JPH10303808A - Mobile communication base station device and its radiation directivity control method - Google Patents
Mobile communication base station device and its radiation directivity control methodInfo
- Publication number
- JPH10303808A JPH10303808A JP9126250A JP12625097A JPH10303808A JP H10303808 A JPH10303808 A JP H10303808A JP 9126250 A JP9126250 A JP 9126250A JP 12625097 A JP12625097 A JP 12625097A JP H10303808 A JPH10303808 A JP H10303808A
- Authority
- JP
- Japan
- Prior art keywords
- antenna
- base station
- gain
- radiation directivity
- transmitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、マイクロセル移動
通信用の基地局装置とその放射指向性の制御方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a base station apparatus for microcell mobile communication and a method for controlling its radiation directivity.
【0002】[0002]
【従来の技術】マイクロセル移動通信では、無線基地局
が一般に周辺の建物よりも低い場所(公衆電話BOXや
電柱など)に配置されるため、電波が道路沿いに直進あ
るいは反射しながら伝搬する。図7には無線基地局が周
辺の建物よりも低い場所での通話エリアを表している。
7−1は基地局、7−2は道路、7−3は通話不可能エ
リアを表す。このような場合図8にも示すように基地局
から見て見通し外には伝搬しない。この対策として、基
地局アンテナを周辺の建物よりも高い、屋上などの場所
に設置する方法がある。図8は基地局をビルの屋上に設
置した場合と電柱に設置した場合の通話エリアの比較を
示したものである。8−1は電柱設置基地局、8−2は
屋上設置基地局、8−3は電柱基地局による通話エリ
ア、8−4は屋上設置基地局による通話エリアを表す。
図8のように基地局を屋上に設置することで、周辺の建
物による減衰を低減することができ、建物に回り込んで
伝搬するので、見通し外のエリアが少なくなり低い場所
に設置された基地局では通話不可能であったエリアに対
しても通話可能になる。2. Description of the Related Art In a microcell mobile communication system, a radio base station is generally placed at a lower place (a public telephone box, a telephone pole, or the like) than surrounding buildings, so that radio waves propagate along a road while traveling straight or reflected. FIG. 7 shows a communication area where the wireless base station is lower than the surrounding buildings.
7-1 indicates a base station, 7-2 indicates a road, and 7-3 indicates a non-communicable area. In such a case, as shown in FIG. 8, the signal does not propagate out of line of sight from the base station. As a countermeasure, there is a method of installing the base station antenna at a location higher than the surrounding buildings, such as a rooftop. FIG. 8 shows a comparison of the call area when the base station is installed on the roof of a building and when it is installed on a telephone pole. 8-1 denotes a telephone pole installed base station, 8-2 denotes a rooftop installed base station, 8-3 denotes a communication area by a telephone pole base station, and 8-4 denotes a communication area by a rooftop installed base station.
By installing the base station on the rooftop as shown in FIG. 8, it is possible to reduce the attenuation due to the surrounding buildings, and to propagate around the building. Calls can be made to areas where calls cannot be made at the station.
【0003】しかし、基地局アンテナを屋上などの高い
場所に配置した場合、隣接する基地局からの干渉波の伝
搬損失が小さくなる。このため通話しているときに端末
から受信する電波の他に隣接基地局からの不要な電波を
受けるといった現象が生じ、基地局間の干渉が問題とな
る。However, when a base station antenna is arranged at a high place such as a rooftop, the propagation loss of an interference wave from an adjacent base station becomes small. For this reason, a phenomenon occurs in which an unnecessary radio wave from an adjacent base station is received in addition to a radio wave received from a terminal during a call, and interference between base stations becomes a problem.
【0004】干渉波を低減する方法として図9に示すよ
うな指向性アンテナを用いることが考えられる。図9に
示すように指向性アンテナの放射指向性の利得が低下す
る方向を干渉波の方向に向けることにより干渉波の影響
を低減することができる。しかしながら基地局から見て
端末が隣接基地局の方向と近くなる場合には、到来する
干渉波の方向に対する利得が低くなることにより、端末
に対しても同様に利得が低くなる方向に向けることにな
るので、通信品質が大きく劣化し、場合によっては通信
ができなくなる。したがって、端末(移動局)は基地局
から見てどの方向に存在するのかが未知であるため、基
地局から端末に対するアンテナの指向性は一様であるこ
とが望ましい。As a method of reducing the interference wave, it is conceivable to use a directional antenna as shown in FIG. As shown in FIG. 9, the influence of the interference wave can be reduced by directing the direction in which the radiation directivity gain of the directional antenna decreases to the direction of the interference wave. However, when the terminal is close to the direction of the adjacent base station from the viewpoint of the base station, the gain in the direction of the arriving interference wave decreases, so that the terminal is similarly directed to the direction in which the gain decreases. Therefore, the communication quality is greatly deteriorated, and in some cases, communication cannot be performed. Therefore, it is not known in which direction the terminal (mobile station) is located when viewed from the base station, and it is desirable that the directivity of the antenna from the base station to the terminal is uniform.
【0005】上記の問題を解決する方法として、図10
に示すようなセクタアンテナを用いることが考えられ
る。図10のセクタアンテナの例はセクタ数を3とした
場合で各セクタのビーム幅は120°である。As a method for solving the above problem, FIG.
It is conceivable to use a sector antenna as shown in FIG. In the example of the sector antenna of FIG. 10, the number of sectors is 3, and the beam width of each sector is 120 °.
