition, current density 400m
The luminance at A / cm 2 was about 26000 cd / m 2 . From the shape of the emission spectrum, it was clear that the emission from the Alq 3.
【0077】この有機電界発光素子を、気温約20℃、
相対湿度約30%の大気中で、5mA/cm2 の電流密
度で定電流駆動したところ(初期輝度約230cd/m
2 )、駆動後1時間では、発光面に、肉眼で観察できる
ダークスポットは無く、倍率10倍のファインダーを通
して観察しても、ダークスポットは認められなかった。The organic electroluminescent device was heated at a temperature of about 20 ° C.
When driven at a constant current of 5 mA / cm 2 in an atmosphere having a relative humidity of about 30% (initial luminance of about 230 cd / m 2).
2 ) One hour after driving, there was no dark spot on the light emitting surface that could be observed with the naked eye, and no dark spot was observed when observed through a finder with a magnification of 10 times.
【0078】実施例3 実施例2と同様の条件で、有機電界発光素子用基板上
に、ホール注入層であるm−MTDATA、ホール輸送
層であるα−NPD、及び、電子輸送性発光層であるA
lq3 を夫々形成した後、その上に、陰極としてLiを
約2nmの膜厚に蒸着(蒸着速度〜0.3nm/sec )
し、更に、その上に、陰極封止層としてAlSiCu
(Si:約1wt%、Cu:約0.5wt%)を約200n
mの膜厚に蒸着した。更に、封止を完全に行うために、
AuGe電極を約200nmの膜厚に蒸着し、有機電界
発光素子を作製した。 Example 3 Under the same conditions as in Example 2, an m-MTDATA as a hole injecting layer, an α-NPD as a hole transporting layer, and an electron transporting light emitting layer were formed on an organic electroluminescent element substrate. A
After each of lq 3 is formed, Li is deposited thereon as a cathode to a thickness of about 2 nm (deposition rate-0.3 nm / sec).
And further thereon, AlSiCu as a cathode sealing layer.
(Si: about 1 wt%, Cu: about 0.5 wt%) about 200 n
m was deposited. Furthermore, in order to completely seal,
An AuGe electrode was deposited to a thickness of about 200 nm to produce an organic electroluminescent device.
【0079】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約520nm、CI
E色度座標上での座標は(0.32,0.55)であ
り、良好な緑色発光を呈した。また、電流密度400m
A/cm2 での輝度は約27000cd/m2 であっ
た。発光スペクトルの形状から、Alq3 からの発光で
あることは明らかであった。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.32, 0.55), indicating good green light emission. In addition, current density 400m
The luminance at A / cm 2 was about 27000 cd / m 2 . From the shape of the emission spectrum, it was clear that the emission from the Alq 3.
【0080】この有機電界発光素子を、気温約20℃、
相対湿度約30%の大気中で、5mA/cm2 の電流密
度で定電流駆動したところ(初期輝度約230cd/m
2 )、駆動後1時間では、発光面に、肉眼で観察できる
ダークスポットは無く、倍率10倍のファインダーを通
して観察しても、ダークスポットは認められなかった。The organic electroluminescent device was heated at a temperature of about 20 ° C.
When driven at a constant current of 5 mA / cm 2 in an atmosphere having a relative humidity of about 30% (initial luminance of about 230 cd / m 2).
2 ) One hour after driving, there was no dark spot on the light emitting surface that could be observed with the naked eye, and no dark spot was observed when observed through a finder with a magnification of 10 times.
【0081】実施例4 実施例1と同様の有機電界発光素子用基板を用い、その
上に、ホール注入層としてm−MTDATAを、真空蒸
着法により、真空下で約30nmの膜厚に蒸着(蒸着速
度約0.2〜0.4nm/sec )し、その上に、ホール
輸送性発光層としてα−NPDを、真空蒸着法により、
真空下で約50nmの膜厚に蒸着(蒸着速度約0.2〜
0.4nm/sec )し、更に、その上に、エキシトン生
成促進層としてバソクプロインを約20nmの膜厚に蒸
着(蒸着速度約0.2〜0.4nm/sec )し、更に、
その上に、電子輸送層としてAlq3 を約20nmの膜
厚に蒸着した。 Example 4 Using the same substrate for an organic electroluminescent device as in Example 1, m-MTDATA was deposited thereon as a hole injection layer by vacuum evaporation to a film thickness of about 30 nm under vacuum. The deposition rate is about 0.2 to 0.4 nm / sec), and α-NPD as a hole transporting light emitting layer is further formed thereon by a vacuum deposition method.
Vacuum deposited to a thickness of about 50 nm under vacuum (deposition rate of about 0.2 to
0.4 nm / sec), and bathocuproine is further deposited thereon as an exciton generation promoting layer to a thickness of about 20 nm (deposition rate: about 0.2 to 0.4 nm / sec).
Alq 3 was deposited thereon as an electron transport layer to a thickness of about 20 nm.
【0082】しかる後、その上に、陰極としてLiを約
2nmの膜厚に蒸着(蒸着速度〜0.3nm/sec )
し、更に、その上に、陰極封止層としてAlSiCu
(Si:約1wt%、Cu:約1wt%)を約200nmの
膜厚に蒸着した。更に、封止を完全に行うために、Au
Ge電極を約200nmの膜厚に蒸着し、有機電界発光
素子を作製した。Thereafter, Li is deposited thereon as a cathode to a thickness of about 2 nm (deposition rate: 0.3 nm / sec).
And further thereon, AlSiCu as a cathode sealing layer.
(Si: about 1 wt%, Cu: about 1 wt%) was deposited to a thickness of about 200 nm. Furthermore, in order to completely seal, Au
A Ge electrode was deposited to a thickness of about 200 nm to produce an organic electroluminescent device.
【0083】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約460nm、CI
E色度座標上での座標は(0.160,0.140)で
あり、良好な青色発光を呈した。また、電流密度200
mA/cm2 での輝度は約1500cd/m2 であっ
た。発光スペクトルの形状から、α−NPDからの発光
であることは明らかであった。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 460 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.160, 0.140), and exhibited good blue light emission. In addition, current density 200
The luminance at mA / cm 2 was about 1500 cd / m 2 . From the shape of the emission spectrum, it was clear that the emission was from α-NPD.
【0084】この有機電界発光素子を、気温約20℃、
相対湿度約30%の大気中で、12mA/cm2 の電流
密度で定電流駆動したところ(初期輝度約140cd/
m2)、駆動後1時間では、発光面に、肉眼で観察でき
るダークスポットは無く、倍率10倍のファインダーを
通して観察しても、ダークスポットは認められなかっ
た。The organic electroluminescent device was heated at a temperature of about 20 ° C.