【0006】図11はセクタアンテナの干渉波の低減効
果を説明するための図である。各セクタ毎に異なった周
波数のチャネルを持っているとすると、この場合のセク
タ数が3であるのでチャネル数は3となる。図11に示
すようにセクタアンテナでは各セクタ内に到来する干渉
波とは異なったチャネルを用い、干渉波と同じチャネル
は干渉波が到来しない別のセクタで用いることにより干
渉波の影響を低減することができる。またいずれかのセ
クタのチャネルを用いることでどの方向でも端末と通信
を行うことができる。このようにセクタアンテナは干渉
波が到来する方向のセクタ以外のセクタを用いることで
干渉波を低減でき、かつ全体では等価的に全方向のゾー
ン(オムニゾーン)をカバーしている。FIG. 11 is a diagram for explaining the effect of reducing the interference wave of the sector antenna. If each sector has a channel of a different frequency, the number of channels in this case is three because the number of sectors in this case is three. As shown in FIG. 11, the sector antenna uses a different channel from the interference wave arriving in each sector, and the same channel as the interference wave is used in another sector where the interference wave does not arrive, thereby reducing the influence of the interference wave. be able to. Further, by using a channel of any sector, communication with a terminal can be performed in any direction. As described above, the sector antenna can reduce the interference wave by using a sector other than the sector in the direction in which the interference wave arrives, and as a whole, equally covers the omni-directional zone.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、セクタ
アンテナにおいても干渉波の数がセクタ数よりも多くな
ると干渉の影響を低減することが困難になる。たとえば
図12に示すように図11での干渉波に加えて新たに隣
接基地局4のチャネルf3 からの干渉波が到来すると、
セクタ2ではf2 を用いなければならず、さらにセクタ
1でチャネル1を用いるとセクタ3では用いることので
きるチャネルがなくなってしまうため、結局干渉の影響
を低減することができず、使用できるセクタの数が減少
してしまうといった問題が生じる。However, even in a sector antenna, if the number of interference waves exceeds the number of sectors, it becomes difficult to reduce the influence of interference. For example, the interference wave from the freshly channel f 3 of the adjacent base stations 4 in addition to the interference waves in Fig. 11 as shown in FIG. 12 comes,
It must be used sectors 2, f 2, since there would be no channels that can be used in the sector 3 further use of channel 1 in sector 1 can not reduce the effect of eventually interfering sector that can be used The problem arises that the number of data is reduced.
【0008】本発明では隣接基地局からの干渉の影響を
低減し、かつ通信を行う端末に関しては一様な指向性を
有するアンテナ構成を実現することを目的とする。An object of the present invention is to reduce the influence of interference from an adjacent base station and realize an antenna configuration having uniform directivity for a terminal that performs communication.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
の本発明の特徴は、干渉を与える信号波が複数存在する
ような環境下で用いられ、N個(N≧2,N:整数)の
送受信装置より構成される移動通信用の基地局の制御方
法において、第1の送受信装置に接続されているアンテ
ナの放射指向性の主ビーム方向に対して利得が低くなる
方向を第1の干渉波の方向に向け、2番目の送受信装置
に接続されているアンテナの主ビーム方向を該1番目の
送受信装置に接続されているアンテナの利得の低くなる
方向に向けるとともに、該2番目の送受信装置のアンテ
ナの利得の低い方向を第2の干渉波の方向に向け、K番
目以降の(N≧K≧3,K:整数)の送受信装置に接続
されているアンテナの主ビーム方向を1番目からK−1
番目の送受信装置に接続されているそれぞれのアンテナ
の放射指向性を重ねて高い部分を抽出した合成指向性の
利得が低下する方向に向けるとともに、該K番目のアン
テナの利得の低い方向を第Kの干渉波の方向に向けるこ
とを順次行う放射指向性制御方法にある。The feature of the present invention to achieve the above object is that the present invention is used in an environment where a plurality of signal waves causing interference exist, and N (N ≧ 2, N: integer) In the method for controlling a base station for mobile communication configured by the transmitting / receiving apparatus, the direction in which the gain is lower than the main beam direction of the radiation directivity of the antenna connected to the first transmitting / receiving apparatus is determined by the first interference. The main beam direction of the antenna connected to the second transmitting / receiving device is directed to the direction of the wave, and the direction of the gain of the antenna connected to the first transmitting / receiving device is reduced. Of the antenna connected to the K-th and subsequent (N ≧ K ≧ 3, K: integer) transmission / reception apparatuses, from the first antenna. K-1
The radiation directivity of each antenna connected to the Nth transmission / reception device is superimposed, and a high portion is extracted to direct the gain of the combined directivity to the direction in which the gain decreases. A radiation directivity control method for sequentially directing in the direction of the interference wave.
【0010】[0010]
【発明の実施の形態】図1に本発明の動作フローチャー
トを示す。図2に図1の制御方法を用いた本発明の構成
の一例を示す。2−1はアンテナ1を、2−2はアンテ
ナ2を、2−3はアンテナ3を、2−4は第1送受信装
置を、2−5は第2送受信装置を、2−6は第3送受信
装置を表す。図2のアンテナはそれぞれ指向性を有し、
それぞれのアンテナと送受信装置で1つの基地局を構成
する。図3に図2の構成における各アンテナの放射指向
性を示す。図3において、隣接基地局1からの干渉波は
アンテナ1の放射指向性の利得の低い方向から到来する
ため、この方向に対する干渉波の影響を低減することが
できる。しかし、先にも述べたように主ビームに対して
利得が低くなる方向に端末が位置する場合は、通信品質
が劣化してしまう。一方、アンテナ2の放射指向性は隣
接基地局1の方向において主ビームを形成しているた
め、端末が隣接基地局1の方向に存在し、アンテナ1で
通信をできない場合でもアンテナ2を用いて通信を行う
ことが可能になる。さらにアンテナ3でアンテナ2の利
得が低くなる部分を補うような主ビームを持つように放
射指向性を形成すれば、干渉波の方向にはいずれかの各
アンテナの放射指向性の利得の低い方向を、端末に対し
ては、いずれかのアンテナが放射指向性の主ビームを向
けることにより等価的に一様なエリアを形成しているこ
とになり、高い場所に設置した基地局アンテナにおける
通話エリア拡大を最大限に行うことができるようにな
る。FIG. 1 is a flowchart showing the operation of the present invention. FIG. 2 shows an example of the configuration of the present invention using the control method of FIG. 2-1 is the antenna 1, 2-2 is the antenna 2, 2-3 is the antenna 3, 2-4 is the first transceiver, 2-5 is the second transceiver, and 2-6 is the third transceiver. Represents a transmitting / receiving device. The antennas in FIG. 2 each have directivity,
One base station is constituted by each antenna and the transmitting / receiving device. FIG. 3 shows the radiation directivity of each antenna in the configuration of FIG. In FIG. 3, since the interference wave from the adjacent base station 1 arrives from the direction in which the gain of the radiation directivity of the antenna 1 is low, the influence of the interference wave in this direction can be reduced. However, as described above, when the terminal is located in a direction in which the gain becomes lower with respect to the main beam, the communication quality deteriorates. On the other hand, since the radiation directivity of the antenna 2 forms a main beam in the direction of the adjacent base station 1, even when a terminal exists in the direction of the adjacent base station 1 and communication cannot be performed with the antenna 1, the antenna 2 can be used. Communication becomes possible. Further, if the radiation directivity is formed so that the antenna 3 has a main beam that compensates for the portion where the gain of the antenna 2 is low, the direction of the interference wave is such that the radiation directivity of each antenna is low. For the terminal, one of the antennas directs the main beam of radiation directivity to form an equivalently uniform area, and the communication area of the base station antenna installed at a high place The expansion can be maximized.
【0011】[実施例1]図4にアレーアンテナを用い
た場合の本発明の構成の一例を示す。4−1はアンテナ
を、4−2は基地局分岐スイッチを、4−3は第1送受
信装置を、4−4は第2送受信装置を、4−5は振幅・
位相可変回路を、4−6は振幅・位相制御回路を示して
いる。図5に本発明の効果を示すための図4の動作例を
示す。5−1は第1送受信装置の放射指向性、5−2は
第2送受信装置の放射指向性、5−3は5−1と5−2
を重ねた放射指向性を、5−4は隣接の基地局アンテナ
を示している。[First Embodiment] FIG. 4 shows an example of the configuration of the present invention when an array antenna is used. 4-1 is an antenna, 4-2 is a base station branch switch, 4-3 is a first transmitting / receiving device, 4-4 is a second transmitting / receiving device, and 4-5 is amplitude / amplitude.
Reference numeral 4-6 denotes a phase variable circuit, and reference numeral 4-6 denotes an amplitude / phase control circuit. FIG. 5 shows an operation example of FIG. 4 for showing the effect of the present invention. 5-1 is the radiation directivity of the first transceiver, 5-2 is the radiation directivity of the second transceiver, 5-3 is 5-1 and 5-2.
And 5-4 indicate adjacent base station antennas.
【0012】隣接基地局からの干渉の影響を低減するた
めに、到来する干渉波の方向に5−1のような放射指向
性のヌル点を形成するように振幅・位相制御回路で第1
送受信装置に接続されている振幅・位相可変回路の振幅
と位相を制御する。第1送受信装置ではあらかじめ与え
られた振幅・位相可変回路の振幅及び位相値に対して、
ヌル方向を回転させる振幅及び位相値を計算することに
より振幅・及び位相を制御し、干渉波の方向に放射指向
性のヌル点をもつ放射指向性を作ることができる。この
作用により干渉波の影響を低減できるが、基地局から見
た端末の方向が隣接基地局と同じ方向に存在する場合、
通信を行うことができない。そこで端末から基地局を見
た場合に一様な放射指向性を形成しているように見える
ように、第2送受信装置に接続されている振幅・位相制
御回路で以下の制御を行う。まず第1送受信装置に接続
された振幅・位相制御回路から形成した放射指向性のヌ
ル点を探索する。放射指向性のヌル点を探索する方法と
しては、アレーアンテナのアレーファクタを求め、その
最小値を求めることでヌル点を探索できる。そのヌル点
方向に対して第2送受信装置に接続されている振幅・位
相制御回路を制御し、振幅・位相可変器の振幅・位相を
変化させ、放射指向性の主ビーム方向を向け、電力最小
化を行うように、それ以外の方向からの干渉波を低減さ
せるように振幅・位相制御回路を制御し、振幅・位相可
変器の振幅・位相を変化させる。ここでの振幅・位相制
御回路での制御方法としては、ある方向に対して一定の
利得を保つように拘束を付け、その他の方向に対しては
電力最小化を行うようなアルゴリズム(方向拘束付出力
電力最小化法K.Takao,et.al.,IEEE
Trans.vol.AP−24,no.5,pp66
2−669)を動作させることにより実現できる。この
ようにして、これら2つのパターンを独立に送信するこ
とにより、第1送受信装置が送信する放射指向性のヌル
点の方向には、第2送受信装置ではそのヌル点の方向に
主ビームを持つ放射指向性を形成するので、基地局どう
しでお互いの放射指向性のヌル点を補間するように動作
する。第1の送受信装置のヌル方向に端末が存在する場
合は第2の送受信装置で端末と通信し、第2の送受信装
置のヌル方向に端末が存在する場合は、第1の送受信装
置で端末と通信する。このような構成をとることによ
り、各々の放射指向性を結果的に補間することができる
ため、端末から見た基地局の指向性は等価的に5−3の
ようになり隣接基地局からの干渉波の方向と端末の方向
が同じ場合においても同様に通信を行うことができる。
また、図2と図5を比べてもわかるように等価的なオム
ニゾーンを構成するためには、図5ではヌル点の付近の
方向のみを補間できれば良く、補間する領域が図2の場
合に比べて狭くすることが可能となるためより少ない送
受信装置で実現することができる。In order to reduce the influence of interference from an adjacent base station, the amplitude / phase control circuit first forms a null point such as 5-1 in the direction of the arriving interference wave so as to have a radiation directivity.