When driven at a constant current of 12 mA / cm 2 in an atmosphere having a relative humidity of about 30% (initial luminance of about 140 cd /
m 2 ), 1 hour after driving, there was no dark spot on the light-emitting surface that could be observed with the naked eye, and no dark spot was observed when observed through a finder with a magnification of 10 ×.
【0085】実施例5 実施例2と同様の条件で、有機電界発光素子用基板上
に、ホール注入層であるm−MTDATA、ホール輸送
層であるα−NPD、電子輸送性発光層であるAl
q3 、陰極であるLi、陰極封止層であるAlCu、及
び、AuGe電極を夫々形成し、有機電界発光素子を作
製した。但し、陰極封止層のAlCu中のCuの含有量
を約0.5wt%とした。 Example 5 Under the same conditions as in Example 2, m-MTDATA as a hole injection layer, α-NPD as a hole transport layer, and Al as an electron transportable light emitting layer were formed on a substrate for an organic electroluminescent element.
An organic electroluminescent device was fabricated by forming q 3 , Li as a cathode, AlCu as a cathode sealing layer, and an AuGe electrode. However, the content of Cu in AlCu of the cathode sealing layer was set to about 0.5 wt%.
【0086】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約520nm、CI
E色度座標上での座標は(0.32,0.55)であ
り、良好な緑色発光を呈した。また、電流密度400m
A/cm2 での輝度は約27000cd/m2 であっ
た。発光スペクトルの形状から、Alq3 からの発光で
あることは明らかであった。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.32, 0.55), indicating good green light emission. In addition, current density 400m
The luminance at A / cm 2 was about 27000 cd / m 2 . From the shape of the emission spectrum, it was clear that the emission from the Alq 3.
【0087】この有機電界発光素子を、気温約20℃、
相対湿度0%以下(露点約−47℃以下)の乾燥窒素雰
囲気中で30日間保管した後、未発光面を、大気中で、
5mA/cm2 の電流密度で定電流駆動したところ(初
期輝度約230cd/m2 )、駆動直後のダークスポッ
トは観察されず、また、駆動後1時間でも、発光面に、
肉眼で観察できるダークスポットは無かった。更に、倍
率10倍のファインダーを通して観察しても、ダークス
ポットは認められなかった。The organic electroluminescent device was heated at a temperature of about 20 ° C.
After storing for 30 days in a dry nitrogen atmosphere having a relative humidity of 0% or less (dew point of about -47 ° C. or less), the non-light-emitting surface is
When a constant current drive was performed at a current density of 5 mA / cm 2 (initial luminance: about 230 cd / m 2 ), a dark spot immediately after the drive was not observed.
There were no dark spots visible to the naked eye. Further, no dark spot was observed when observed through a finder with a magnification of 10 times.
【0088】実施例6 実施例1と同様の有機電界発光素子用基板を用い、その
上に、ホール輸送層としてTPDを、真空蒸着法によ
り、真空下で約50nmの膜厚に蒸着(蒸着速度約0.
2〜0.4nm/sec )し、更に、その上に、電子輸送
性発光層としてAlq3 を約50nmの膜厚に蒸着(蒸
着速度約0.2〜0.4nm/sec )した。 Example 6 Using the same substrate for an organic electroluminescent device as in Example 1, TPD was deposited thereon as a hole transport layer by vacuum evaporation to a thickness of about 50 nm under vacuum (evaporation rate). About 0.
2~0.4nm / sec) and, further, thereon, was deposited Alq 3 to a thickness of about 50nm as an electron transport light-emitting layer (deposition rate of about 0.2 to 0.4 nm / sec).
【0089】しかる後、その上に、陰極としてAlLi
(Li:約1wt%)を約2nmの膜厚に蒸着(蒸着速度
〜0.3nm/sec )し、更に、その上に、陰極封止層
としてAlSiCu(Si:約1.5wt%、Cu:約
0.5wt%)を約200nmの膜厚に蒸着した。更に、
封止を完全に行うために、AuGe電極を約200nm
の膜厚に蒸着し、有機電界発光素子を作製した。After that, AlLi was further formed thereon as a cathode.
(Li: about 1 wt%) is deposited to a film thickness of about 2 nm (deposition rate -0.3 nm / sec), and AlSiCu (Si: about 1.5 wt%, Cu: (About 0.5 wt%) was deposited to a thickness of about 200 nm. Furthermore,
In order to complete the sealing, the AuGe electrode is set to about 200 nm.
To produce an organic electroluminescent device.
【0090】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約520nm、CI
E色度座標上での座標は(0.33,0.54)であ
り、良好な緑色発光を呈した。また、電流密度100m
A/cm2 での輝度は約6600cd/m2 であった。
発光スペクトルの形状から、Alq3 からの発光である
ことは明らかであった。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.33, 0.54), indicating good green light emission. In addition, the current density is 100 m
The luminance at A / cm 2 was about 6600 cd / m 2 .
From the shape of the emission spectrum, it was clear that the emission from the Alq 3.
【0091】この有機電界発光素子を、気温約20℃、
相対湿度約30%の大気中で、5mA/cm2 の電流密
度で定電流駆動したところ(初期輝度約200cd/m
2 )、駆動後1時間では、発光面に、肉眼で観察できる
ダークスポットは無く、倍率10倍のファインダーを通
して観察しても、ダークスポットは認められなかった。The organic electroluminescent device was heated at a temperature of about 20 ° C.
When driven at a constant current of 5 mA / cm 2 in an atmosphere having a relative humidity of about 30% (initial luminance of about 200 cd / m 2).
2 ) One hour after driving, there was no dark spot on the light emitting surface that could be observed with the naked eye, and no dark spot was observed when observed through a finder with a magnification of 10 times.
【0092】実施例7 実施例6と同様の条件で、有機電界発光素子用基板上
に、ホール輸送層であるTPD、及び、電子輸送性発光
層であるAlq3 を夫々形成した後、その上に、陰極と
してAlLiCuMg(Li:約1wt%、Cu:約0.
5wt%、Mg:約2.0wt%)を約2nmの膜厚に蒸着
(蒸着速度〜0.3nm/sec )し、更に、その上に、
陰極封止層としてAlSiCu(Si:約1wt%、C
u:約0.5wt%)を約200nmの膜厚に蒸着した。
更に、封止を完全に行うために、AuGe電極を約20
0nmの膜厚に蒸着し、有機電界発光素子を作製した。 Example 7 Under the same conditions as in Example 6, a TPD as a hole transport layer and an Alq 3 as an electron transporting light emitting layer were formed on a substrate for an organic electroluminescent device, respectively. In addition, AlLiCuMg (Li: about 1 wt%, Cu: about 0.1 wt.
5 wt%, Mg: about 2.0 wt%) is deposited to a thickness of about 2 nm (deposition rate-0.3 nm / sec).
AlSiCu (Si: about 1 wt%, C
u: about 0.5 wt%) to a thickness of about 200 nm.
Further, in order to complete the sealing, the AuGe electrode is set to about 20 μm.
Vapor deposition was performed to a thickness of 0 nm to produce an organic electroluminescent device.
【0093】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約520nm、CI
E色度座標上での座標は(0.32,0.54)であ
り、良好な緑色発光を呈した。また、電流密度100m
A/cm2 での輝度は約6400cd/m2 であった。
発光スペクトルの形状から、Alq3 からの発光である
ことは明らかであった。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.32, 0.54), indicating good green light emission. In addition, the current density is 100 m
The luminance at A / cm 2 was about 6400 cd / m 2 .
From the shape of the emission spectrum, it was clear that the emission from the Alq 3.
【0094】この有機電界発光素子を、気温約20℃、
相対湿度約30%の大気中で、5mA/cm2 の電流密
度で定電流駆動したところ(初期輝度約200cd/m
2 )、駆動後1時間では、発光面に、肉眼で観察できる
ダークスポットは無く、倍率10倍のファインダーを通
して観察しても、ダークスポットは認められなかった。The organic electroluminescent device was heated at a temperature of about 20 ° C.
When driven at a constant current of 5 mA / cm 2 in an atmosphere having a relative humidity of about 30% (initial luminance of about 200 cd / m 2).
2 ) One hour after driving, there was no dark spot on the light emitting surface that could be observed with the naked eye, and no dark spot was observed when observed through a finder with a magnification of 10 times.
【0095】実施例8 実施例6と同様の条件で、有機電界発光素子用基板上
に、ホール輸送層であるTPD、及び、電子輸送性発光
層であるAlq3 を夫々形成した後、その上に、陰極と
してLiを約2nmの膜厚に蒸着(蒸着速度〜0.3n
m/sec )し、更に、その上に、陰極封止層としてAl
Cuを約200nmの膜厚に蒸着した。更に、封止を完
全に行うために、AuGe電極を約200nmの膜厚に
蒸着し、有機電界発光素子を作製した。 Example 8 Under the same conditions as in Example 6, a hole transporting layer TPD and an electron transporting light emitting layer Alq 3 were formed on a substrate for an organic electroluminescent device, and then formed thereon. Then, Li is deposited as a cathode to a film thickness of about 2 nm (deposition rate: 0.3 n
m / sec), and further, Al is formed thereon as a cathode sealing layer.
Cu was deposited to a thickness of about 200 nm. Further, in order to complete the sealing, an AuGe electrode was deposited to a thickness of about 200 nm to produce an organic electroluminescent device.
【0096】この実施例では、陰極封止層のAlCu中
のCu含有量を、0.05wt%、0.5wt%、1.0wt
%、5.0wt%、及び、10.0wt%として、夫々の試
料におけるダークスポットの発生数を調べた。In this embodiment, the Cu content in AlCu of the cathode sealing layer was adjusted to 0.05 wt%, 0.5 wt%, 1.0 wt%
%, 5.0 wt%, and 10.0 wt%, the number of occurrences of dark spots in each sample was examined.
【0097】こうして作製した有機電界発光素子の特性
を測定したところ、いずれの試料においても、最大発光
波長は約520nm、CIE色度座標上での座標は
(0.31,0.54)であり、良好な緑色発光を呈し
た。また、発光スペクトルの形状から、いずれの試料に
おいても、Alq3 からの発光であることは明らかであ
った。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm and the coordinates on the CIE chromaticity coordinates were (0.31, 0.54) for all samples. , And exhibited good green light emission. In addition, from the shape of the emission spectrum, it was clear that all samples emitted light from Alq 3 .
【0098】これらの有機電界発光素子を、気温約20
℃、相対湿度約30%の大気中で、5mA/cm2 の電
流密度で定電流駆動したところ(初期輝度約200cd
/m2 )、駆動後1時間での発光面におけるダークスポ
ットの数は、倍率10倍のファインダーを通して観察す
ると、以下の〔表1〕のようになった。These organic electroluminescent devices were used at a temperature of about 20 ° C.
When driven at a constant current of 5 mA / cm 2 in the air at about 30 ° C. and a relative humidity of about 30% (initial luminance: about 200 cd
/ M 2 ), and the number of dark spots on the light-emitting surface one hour after driving, as observed through a finder with a magnification of 10 ×, was as shown in Table 1 below.
【0099】[0099]
【表1】 [Table 1]
【0100】この〔表1〕の結果から、陰極封止層にC
uを含有させることにより、Al単体の場合に比較し
て、ダークスポットの発生を大幅に抑制できることが分
かる。但し、Cuの含有量が5.0wt%以上になると、
再び、ダークスポットの発生数が増え始めるので、Cu
の含有量は、0.05wt%以上、5.0wt%未満である
のが好ましい。From the results of [Table 1], it was found that C was added to the cathode sealing layer.
It can be seen that the inclusion of u can significantly suppress the generation of dark spots as compared to the case of Al alone. However, when the content of Cu becomes 5.0 wt% or more,
Again, since the number of dark spots starts to increase, Cu
Is preferably 0.05 wt% or more and less than 5.0 wt%.
【0101】比較例1 実施例2と同様の条件で、有機電界発光素子用基板上
に、ホール注入層であるm−MTDATA、ホール輸送
層であるα−NPD、電子輸送性発光層であるAl
q3 、及び、陰極であるLiを夫々形成した後、陰極封
止層としてAlを約200nmの膜厚に蒸着した。更
に、封止を完全に行うために、AuGe電極を約200
nmの膜厚に蒸着し、有機電界発光素子を作製した。 Comparative Example 1 Under the same conditions as in Example 2, m-MTDATA as a hole injection layer, α-NPD as a hole transport layer, and Al as an electron transportable light emitting layer were formed on a substrate for an organic electroluminescent element.