It controls the amplitude and phase of an amplitude / phase variable circuit connected to the transmitting / receiving device. In the first transmitting / receiving device, for the amplitude and phase value of the amplitude / phase variable circuit given in advance,
By calculating the amplitude and phase values for rotating the null direction, the amplitude and phase can be controlled, and radiation directivity having a radiation directivity null point in the direction of the interference wave can be created. Although the effect of the interference wave can be reduced by this effect, when the direction of the terminal viewed from the base station is in the same direction as the adjacent base station,
Communication cannot be performed. Therefore, the following control is performed by the amplitude / phase control circuit connected to the second transmission / reception device so that the terminal looks at the base station as if it forms uniform radiation directivity. First, a null point of radiation directivity formed by the amplitude / phase control circuit connected to the first transmitting / receiving device is searched. As a method for searching for a radiation directivity null point, a null point can be searched for by obtaining an array factor of an array antenna and obtaining a minimum value thereof. The amplitude / phase control circuit connected to the second transmission / reception device is controlled with respect to the null point direction, the amplitude / phase of the amplitude / phase variable device is changed, the main beam direction of the radiation directivity is directed, and the power is minimized. The amplitude / phase control circuit is controlled so as to reduce the interference wave from other directions so as to reduce the amplitude / phase of the amplitude / phase variable device. The control method of the amplitude / phase control circuit here is an algorithm (constrained to maintain a constant gain in a certain direction and minimized power in the other direction (direction constrained). Output Power Minimization Method K. Takao, et al., IEEE
Trans. vol. AP-24, no. 5, pp66
2-669) can be realized. In this way, by transmitting these two patterns independently, the second transmitting / receiving apparatus has a main beam in the direction of the null point of the radiation directivity transmitted by the first transmitting / receiving apparatus. Since the radiation directivity is formed, the base stations operate so as to interpolate null points of the radiation directivity between each other. When a terminal exists in the null direction of the first transceiver, the second transceiver communicates with the terminal. When a terminal exists in the null direction of the second transceiver, the terminal communicates with the terminal in the first transceiver. connect. By adopting such a configuration, the respective radiation directivities can be interpolated as a result, so that the directivity of the base station viewed from the terminal is equivalent to 5-3, and the directivity of the base station from the adjacent base station is equivalent to 5-3. Even when the direction of the interference wave and the direction of the terminal are the same, communication can be performed similarly.
Also, as can be seen by comparing FIGS. 2 and 5, in order to construct an equivalent omni zone, in FIG. 5, only the direction near the null point needs to be interpolated. Since it can be made narrower, it can be realized with a smaller number of transmitting / receiving devices.
【0013】[実施例2]図6は図4の本発明の実施例
をディジタル処理で実現したものである。6−1はアン
テナ、6−2は基地局分岐スイッチ、6−3は送受信分
岐スイッチ、6−4は周波数変換器、6−5はA/D変
換器、6−6はD/A変換器、6−7は同相直交変換
器、6−8は振幅・位相可変回路、6−9は加算器、6
−10は分配器、6−11は振幅・位相制御回路、6−
12は第1送受信装置、6−13は第2送受信装置、6
−14は第1復調部、6−15は第1変調部、6−16
は第2復調部、6−17は第2変調部を表す。[Embodiment 2] FIG. 6 shows an embodiment of the present invention shown in FIG. 4 implemented by digital processing. 6-1 is an antenna, 6-2 is a base station branch switch, 6-3 is a transmission / reception branch switch, 6-4 is a frequency converter, 6-5 is an A / D converter, and 6-6 is a D / A converter. , 6-7, an in-phase quadrature converter, 6-8, an amplitude / phase variable circuit, 6-9, an adder, 6-6.
-10 is a distributor, 6-11 is an amplitude / phase control circuit, 6-
12 is a first transceiver, 6-13 is a second transceiver, 6
-14 is the first demodulator, 6-15 is the first modulator, 6-16
Denotes a second demodulation unit, and 6-17 denotes a second modulation unit.
【0014】この例では素子数は4とし、振幅・位相を
制御する基地局の数は2としている。6−1のアンテナ
から6−2の基地局分岐スイッチにより制御を行う方の
基地局に信号を送る。さらに基地局分岐スイッチで選択
された基地局において6−3の送受信スイッチで送信側
と受信側に分岐する。このような構成を用いることによ
り2つの送受信装置のアンテナを共用することができ
る。受信側では6−4の周波数変換器で周波数をベース
バンドに変換し、6−5のA/D変換器を通る。A/D
変換器を通った信号はディジタル信号になっているの
で、振幅と位相の制御は全てディジタルで処理すること
が可能となる。一方、送信側では受信側ではA/D変換
していた部分をD/A変換によりアナログ信号に変換
し、周波数変換器ではキャリア周波数まで変換し送信を
行う。この構成ではアンテナは1つであるが2つの送受
信装置を持ちかつそれぞれが先に示した制御をディジタ
ル処理により行うことができアルゴリズム等も柔軟に変
化させることができる。In this example, the number of elements is four, and the number of base stations for controlling the amplitude and phase is two. A signal is sent from the antenna 6-1 to the base station to be controlled by the base station branch switch 6-2. Further, in the base station selected by the base station branching switch, the signal is branched to the transmitting side and the receiving side by the 6-3 transmitting / receiving switch. By using such a configuration, the antennas of the two transmitting and receiving apparatuses can be shared. On the receiving side, the frequency is converted to baseband by a 6-4 frequency converter and passes through an A / D converter 6-5. A / D
Since the signal passed through the converter is a digital signal, the control of the amplitude and the phase can all be digitally processed. On the other hand, on the transmitting side, the part that has been A / D converted on the receiving side is converted into an analog signal by D / A conversion, and the frequency converter converts it to a carrier frequency and transmits it. In this configuration, there is one antenna, but it has two transmitting / receiving devices, each of which can perform the control described above by digital processing, and can flexibly change the algorithm and the like.