After forming q 3 and Li as a cathode, Al was deposited to a thickness of about 200 nm as a cathode sealing layer. Further, in order to complete the sealing, the AuGe electrode is set to about 200 μm.
The organic electroluminescent device was manufactured by vapor deposition to a thickness of nm.
【0102】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約520nm、CI
E色度座標上での座標は(0.32,0.55)であ
り、良好な緑色発光を呈した。また、電流密度400m
A/cm2 での輝度は約25500cd/m2 であっ
た。発光スペクトルの形状から、Alq3 からの発光で
あることは明らかであった。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.32, 0.55), indicating good green light emission. In addition, current density 400m
The luminance at A / cm 2 was about 25500 cd / m 2 . From the shape of the emission spectrum, it was clear that the emission from the Alq 3.
【0103】この有機電界発光素子を、気温約20℃、
相対湿度約30%の大気中で、5mA/cm2 の電流密
度で定電流駆動したところ(初期輝度約220cd/m
2 )、駆動後10分程度で、発光面には、肉眼で観察で
きる細かなダークスポットが発生し、駆動後1時間で
は、全発光面積に占めるダークスポットの割合は約3%
になった。The organic electroluminescent device was heated at a temperature of about 20 ° C.
When driven at a constant current of 5 mA / cm 2 in an atmosphere having a relative humidity of about 30% (initial luminance of about 220 cd / m 2).
2 ) About 10 minutes after driving, fine dark spots that can be observed with the naked eye are generated on the light emitting surface. In 1 hour after driving, the ratio of dark spots in the entire light emitting area is about 3%.
Became.
【0104】比較例2 実施例2と同様の条件で、有機電界発光素子用基板上
に、ホール注入層であるm−MTDATA、ホール輸送
層であるα−NPD、及び、電子輸送性発光層であるA
lq3 を夫々形成した後、その上に、陰極としてAlL
i(Li:約1wt%)を約2nmの膜厚に蒸着(蒸着速
度〜0.3nm/sec )し、更に、その上に、陰極封止
層としてAlを約200nmの膜厚に蒸着した。更に、
封止を完全に行うために、AuGe電極を約200nm
の膜厚に蒸着し、有機電界発光素子を作製した。 Comparative Example 2 Under the same conditions as in Example 2, an m-MTDATA as a hole injection layer, an α-NPD as a hole transport layer, and an electron transporting luminescent layer were formed on a substrate for an organic electroluminescent element. A
After forming each of lq 3 , AlL was formed thereon as a cathode.
i (Li: about 1 wt%) was deposited to a thickness of about 2 nm (deposition rate: 0.3 nm / sec), and Al was further deposited thereon as a cathode sealing layer to a thickness of about 200 nm. Furthermore,
In order to complete the sealing, the AuGe electrode is set to about 200 nm.
To produce an organic electroluminescent device.
【0105】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約520nm、CI
E色度座標上での座標は(0.32,0.55)であ
り、良好な緑色発光を呈した。また、発光スペクトルの
形状から、Alq3 からの発光であることは明らかであ
った。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.32, 0.55), indicating good green light emission. Also, from the shape of the emission spectrum, it was clear that the emission was from Alq 3 .
【0106】この有機電界発光素子を、気温約20℃、
相対湿度約30%の大気中で、5mA/cm2 の電流密
度で定電流駆動したところ(初期輝度約230cd/m
2 )、駆動後10分程度で、発光面には、肉眼で観察で
きる細かなダークスポットが発生し、駆動後1時間で
は、全発光面積に占めるダークスポットの割合は約4.
5%になった。The organic electroluminescent device was heated at a temperature of about 20 ° C.
When driven at a constant current of 5 mA / cm 2 in an atmosphere having a relative humidity of about 30% (initial luminance of about 230 cd / m 2).
2 ) About 10 minutes after driving, fine dark spots that can be observed with the naked eye are generated on the light emitting surface, and the ratio of dark spots to the total light emitting area is about 4.
5%.
【0107】比較例3 比較例1と同様の条件で、有機電界発光素子用基板上
に、ホール注入層であるm−MTDATA、ホール輸送
層であるα−NPD、電子輸送性発光層であるAl
q3 、陰極であるLi、陰極封止層であるAl、及び、
AuGe電極を夫々形成し、有機電界発光素子を作製し
た。 Comparative Example 3 Under the same conditions as in Comparative Example 1, m-MTDATA as a hole injection layer, α-NPD as a hole transport layer, and Al as an electron transportable light emitting layer were formed on a substrate for an organic electroluminescent element.
q 3 , Li as a cathode, Al as a cathode sealing layer, and
AuGe electrodes were respectively formed to produce organic electroluminescent devices.
【0108】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約520nm、CI
E色度座標上での座標は(0.32,0.55)であ
り、良好な緑色発光を呈した。また、電流密度400m
A/cm2 での輝度は約25000cd/m2 であっ
た。発光スペクトルの形状から、Alq3 からの発光で
あることは明らかであった。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.32, 0.55), indicating good green light emission. In addition, current density 400m
The luminance at A / cm 2 was about 25000 cd / m 2 . From the shape of the emission spectrum, it was clear that the emission from the Alq 3.
【0109】この有機電界発光素子を、気温約20℃、
相対湿度0%以下(露点約−47℃以下)の乾燥窒素雰
囲気中で30日間保管した後、未発光面を、大気中で、
5mA/cm2 の電流密度で定電流駆動したところ(初
期輝度約230cd/m2 )、駆動直後からダークスポ
ットが観察され、また、駆動後1時間では、発光面全体
に、肉眼で観察できるダークスポットが存在した。更
に、駆動後1時間では、全発光面積に占めるダークスポ
ットの割合は約10%になった。The organic electroluminescent device was heated at a temperature of about 20 ° C.
After storing for 30 days in a dry nitrogen atmosphere having a relative humidity of 0% or less (dew point of about -47 ° C. or less), the non-light-emitting surface is
When a constant current drive was performed at a current density of 5 mA / cm 2 (initial luminance: about 230 cd / m 2 ), a dark spot was observed immediately after the drive, and one hour after the drive, dark spots were observed on the entire light emitting surface with the naked eye. There were spots. Further, one hour after driving, the ratio of dark spots to the total light emitting area was about 10%.
【0110】比較例4 実施例2と同様の条件で、有機電界発光素子用基板上
に、ホール注入層であるm−MTDATA、ホール輸送
層であるα−NPD、電子輸送性発光層であるAl
q3 、及び、陰極であるLiを夫々形成した後、陰極封
止層としてAlTi(Ti:約2.0wt%、Tiの仕事
関数φ≒3.57〔eV〕)を約200nmの膜厚に蒸
着した。更に、封止を完全に行うために、AuGe電極
を約200nmの膜厚に蒸着し、有機電界発光素子を作
製した。 Comparative Example 4 Under the same conditions as in Example 2, m-MTDATA serving as a hole injection layer, α-NPD serving as a hole transport layer, and Al serving as an electron transporting light emitting layer were formed on a substrate for an organic electroluminescent element.
After forming q 3 and Li serving as a cathode, AlTi (Ti: about 2.0 wt%, work function φ ≒ 3.57 [eV] of Ti) is formed to a thickness of about 200 nm as a cathode sealing layer. Evaporated. Further, in order to complete the sealing, an AuGe electrode was deposited to a thickness of about 200 nm to produce an organic electroluminescent device.
【0111】こうして作製した有機電界発光素子の特性
を測定したところ、最大発光波長は約520nm、CI
E色度座標上での座標は(0.32,0.55)であ
り、良好な緑色発光を呈した。また、電流密度400m
A/cm2 での輝度は約23000cd/m2 であっ
た。発光スペクトルの形状から、Alq3 からの発光で
あることは明らかであった。When the characteristics of the organic electroluminescent device thus manufactured were measured, the maximum emission wavelength was about 520 nm, and the CI
The coordinates on the E chromaticity coordinates were (0.32, 0.55), indicating good green light emission. In addition, current density 400m
The luminance at A / cm 2 was about 23000 cd / m 2 . From the shape of the emission spectrum, it was clear that the emission from the Alq 3.
【0112】この有機電界発光素子を、気温約20℃、
相対湿度約30%の大気中で、5mA/cm2 の電流密
度で定電流駆動したところ(初期輝度約250cd/m
2 )、駆動後10分程度で、発光面には、肉眼で観察で
きる細かなダークスポットが発生し、駆動後1時間で
は、全発光面積に占めるダークスポットの割合は約20
%になった。The organic electroluminescent device was heated at a temperature of about 20 ° C.
When driven at a constant current of 5 mA / cm 2 in an atmosphere having a relative humidity of about 30% (initial luminance of about 250 cd / m 2).
2 ) About 10 minutes after driving, fine dark spots that can be observed with the naked eye are generated on the light emitting surface. In 1 hour after driving, the ratio of dark spots in the total light emitting area is about 20%.
%Became.
【0113】この結果から、陰極封止層のAlに含有さ
せる材料は、Alの仕事関数φ≒4.19〔eV〕より
も大きな仕事関数を有する材料でなければならないこと
が分かる。From these results, it is understood that the material contained in Al of the cathode sealing layer must be a material having a work function larger than the work function of Al ≒ 4.19 [eV].
【0114】[0114]
【発明の効果】本発明では、発光領域を含む有機積層構
造が陽極と陰極との間に設けられた有機電界発光素子に
おいて、少なくとも陰極を、アルミニウム及びアルミニ
ウムの仕事関数よりも大きい仕事関数を有する少なくと
も1種の材料を含有した陰極封止層により外部から保護
している。According to the present invention, in an organic electroluminescent device in which an organic laminated structure including a light emitting region is provided between an anode and a cathode, at least the cathode has a work function larger than that of aluminum and aluminum. It is protected from the outside by a cathode sealing layer containing at least one material.
【0115】従って、駆動時及び長期保存後の駆動時、
有機電界発光素子におけるダークスポットの発生及び成
長を大幅に抑制することができ、有機電界発光素子の特
性の安定化及び長寿命化を達成することができる。Therefore, at the time of driving and after long-term storage,
The generation and growth of dark spots in the organic electroluminescent device can be greatly suppressed, and the characteristics of the organic electroluminescent device can be stabilized and the life can be extended.
【図1】本発明の第1の実施の形態による有機電界発光
素子の構成を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view illustrating a configuration of an organic electroluminescent device according to a first embodiment of the present invention.
【図2】本発明の第2の実施の形態による有機電界発光
素子の構成を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view illustrating a configuration of an organic electroluminescent device according to a second embodiment of the present invention.
【図3】本発明の第3の実施の形態による有機電界発光
素子の構成を示す模式的な断面図である。FIG. 3 is a schematic sectional view showing a configuration of an organic electroluminescent device according to a third embodiment of the present invention.
【図4】本発明の第4の実施の形態による有機電界発光
素子の構成を示す模式的な断面図である。FIG. 4 is a schematic sectional view illustrating a configuration of an organic electroluminescent device according to a fourth embodiment of the present invention.
【図5】従来の有機電界発光素子の構成を示す模式的な
断面図である。FIG. 5 is a schematic cross-sectional view illustrating a configuration of a conventional organic electroluminescent device.
【図6】従来の別の有機電界発光素子の構成を示す模式
的な断面図である。FIG. 6 is a schematic cross-sectional view illustrating a configuration of another conventional organic electroluminescent element.
【図7】有機電界発光素子を用いた平面ディスプレイの
構成を示す概略図である。FIG. 7 is a schematic diagram showing a configuration of a flat panel display using an organic electroluminescent device.
1…陰極、2…電子輸送層、3…発光層、4…ホール輸
送層、5…ITO透明電極、6…透明ガラス基板、9…
陰極封止層、10、20、30、40、50、60…有
機電界発光素子、11…電気絶縁体、12…ホール注入
層、13…エキシトン生成促進層、A…有機積層構造DESCRIPTION OF SYMBOLS 1 ... Cathode, 2 ... Electron transport layer, 3 ... Light emitting layer, 4 ... Hole transport layer, 5 ... ITO transparent electrode, 6 ... Transparent glass substrate, 9 ...
Cathode sealing layer, 10, 20, 30, 40, 50, 60: organic electroluminescent element, 11: electric insulator, 12: hole injection layer, 13: exciton generation promoting layer, A: organic laminated structure
Claims (18)
極との間に設けられた有機電界発光素子において、 少なくとも前記陰極が、アルミニウムと、アルミニウム
の仕事関数よりも大きい仕事関数を有する少なくとも1
種の材料とを含有した陰極封止層により外部から保護さ
れていること、を特徴とする、有機電界発光素子。1. An organic electroluminescent device in which an organic laminated structure including a light emitting region is provided between an anode and a cathode, wherein at least the cathode has aluminum and at least one having a work function larger than the work function of aluminum.