【0015】[0015]
【発明の効果】以上述べたように、本発明を用いると、
隣接基地局からの干渉を低減できると共に、従来のマイ
クロセルの通話エリアを拡大することができる。As described above, when the present invention is used,
The interference from the adjacent base station can be reduced, and the communication area of the conventional microcell can be expanded.
【図1】本発明のフローチャートを示す。FIG. 1 shows a flowchart of the present invention.
【図2】本発明の構成図の例である。FIG. 2 is an example of a configuration diagram of the present invention.
【図3】本発明の構成における放射指向性の一例を示す
図である。FIG. 3 is a diagram illustrating an example of radiation directivity in the configuration of the present invention.
【図4】本発明におけるアレーアンテナを用いた場合の
実施例を表わす図である。FIG. 4 is a diagram illustrating an embodiment when an array antenna according to the present invention is used.
【図5】図4における実施例の別の実施例における放射
指向性の一例である。FIG. 5 is an example of radiation directivity in another embodiment of the embodiment in FIG. 4;
【図6】図4の実施例をディジタル処理を用いた場合の
構成の例である。FIG. 6 is an example of a configuration in a case where digital processing is used in the embodiment of FIG. 4;
【図7】マイクロセル通信において低い場所に基地局ア
ンテナを設置した場合の通話エリアを示す図である。FIG. 7 is a diagram showing a communication area when a base station antenna is installed at a low place in microcell communication.
【図8】高い場所に基地局を設置した場合と、低い場所
に基地局を設置した場合の通話可能なエリアの比較を示
す図である。FIG. 8 is a diagram showing a comparison between a case where a base station is installed at a high place and a talkable area when a base station is installed at a low place.
【図9】従来の指向性アンテナの放射指向性の一例を示
す図である。FIG. 9 is a diagram showing an example of the radiation directivity of a conventional directional antenna.
【図10】従来の技術であるセクタアンテナを表わす図
である。FIG. 10 is a diagram illustrating a sector antenna according to the related art.
【図11】従来の技術であるセクタアンテナの効果を説
明するための図である。FIG. 11 is a diagram for explaining an effect of a sector antenna which is a conventional technique.
【図12】従来のセクタアンテナの問題点を説明するた
めの図である。FIG. 12 is a diagram for explaining a problem of a conventional sector antenna.
2−1 アンテナ1 2−2 アンテナ2 2−3 アンテナ3 2−4 第1送受信装置 2−5 第2送受信装置 2−6 第3送受信装置 3−1 アンテナ1と第1送受信装置で形成される放射
指向性 3−2 アンテナ2と第2送受信装置で形成される放射
指向性 3−3 アンテナ3と第3送受信装置で形成される放射
指向性 3−4 隣接基地局1 3−5 隣接基地局2 3−6 隣接基地局3 3−7 3−1と3−2と3−3を重ね合わせた放射指
向性 4−1 アンテナ 4−2 基地局分岐スイッチ 4−3 第1送受信装置 4−4 第2送受信装置 4−5 振幅・位相可変回路 4−6 振幅・位相制御回路 5−1 アンテナ1と第1送受信装置で形成される放射
指向性 5−2 アンテナ2と第2送受信装置で形成される放射
指向性 5−3 5−1と5−2を重ねた放射指向性 5−4 隣接基地局 6−1 アンテナ 6−2 基地局分岐スイッチ 6−3 送受信分岐スイッチ 6−4 周波数変換器 6−5 A/D変換器 6−6 D/A変換器 6−7 同相直交変換器 6−8 振幅・位相可変回路 6−9 加算器 6−10 分配器 6−11 振幅・位相制御回路 6−12 第1送受信装置 6−13 第2送受信装置 6−14 第1復調部 6−15 第1変調部 6−16 第2復調部 6−17 第2変調部 7−1 基地局 7−2 道路 7−3 通話不可能なエリア 8−1 電柱設置基地局 8−2 屋上設置基地局 8−3 電柱設置基地局による通話エリア 8−4 屋上設置基地局による通話エリア 9−1 指向性アンテナ 9−2 指向性アンテナの放射指向性 9−3 端末 9−4 隣接基地局 10−1 アンテナ 10−2 セクタ1 10−3 セクタ2 10−4 セクタ3 11−1 セクタ1 11−2 セクタ2 11−3 セクタ3 11−4 隣接基地局1 11−5 隣接基地局2 11−6 隣接基地局3 12−1 セクタ1 12−2 セクタ2 12−3 セクタ3 12−4 隣接基地局1 12−5 隣接基地局2 12−6 隣接基地局3 12−7 隣接基地局42-1 Antenna 1 2-2 Antenna 2 2-3 Antenna 3 2-4 First Transceiver 2-5 Second Transceiver 2-6 Third Transceiver 3-1 Formed by Antenna 1 and First Transceiver Radiation directivity 3-2 Radiation directivity formed by antenna 2 and second transceiver 3-3 Radiation directivity formed by antenna 3 and third transceiver 3-4 Adjacent base station 1 3-5 Adjacent base station 2 3-6 Adjacent base station 3 3-7 Radiation directivity in which 3-1 and 3-2 and 3-3 are superimposed 4-1 Antenna 4-2 Base station branch switch 4-3 First transmission / reception device 4-4 Second transmitting / receiving device 4-5 Variable amplitude / phase circuit 4-6 Amplitude / phase control circuit 5-1 Radiation directivity formed by antenna 1 and first transmitting / receiving device 5-2 Formed by antenna 2 and second transmitting / receiving device Radiation directivity 5-3 5-1 and 5-2 overlapped Radiation directivity 5-4 Adjacent base station 6-1 Antenna 6-2 Base station branch switch 6-3 Transmission / reception branch switch 6-4 Frequency converter 6-5 A / D converter 6-6 D / A converter 6 7 In-phase quadrature converter 6-8 Amplitude / phase variable circuit 6-9 Adder 6-10 Distributor 6-11 Amplitude / phase control circuit 6-12 First transceiver 6-13 Second transceiver 6-14 First Demodulation unit 6-15 First modulation unit 6-16 Second demodulation unit 6-17 Second modulation unit 7-1 Base station 7-2 Road 7-3 Non-communicable area 8-1 Telephone pole base station 8-2 Rooftop base station 8-3 Talk area by telephone pole base station 8-4 Talk area by rooftop base station 9-1 Directional antenna 9-2 Radiation directivity of directional antenna 9-3 Terminal 9-4 Adjacent base station 10-1 Antenna 10-2 Sector 1 1 -3 sector 2 10-4 sector 3 11-1 sector 1 11-2 sector 2 11-3 sector 3 11-4 adjacent base station 1 11-5 adjacent base station 2 11-6 adjacent base station 3 12-1 sector 1 12-2 Sector 2 12-3 Sector 3 12-4 Adjacent base station 1 12-5 Adjacent base station 2 12-6 Adjacent base station 3 12-7 Adjacent base station 4
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04Q 7/24 7/26 7/30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H04Q 7/24 7/26 7/30
Claims (5)
な環境下で用いられ、N個(N≧2,N:整数)の送受
信装置より構成される移動通信用の基地局の制御方法に
おいて、 第1の送受信装置に接続されているアンテナの放射指向
性の主ビーム方向に対して利得が低くなる方向を第1の
干渉波の方向に向け、 2番目の送受信装置に接続されているアンテナの主ビー
ム方向を該1番目の送受信装置に接続されているアンテ
ナの利得の低くなる方向に向けるとともに、該2番目の
送受信装置のアンテナの利得の低い方向を第2の干渉波
の方向に向け、 K番目以降の(N≧K≧3,K:整数)の送受信装置に
接続されているアンテナの主ビーム方向を1番目からK
−1番目の送受信装置に接続されているそれぞれのアン
テナの放射指向性を重ねて高い部分を抽出した合成指向
性の利得が低下する方向に向けるとともに、該K番目の
アンテナの利得の低い方向を第Kの干渉波の方向に向け
ることを順次行うことを特徴とする放射指向性制御方
法。1. A method of controlling a base station for mobile communication, which is used in an environment where a plurality of signal waves causing interference exist and is composed of N (N ≧ 2, N: an integer) transmission / reception devices. An antenna connected to the second transmitting / receiving apparatus, wherein the direction in which the gain becomes lower with respect to the main beam direction of the radiation directivity of the antenna connected to the first transmitting / receiving apparatus is directed to the direction of the first interference wave; In the direction in which the gain of the antenna connected to the first transmission / reception device decreases, and in the direction of the low gain in the antenna of the second transmission / reception device toward the direction of the second interference wave. The main beam directions of the antennas connected to the K-th and subsequent (N ≧ K ≧ 3, K: integer) transmission / reception apparatuses are changed from the first to K-th.
-1. The radiation directivity of each of the antennas connected to the first transmitting / receiving apparatus is superimposed, and a high portion is extracted. A radiation directivity control method characterized by sequentially directing in the direction of a Kth interference wave.
利得がヌルである請求項1記載の放射指向性制御方法。2. The radiation directivity control method according to claim 1, wherein the antenna gain in a direction in which the antenna gain decreases is null.
と該送受信装置毎に接続されるアンテナと、 該アンテナの放射指向性を制御する制御回路とを有する
移動通信用基地局装置において、 該制御回路は、 第1の送受信装置に接続されているアンテナの放射指向
性の主ビーム方向に対して利得が低くなる方向を第1の
干渉波の方向に向け、 2番目の送受信装置に接続されているアンテナの主ビー
ム方向を該1番目の送受信装置に接続されているアンテ
ナの利得の低くなる方向に向けるとともに、該2番目の
送受信装置のアンテナの利得の低い方向を第2の干渉波
の方向に向け、 K番目以降の(N≧K≧3,K:整数)の送受信装置に
接続されているアンテナの主ビーム方向を1番目からK
−1番目の送受信装置に接続されているそれぞれのアン
テナの放射指向性を重ねて高い部分を抽出した合成指向
性の利得が低下する方向に向けるとともに、該K番目の
アンテナの利得の低い方向を第Kの干渉波の方向に向け
ることを順次行うことを特徴とする移動通信用基地局装
置。3. A mobile communication base station comprising N (N ≧ 2, N: an integer) transmission / reception devices, an antenna connected to each of the transmission / reception devices, and a control circuit for controlling the radiation directivity of the antenna. In the apparatus, the control circuit may be configured to direct a direction in which a gain becomes lower with respect to a main beam direction of radiation directivity of an antenna connected to the first transmitting / receiving apparatus to a direction of the first interference wave, The main beam direction of the antenna connected to the device is directed to the direction in which the gain of the antenna connected to the first transmitting / receiving device becomes lower, and the direction in which the gain of the antenna of the second transmitting / receiving device is lower to the second direction. The main beam directions of the antennas connected to the K-th and subsequent (N ≧ K ≧ 3, K: integer) transmission / reception devices are changed from the first to K-th.
-1. The radiation directivities of the respective antennas connected to the first transmitting / receiving apparatus are overlapped to direct the gain of the combined directivity, which is obtained by extracting the high part, to the direction in which the gain decreases, and the direction in which the gain of the K-th antenna decreases is changed. A mobile communication base station apparatus, wherein the mobile communication base station apparatus sequentially directs the K-th interference wave.