An organic electroluminescent device, which is protected from the outside by a cathode sealing layer containing a kind of material.
電極である、請求項1に記載の有機電界発光素子。2. The organic electroluminescent device according to claim 1, wherein the cathode sealing layer is an extraction electrode of the cathode.
の仕事関数よりも大きい仕事関数を有する前記材料の含
有量が、1種類につき、0.05重量%以上、5重量%
未満である、請求項1に記載の有機電界発光素子。3. The content of the material having a work function greater than the work function of aluminum in the cathode sealing layer is 0.05% by weight or more and 5% by weight per type.
The organic electroluminescent device according to claim 1, which is less than.
の仕事関数よりも大きい仕事関数を有する前記材料全体
の含有量が、0.05重量%以上、5重量%未満であ
る、請求項3に記載の有機電界発光素子。4. The cathode sealing layer according to claim 3, wherein the content of the whole material having a work function higher than the work function of aluminum is 0.05% by weight or more and less than 5% by weight. Organic electroluminescent device.
仕事関数よりも0.02eV以上大きい、請求項1に記
載の有機電界発光素子。5. The organic electroluminescent device according to claim 1, wherein the work function of the material is larger than that of aluminum by 0.02 eV or more.
事関数を有する前記材料が、シリコン及び銅からなる群
より選ばれた材料である、請求項5に記載の有機電界発
光素子。6. The organic electroluminescent device according to claim 5, wherein the material having a work function higher than that of aluminum is a material selected from the group consisting of silicon and copper.
事関数を有する前記材料が、クロム、ニッケル、ガリウ
ム、モリブデン、白金、金、銀、炭素、鉄、アンチモ
ン、錫、タングステン、亜鉛、ルテニウム、カドミウ
ム、タンタル、コバルト、ヒ素、ニオブ、パラジウム、
及び、ビスマスからなる群より選ばれた材料である、請
求項5に記載の有機電界発光素子。7. The material having a work function greater than that of aluminum is chromium, nickel, gallium, molybdenum, platinum, gold, silver, carbon, iron, antimony, tin, tungsten, zinc, ruthenium, cadmium, Tantalum, cobalt, arsenic, niobium, palladium,
The organic electroluminescent device according to claim 5, wherein the organic electroluminescent device is a material selected from the group consisting of bismuth.
グネシウム、ストロンチウム、カルシウム、カリウム、
ナトリウム、及び、バリウムからなる群より選ばれた少
なくとも1種を含有している、請求項1に記載の有機電
界発光素子。8. The method according to claim 1, wherein the cathode is lithium, indium, magnesium, strontium, calcium, potassium,
The organic electroluminescent device according to claim 1, wherein the organic electroluminescent device contains at least one selected from the group consisting of sodium and barium.
る、請求項1に記載の有機電界発光素子。9. The organic electroluminescent device according to claim 1, wherein the anode is formed of a transparent electrode.
インジウムを主成分とする膜、、酸化アンチモンを含有
する酸化スズを主成分とする膜、及び、酸化アルミニウ
ムを含有する酸化亜鉛を主成分とする膜からなる群より
選ばれた少なくとも1種で構成されている、請求項9に
記載の有機電界発光素子。10. The anode is mainly composed of a film mainly composed of indium oxide containing tin oxide, a film mainly composed of tin oxide containing antimony oxide, and a zinc oxide mainly containing aluminum oxide. The organic electroluminescent device according to claim 9, wherein the organic electroluminescent device is formed of at least one member selected from the group consisting of films described below.
項1に記載の有機電界発光素子。11. The organic electroluminescent device according to claim 1, wherein the anode is made of gold.
積層構造及び前記陰極が順に積層され、この積層構造の
上に、前記陽極とは電気的に絶縁された状態で、前記陰
極封止層が設けられている、請求項9に記載の有機電界
発光素子。12. The above-mentioned anode, the above-mentioned organic laminated structure and the above-mentioned cathode are sequentially laminated on a transparent substrate, and the above-mentioned cathode sealing is formed on this laminated structure while being electrically insulated from the above-mentioned anode. The organic electroluminescent device according to claim 9, wherein a layer is provided.
ール輸送層、前記陰極側に電子輸送層を夫々有する、請
求項1に記載の有機電界発光素子。13. The organic electroluminescent device according to claim 1, wherein the organic laminated structure has a hole transport layer on the anode side and an electron transport layer on the cathode side.
ホール輸送層との間にホール注入層を有する、請求項1
3に記載の有機電界発光素子。14. The organic multilayer structure according to claim 1, further comprising a hole injection layer between the anode and the hole transport layer.
4. The organic electroluminescent device according to 3.
層と前記電子輸送層との間に発光層を有する、請求項1
3に記載の有機電界発光素子。15. The organic laminated structure according to claim 1, further comprising a light emitting layer between the hole transport layer and the electron transport layer.
4. The organic electroluminescent device according to 3.
求項13に記載の有機電界発光素子。16. The organic electroluminescent device according to claim 13, wherein the hole transport layer is a light emitting layer.
層と前記電子輸送層との間にエキシトン生成促進層を有
する、請求項16に記載の有機電界発光素子。17. The organic electroluminescent device according to claim 16, wherein the organic multilayer structure has an exciton generation promoting layer between the hole transport layer and the electron transport layer.
項13に記載の有機電界発光素子。18. The organic electroluminescent device according to claim 13, wherein the electron transport layer is a light emitting layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14509397A JP3774897B2 (en) | 1997-06-03 | 1997-06-03 | Organic electroluminescence device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14509397A JP3774897B2 (en) | 1997-06-03 | 1997-06-03 | Organic electroluminescence device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10335060A true JPH10335060A (en) | 1998-12-18 |
JP3774897B2 JP3774897B2 (en) | 2006-05-17 |
Family
ID=15377222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14509397A Expired - Lifetime JP3774897B2 (en) | 1997-06-03 | 1997-06-03 | Organic electroluminescence device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3774897B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000060904A1 (en) * | 1999-04-05 | 2000-10-12 | Chisso Corporation | Organic el device |
EP1324405A2 (en) | 2001-12-26 | 2003-07-02 | Samsung SDI Co. Ltd. | Organic electroluminescent display device |
JP2004127607A (en) * | 2002-09-30 | 2004-04-22 | Seiko Epson Corp | Electrooptical device, manufacturing method of same, and electronic apparatus |
JP2005251768A (en) * | 2005-06-01 | 2005-09-15 | Seiko Epson Corp | Electro-optical device and electronic equipment |
KR100552955B1 (en) * | 2000-10-17 | 2006-02-15 | 삼성에스디아이 주식회사 | Organic electroluminescence device and method for manufacturing same |
JP2006511916A (en) * | 2002-12-19 | 2006-04-06 | スリーエム イノベイティブ プロパティズ カンパニー | Organic electroluminescence device and manufacturing method thereof |
US7190115B2 (en) | 2002-12-19 | 2007-03-13 | Semiconductor Energy Laboratory Co., Ltd. | Display device having sealing film |
US7446336B2 (en) | 2003-08-29 | 2008-11-04 | Semiconductor Energy Laboratory Co., Ltd. | Electronics device, semiconductor device, and method for manufacturing the same |
WO2008152869A1 (en) * | 2007-06-14 | 2008-12-18 | Rohm Co., Ltd. | Organic electroluminescence device and its manufacturing method |
US7486368B2 (en) | 2003-06-27 | 2009-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of manufacturing thereof |
JP2009187962A (en) * | 2009-05-26 | 2009-08-20 | Seiko Epson Corp | Electro-optical device, and electronic apparatus |
US7619258B2 (en) | 2004-03-16 | 2009-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
JP2010045337A (en) * | 2008-07-15 | 2010-02-25 | Tokai Rubber Ind Ltd | Light-emitting body |
US7928654B2 (en) | 2003-08-29 | 2011-04-19 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
JP2011237805A (en) * | 2000-01-17 | 2011-11-24 | Semiconductor Energy Lab Co Ltd | Electronic apparatus |
WO2013094375A1 (en) * | 2011-12-21 | 2013-06-27 | 昭和電工株式会社 | Method for manufacturing organic light emitting element |
US8946733B2 (en) | 2011-03-18 | 2015-02-03 | Samsung Display Co., Ltd. | Organic light-emitting display apparatus having a light-scattering face and method of manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5857765B2 (en) * | 2012-02-01 | 2016-02-10 | コニカミノルタ株式会社 | Organic electroluminescence device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03141588A (en) * | 1989-10-27 | 1991-06-17 | Ricoh Co Ltd | Electroluminescent device |
JPH0419993A (en) * | 1990-05-11 | 1992-01-23 | Nec Corp | Thin organic film luminescent element and manufacture thereof |
JPH04233195A (en) * | 1990-07-26 | 1992-08-21 | Eastman Kodak Co | Electro luminescence device having enhanced cathode |
JPH04363896A (en) * | 1991-06-07 | 1992-12-16 | Nec Corp | Organic film electroluminescence element and its manufacture |
JPH05331459A (en) * | 1992-04-03 | 1993-12-14 | Pioneer Electron Corp | Organic electroluminescent element |
JPH07312290A (en) * | 1994-05-17 | 1995-11-28 | Nec Corp | Organic thin film el element |
JPH083547A (en) * | 1994-03-31 | 1996-01-09 | Toray Ind Inc | Luminous element |
JPH0878163A (en) * | 1994-09-07 | 1996-03-22 | Kemipuro Kasei Kk | Organic electroluminescent element and its manufacture |
JPH0922782A (en) * | 1995-07-10 | 1997-01-21 | Oki Electric Ind Co Ltd | Organic electroluminescent element and its manufacture |
JPH09115669A (en) * | 1995-10-13 | 1997-05-02 | Sumitomo Electric Ind Ltd | Organic electroluminescent element |
JPH10247587A (en) * | 1997-02-28 | 1998-09-14 | Tdk Corp | Organic electroluminescence display and its manufacture |
-
1997
- 1997-06-03 JP JP14509397A patent/JP3774897B2/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03141588A (en) * | 1989-10-27 | 1991-06-17 | Ricoh Co Ltd | Electroluminescent device |
JPH0419993A (en) * | 1990-05-11 | 1992-01-23 | Nec Corp | Thin organic film luminescent element and manufacture thereof |
JPH04233195A (en) * | 1990-07-26 | 1992-08-21 | Eastman Kodak Co | Electro luminescence device having enhanced cathode |
JPH04363896A (en) * | 1991-06-07 | 1992-12-16 | Nec Corp | Organic film electroluminescence element and its manufacture |
JPH05331459A (en) * | 1992-04-03 | 1993-12-14 | Pioneer Electron Corp | Organic electroluminescent element |
JPH083547A (en) * | 1994-03-31 | 1996-01-09 | Toray Ind Inc | Luminous element |
JPH07312290A (en) * | 1994-05-17 | 1995-11-28 | Nec Corp | Organic thin film el element |
JPH0878163A (en) * | 1994-09-07 | 1996-03-22 | Kemipuro Kasei Kk | Organic electroluminescent element and its manufacture |
JPH0922782A (en) * | 1995-07-10 | 1997-01-21 | Oki Electric Ind Co Ltd | Organic electroluminescent element and its manufacture |
JPH09115669A (en) * | 1995-10-13 | 1997-05-02 | Sumitomo Electric Ind Ltd | Organic electroluminescent element |
JPH10247587A (en) * | 1997-02-28 | 1998-09-14 | Tdk Corp | Organic electroluminescence display and its manufacture |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000060904A1 (en) * | 1999-04-05 | 2000-10-12 | Chisso Corporation | Organic el device |
US6635988B1 (en) | 1999-04-05 | 2003-10-21 | Chisso Corporation | Organic el device |
US10522076B2 (en) | 2000-01-17 | 2019-12-31 | Semiconductor Energy Laboratory Co., Ltd. | Display system and electrical appliance |
JP2011237805A (en) * | 2000-01-17 | 2011-11-24 | Semiconductor Energy Lab Co Ltd | Electronic apparatus |
US9087476B2 (en) | 2000-01-17 | 2015-07-21 | Semiconductor Energy Laboratory Co., Ltd. | Display system and electrical appliance |
US9368089B2 (en) | 2000-01-17 | 2016-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Display system and electrical appliance |
US10467961B2 (en) | 2000-01-17 | 2019-11-05 | Semiconductor Energy Laboratory Co., Ltd. | Display system and electrical appliance |
KR100552955B1 (en) * | 2000-10-17 | 2006-02-15 | 삼성에스디아이 주식회사 | Organic electroluminescence device and method for manufacturing same |