数)のアレーを有するアンテナアレーであり、 該アンテナアレーの各アレーの振幅・位相を可変する振
幅・位相可変回路がもうけられ、 前記制御回路は、該振幅・位相可変回路を制御すること
によりアンテナの放射指向性を制御することを特徴とす
る請求項3記載の移動通信用基地局装置。4. Each of the antennas is an antenna array having L (L ≧ 2, L: an integer) arrays, and an amplitude / phase variable circuit for varying the amplitude / phase of each array of the antenna array is provided. The mobile communication base station apparatus according to claim 3, wherein the control circuit controls the radiation directivity of the antenna by controlling the amplitude / phase variable circuit.
M:整数)を有する基地局分岐スイッチが接続し、 該基地局分岐スイッチの分岐数と同じM個の送受信装置
を有し、 各アンテナと各送受信装置は基地局分岐スイッチおよび
前記振幅・位相可変回路を通して接続される構成を有す
ることを特徴とする請求項3記載の移動通信用基地局装
置。5. The number of M branches for each antenna (M ≧ 2,
M: an integer), the base station branch switch having the same number of branches as the base station branch switch is connected, and each antenna and each transceiver are connected to the base station branch switch and the amplitude / phase variable. 4. The mobile communication base station apparatus according to claim 3, wherein the base station apparatus has a configuration connected through a circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9126250A JPH10303808A (en) | 1997-05-01 | 1997-05-01 | Mobile communication base station device and its radiation directivity control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9126250A JPH10303808A (en) | 1997-05-01 | 1997-05-01 | Mobile communication base station device and its radiation directivity control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10303808A true JPH10303808A (en) | 1998-11-13 |
Family
ID=14930530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9126250A Pending JPH10303808A (en) | 1997-05-01 | 1997-05-01 | Mobile communication base station device and its radiation directivity control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10303808A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11308037A (en) * | 1998-04-20 | 1999-11-05 | Mitsubishi Electric Corp | Base station antenna system |
WO2001029988A1 (en) * | 1999-10-22 | 2001-04-26 | Mitsubishi Denki Kabushiki Kaisha | Adaptive array antenna device and base station adaptive array antenna device |
JP2002208889A (en) * | 2000-10-31 | 2002-07-26 | Toshiba Corp | Radio communication system, weight controller, weight vector generating method, control method for radio base station adaptive array and the adaptive array |
US7042860B2 (en) | 2000-10-31 | 2006-05-09 | Kabushiki Kaisha Toshiba | Wireless communication system, weight control apparatus, and weight vector generation method |
JP2007522694A (en) * | 2003-12-30 | 2007-08-09 | インテル・コーポレーション | WLAN antenna system divided into sectors |
JP2007215008A (en) * | 2006-02-10 | 2007-08-23 | Nippon Telegr & Teleph Corp <Ntt> | Wireless communication method |
WO2008126857A1 (en) * | 2007-04-10 | 2008-10-23 | Nec Corporation | Multibeam antenna |
JP2009212968A (en) * | 2008-03-05 | 2009-09-17 | Toshiba Corp | Radio communication equipment, method for controlling radio communication equipment, and control program for radio communication equipment |
JP2010177909A (en) * | 2009-01-28 | 2010-08-12 | Kyocera Corp | Radio communication system, base station and radio communication method |
WO2011043298A1 (en) * | 2009-10-05 | 2011-04-14 | 住友電気工業株式会社 | Base station apparatus and interference suppressing method |
WO2016061023A1 (en) * | 2014-10-14 | 2016-04-21 | Ubiquiti Networks, Inc. | Multi-sector antennas |
US9368870B2 (en) | 2014-03-17 | 2016-06-14 | Ubiquiti Networks, Inc. | Methods of operating an access point using a plurality of directional beams |
US9761954B2 (en) | 2015-10-09 | 2017-09-12 | Ubiquiti Networks, Inc. | Synchronized multiple-radio antenna systems and methods |
US10284268B2 (en) | 2015-02-23 | 2019-05-07 | Ubiquiti Networks, Inc. | Radio apparatuses for long-range communication of radio-frequency information |
-
1997
- 1997-05-01 JP JP9126250A patent/JPH10303808A/en active Pending
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11308037A (en) * | 1998-04-20 | 1999-11-05 | Mitsubishi Electric Corp | Base station antenna system |
WO2001029988A1 (en) * | 1999-10-22 | 2001-04-26 | Mitsubishi Denki Kabushiki Kaisha | Adaptive array antenna device and base station adaptive array antenna device |
US6404387B1 (en) | 1999-10-22 | 2002-06-11 | Mitsubishi Denki Kabushiki Kaisha | Adaptive array antenna device and base station adaptive array antenna device |
JP2002208889A (en) * | 2000-10-31 | 2002-07-26 | Toshiba Corp | Radio communication system, weight controller, weight vector generating method, control method for radio base station adaptive array and the adaptive array |
US7042860B2 (en) | 2000-10-31 | 2006-05-09 | Kabushiki Kaisha Toshiba | Wireless communication system, weight control apparatus, and weight vector generation method |
JP2007522694A (en) * | 2003-12-30 | 2007-08-09 | インテル・コーポレーション | WLAN antenna system divided into sectors |
JP2007215008A (en) * | 2006-02-10 | 2007-08-23 | Nippon Telegr & Teleph Corp <Ntt> | Wireless communication method |
JP5206672B2 (en) * | 2007-04-10 | 2013-06-12 | 日本電気株式会社 | Multi-beam antenna |
CN101542840A (en) * | 2007-04-10 | 2009-09-23 | 日本电气株式会社 | Multibeam antenna |
WO2008126857A1 (en) * | 2007-04-10 | 2008-10-23 | Nec Corporation | Multibeam antenna |
JP2009212968A (en) * | 2008-03-05 | 2009-09-17 | Toshiba Corp | Radio communication equipment, method for controlling radio communication equipment, and control program for radio communication equipment |
JP2010177909A (en) * | 2009-01-28 | 2010-08-12 | Kyocera Corp | Radio communication system, base station and radio communication method |
WO2011043298A1 (en) * | 2009-10-05 | 2011-04-14 | 住友電気工業株式会社 | Base station apparatus and interference suppressing method |
US8687514B2 (en) | 2009-10-05 | 2014-04-01 | Sumitomo Electric Industries, Ltd. | Base station device and interference suppression method |
US9912053B2 (en) | 2014-03-17 | 2018-03-06 | Ubiquiti Networks, Inc. | Array antennas having a plurality of directional beams |
US11296407B2 (en) | 2014-03-17 | 2022-04-05 | Ubiqsiti Inc. | Array antennas having a plurality of directional beams |
US9368870B2 (en) | 2014-03-17 | 2016-06-14 | Ubiquiti Networks, Inc. | Methods of operating an access point using a plurality of directional beams |
US10916844B2 (en) | 2014-03-17 | 2021-02-09 | Ubiquiti Inc. | Array antennas having a plurality of directional beams |
US9843096B2 (en) | 2014-03-17 | 2017-12-12 | Ubiquiti Networks, Inc. | Compact radio frequency lenses |
CN105680181A (en) * | 2014-10-14 | 2016-06-15 | 优倍快网络公司 | Antenna assembly with axis and method for operating same |
US10770787B2 (en) | 2014-10-14 | 2020-09-08 | Ubiquiti Inc. | Multi-sector antennas |
US10164332B2 (en) | 2014-10-14 | 2018-12-25 | Ubiquiti Networks, Inc. | Multi-sector antennas |
CN105680181B (en) * | 2014-10-14 | 2019-04-12 | 优倍快网络公司 | The method of antenna module and operation antenna module with axis |
US11303016B2 (en) | 2014-10-14 | 2022-04-12 | Ubiquiti Inc. | Multi-sector antennas |
WO2016061023A1 (en) * | 2014-10-14 | 2016-04-21 | Ubiquiti Networks, Inc. | Multi-sector antennas |
US10749581B2 (en) | 2015-02-23 | 2020-08-18 | Ubiquiti Inc. | Radio apparatuses for long-range communication of radio-frequency information |
US11115089B2 (en) | 2015-02-23 | 2021-09-07 | Ubiquiti Inc. | Radio apparatuses for long-range communication of radio-frequency information |
US10284268B2 (en) | 2015-02-23 | 2019-05-07 | Ubiquiti Networks, Inc. | Radio apparatuses for long-range communication of radio-frequency information |
US11336342B2 (en) | 2015-02-23 | 2022-05-17 | Ubiquiti Inc. | Radio apparatuses for long-range communication of radio-frequency information |
US10084238B2 (en) | 2015-10-09 | 2018-09-25 | Ubiquiti Networks, Inc. | Synchronized multiple-radio antenna systems and methods |
US10680342B2 (en) | 2015-10-09 | 2020-06-09 | Ubiquiti Inc. | Synchronized multiple-radio antenna systems and methods |
US9761954B2 (en) | 2015-10-09 | 2017-09-12 | Ubiquiti Networks, Inc. | Synchronized multiple-radio antenna systems and methods |
US10381739B2 (en) | 2015-10-09 | 2019-08-13 | Ubiquiti Networks, Inc. | Synchronized multiple-radio antenna systems and methods |
US11303037B2 (en) | 2015-10-09 | 2022-04-12 | Ubiquiti Inc. | Synchronized multiple-radio antenna systems and meihods |
US11973271B2 (en) | 2015-10-09 | 2024-04-30 | Ubiquiti Inc. | Synchronized multiple-radio antenna systems and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0818059B1 (en) | Wide antenna lobe | |
EP1032983B1 (en) | Method and apparatus for receiving radio signals | |
US6308085B1 (en) | Distributed antenna system and method of controlling the same | |
JP3859711B2 (en) | Pilot channel transmission method and cellular radio system | |
CA2433391C (en) | Communication system for mobile users using adaptive antenna | |
WO2000031823A1 (en) | Adaptive array antenna device | |
JPH11505969A (en) | Base station apparatus and method for directing antenna beams | |
JPH10303808A (en) | Mobile communication base station device and its radiation directivity control method | |
JPH11215049A (en) | Directivity-controlled antenna device | |
JPH11505971A (en) | Base station apparatus and method for directing antenna beams | |
KR20010112341A (en) | Wireless telecommunication system, base station thereof and beamforming telecommunications method | |
EP1298825B1 (en) | Apparatus and method using smart antenna in fdd wireless communication system | |
EP1352485A2 (en) | Stratospheric platforms communication system using adaptive antennas | |
EP1169875B1 (en) | Adaptive sectorization | |
WO2020247606A1 (en) | Radio frequency signal boosters serving as outdoor infrastructure in high frequency cellular networks | |
EP1406399A1 (en) | Radio communication device, radio communication method, and radio base station device | |
JP2000252734A (en) | Antenna system for base station for mobile communication | |
JP2000059291A (en) | Processing process for directing one or plural radiation radio wave beams for communication between base station and mobile radio telephone and base station corresponding to the same | |
JP3229857B2 (en) | Antenna directivity control method | |
JP3113637B2 (en) | Antenna directivity control method and device | |
JP2001053661A (en) | Transmission and reception system adjustment method for adaptive array base station, and adaptive array radio device | |
JP2001275150A (en) | Wireless base station | |
JP7518215B2 (en) | Base station and antenna control method | |
JPH10242739A (en) | Base station antenna system for mobile communication | |
RU2354050C2 (en) | Device and method for beams shaping in cdma communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030708 |