US6815887B2 (en) | 2001-12-26 | 2004-11-09 | Samsung Sdi Co., Ltd. | Organic electroluminescent display device |
KR100472502B1 (en) * | 2001-12-26 | 2005-03-08 | 삼성에스디아이 주식회사 | Organic electro luminescence display device |
EP1324405A3 (en) * | 2001-12-26 | 2005-01-26 | Samsung SDI Co. Ltd. | Organic electroluminescent display device |
EP2273576A1 (en) | 2001-12-26 | 2011-01-12 | Samsung Mobile Display Co., Ltd. | Organic electroluminescent display device |
JP2003197368A (en) * | 2001-12-26 | 2003-07-11 | Samsung Sdi Co Ltd | Organic electroluminescent display device |
EP1324405A2 (en) | 2001-12-26 | 2003-07-02 | Samsung SDI Co. Ltd. | Organic electroluminescent display device |
EP2278638A1 (en) | 2001-12-26 | 2011-01-26 | Samsung Mobile Display Co., Ltd. | Organic electroluminescent display device |
JP2004127607A (en) * | 2002-09-30 | 2004-04-22 | Seiko Epson Corp | Electrooptical device, manufacturing method of same, and electronic apparatus |
JP2006511916A (en) * | 2002-12-19 | 2006-04-06 | スリーエム イノベイティブ プロパティズ カンパニー | Organic electroluminescence device and manufacturing method thereof |
US7190115B2 (en) | 2002-12-19 | 2007-03-13 | Semiconductor Energy Laboratory Co., Ltd. | Display device having sealing film |
US8179040B2 (en) | 2002-12-19 | 2012-05-15 | Semiconductor Energy Laboratory Co., Ltd. | Display device and manufacturing method of display device |
JP4855682B2 (en) * | 2002-12-19 | 2012-01-18 | スリーエム イノベイティブ プロパティズ カンパニー | Organic electroluminescence device and manufacturing method thereof |
US8901806B2 (en) | 2003-06-27 | 2014-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of manufacturing thereof |
US9780329B2 (en) | 2003-06-27 | 2017-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Display device including sealing material |
US10270056B2 (en) | 2003-06-27 | 2019-04-23 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of manufacturing thereof |
US9508953B2 (en) | 2003-06-27 | 2016-11-29 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US9257670B2 (en) | 2003-06-27 | 2016-02-09 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US8382545B2 (en) | 2003-06-27 | 2013-02-26 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a display device |
US7486368B2 (en) | 2003-06-27 | 2009-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of manufacturing thereof |
US7465593B2 (en) | 2003-08-29 | 2008-12-16 | Semiconductor Energy Laboratory Co., Ltd. | Electronics device, semiconductor device, and method for manufacturing the same |
US8455873B2 (en) | 2003-08-29 | 2013-06-04 | Semiconductor Energy Laboratory Co., Ltd. | Electronics device, semiconductor device, and method for manufacturing the same |
US10903402B2 (en) | 2003-08-29 | 2021-01-26 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
US8723417B2 (en) | 2003-08-29 | 2014-05-13 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
US7446336B2 (en) | 2003-08-29 | 2008-11-04 | Semiconductor Energy Laboratory Co., Ltd. | Electronics device, semiconductor device, and method for manufacturing the same |
US10367124B2 (en) | 2003-08-29 | 2019-07-30 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
US7928654B2 (en) | 2003-08-29 | 2011-04-19 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
US7960733B2 (en) | 2003-08-29 | 2011-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Electronics device, semiconductor device, and method for manufacturing the same |
US7619258B2 (en) | 2004-03-16 | 2009-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
JP2005251768A (en) * | 2005-06-01 | 2005-09-15 | Seiko Epson Corp | Electro-optical device and electronic equipment |
WO2008152869A1 (en) * | 2007-06-14 | 2008-12-18 | Rohm Co., Ltd. | Organic electroluminescence device and its manufacturing method |
JP2008311059A (en) * | 2007-06-14 | 2008-12-25 | Rohm Co Ltd | Organic electroluminescent element and its manufacturing method |
US8653506B2 (en) | 2007-06-14 | 2014-02-18 | Rohm Co., Ltd. | Organic Electroluminescence device including organic layer arranged between transparent electrode and metal electrode, and manufacturing method thereof |
JP2010045337A (en) * | 2008-07-15 | 2010-02-25 | Tokai Rubber Ind Ltd | Light-emitting body |
JP2009187962A (en) * | 2009-05-26 | 2009-08-20 | Seiko Epson Corp | Electro-optical device, and electronic apparatus |
US8946733B2 (en) | 2011-03-18 | 2015-02-03 | Samsung Display Co., Ltd. | Organic light-emitting display apparatus having a light-scattering face and method of manufacturing the same |
CN103988581A (en) * | 2011-12-21 | 2014-08-13 | 昭和电工株式会社 | Method for manufacturing organic light emitting element |
WO2013094375A1 (en) * | 2011-12-21 | 2013-06-27 | 昭和電工株式会社 | Method for manufacturing organic light emitting element |
Also Published As
Publication number | Publication date |
---|---|
JP3774897B2 (en) | 2006-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6188176B1 (en) | Organic electroluminescent device and preparation method with ITO electrode (111) orientation | |
JP3774897B2 (en) | Organic electroluminescence device | |
US6524728B1 (en) | Organic electroluminescent device | |
US6633122B2 (en) | Electroluminescence device with multiple laminated bodies having common materials and process for producing the same | |
JP2002367784A (en) | Organic el element | |
JP4543446B2 (en) | Organic EL device | |
JPH11297474A (en) | Organic electroluminescence element | |
JP4474721B2 (en) | Organic or inorganic light emitting device | |
JP3669333B2 (en) | Organic electroluminescent device and display device | |
JPH1167444A (en) | Organic el element | |
EP0975029A2 (en) | Organic electroluminescent device | |
JP3672127B2 (en) | Optical element manufacturing method and optical element | |
JP2002334792A (en) | Organic electroluminescent element | |
JP2003068470A (en) | Display element | |
US7687990B2 (en) | OLED device with short reduction | |
JP2000048966A (en) | Organic electroluminescent element | |
JPWO2005062678A1 (en) | Organic electroluminescence element, conductive laminate, and display device | |
JP2001057286A (en) | Organic el element | |
JP2004095491A (en) | Display element | |
JPH11339969A (en) | Organic el element | |
JP5238136B2 (en) | Light emitting device | |
JP3932605B2 (en) | Organic electroluminescence device | |
JP2004022325A (en) | Display element | |
US20090066228A1 (en) | Organic electroluminescence element | |
JP4857498B2 (en) | Display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040921 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060212 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120303 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120303 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |