JPH10297934A - Colored glass absorbing ultraviolet and infrared rays - Google Patents
Colored glass absorbing ultraviolet and infrared raysInfo
- Publication number
- JPH10297934A JPH10297934A JP11207197A JP11207197A JPH10297934A JP H10297934 A JPH10297934 A JP H10297934A JP 11207197 A JP11207197 A JP 11207197A JP 11207197 A JP11207197 A JP 11207197A JP H10297934 A JPH10297934 A JP H10297934A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- ultraviolet
- temperature
- colored glass
- clear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 103
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000006103 coloring component Substances 0.000 claims abstract description 14
- 230000005484 gravity Effects 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 238000002834 transmittance Methods 0.000 claims description 16
- 230000005855 radiation Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 10
- 239000000395 magnesium oxide Substances 0.000 abstract description 10
- 239000000292 calcium oxide Substances 0.000 abstract description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 abstract description 4
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 3
- 235000017550 sodium carbonate Nutrition 0.000 abstract description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 229910018404 Al2 O3 Inorganic materials 0.000 abstract 1
- 229910017344 Fe2 O3 Inorganic materials 0.000 abstract 1
- 229910004742 Na2 O Inorganic materials 0.000 abstract 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 18
- 229910010413 TiO 2 Inorganic materials 0.000 description 11
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- -1 iron ion Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000010446 mirabilite Substances 0.000 description 3
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000006025 fining agent Substances 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 101100289061 Drosophila melanogaster lili gene Proteins 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 206010040925 Skin striae Diseases 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000005340 laminated glass Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/02—Compositions for glass with special properties for coloured glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/082—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/085—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、可視光線を適度に
透過し、かつ赤外線、紫外線を吸収して、冷暖房負荷の
低減、省エネルギーに寄与し、また有機質物の劣化、退
色を抑え、プライバシー性を確保する等居住性に優れ、
建築用、自動車等の車両用、あるいは航空機、船舶等輸
送機用などの窓ガラスとして有用な、紫外線赤外線吸収
着色ガラスに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the present invention which transmits a suitable amount of visible light, absorbs infrared rays and ultraviolet rays, contributes to reduction of heating / cooling load and energy saving, suppresses deterioration and discoloration of organic substances, and provides privacy. Excellent livability, such as ensuring
The present invention relates to an ultraviolet-ray-absorbing colored glass useful as a window glass for vehicles for construction, automobiles, etc., or for aircraft such as aircraft and ships.
【0002】[0002]
【従来技術とその解決すべき課題】従来クリアーなソー
ダ石灰系ガラス成分組成をベースとし、TiO2および/ま
たはCeO2を付加導入して紫外線を吸収し、またFe2O3 を
付加導入して赤外線を吸収し、更にCoO 、或いは更にMn
O 、Cr2O3 等を適宜加えて色調調整した緑色系ガラス等
の着色ガラスを得ることが提唱され、また市場に供され
ている。2. Description of the Related Art Conventionally, based on a clear soda-lime glass component composition, TiO 2 and / or CeO 2 are additionally introduced to absorb ultraviolet rays, and Fe 2 O 3 is additionally introduced. Absorbs infrared light, more CoO, or more Mn
It has been proposed to obtain a colored glass such as a greenish glass in which the color tone has been adjusted by appropriately adding O 2 , Cr 2 O 3, and the like, and the glass has been offered to the market.
【0003】しかし、これらの着色成分を2〜3wt%に
も及んで付加導入すると、クリアーガラス〜紫外線赤外
線吸収着色ガラス、または紫外線赤外線吸収着色ガラス
〜クリアーガラスに生産を切り替えるときに、相互に操
窯、製板条件が替わり、速やかな切り替えを困難とし、
その間の生産ロスも多大であり、また、素地むら等の不
均質や変色を誘起し、安定して高品質のガラスを得難い
という不具合があった。However, if these coloring components are added in amounts of up to 2 to 3% by weight, when the production is switched from clear glass to UV-infrared absorbing colored glass or from UV-infrared absorbing colored glass to clear glass, they are mutually operated. Kiln and plate making conditions changed, making it difficult to switch quickly,
The production loss during that time is enormous, and there is a problem that it is difficult to obtain stable and high-quality glass by inducing non-uniformity and discoloration such as uneven substrate.
【0004】本発明は、前記不具合に鑑みて検討の末達
成したもので、操窯、製板条件を大幅に換えることなく
クリアーガラス−紫外線赤外線吸収着色ガラスの相互の
切り替えが速やかに行え、切り替え後も安定して高品質
のガラスを得ることのできる紫外線赤外線吸収着色ガラ
ス組成を提供することを目的とする。The present invention has been accomplished in view of the above-mentioned problems, and has been achieved after the examination. The switching between the clear glass and the ultraviolet and infrared absorbing colored glass can be quickly performed without greatly changing the operation furnace and the plate making conditions. An object of the present invention is to provide an ultraviolet-ray-absorbing colored glass composition capable of obtaining a high-quality glass stably even afterwards.
【0005】[0005]
【課題を解決するための手段】本発明は、SiO2 71.1 〜
71.5wt%、Al2O3 1.6 〜1.9 wt%、MgO 3.2 〜3.5 wt
%、CaO 6.9 〜7.2 wt%、Na2O 12.8 〜13.3wt%、K2O
0.6 〜0.9 wt%、SO3 0.05〜0.2 wt%からなり、着色成
分として、少なくともFe2O3(全鉄)と、CeO2および/ま
たはTiO2とを含み、着色成分の和が 2.0〜3.0 wt%であ
る紫外線赤外線吸収着色ガラスを提供するものである。SUMMARY OF THE INVENTION The present invention relates to a method for producing SiO 2
71.5wt%, Al 2 O 3 1.6 ~1.9 wt%, MgO 3.2 ~3.5 wt
%, CaO 6.9 ~7.2 wt%, Na 2 O 12.8 ~13.3wt%, K 2 O
0.6 to 0.9 wt%, consists of SO 3 0.05 to 0.2 wt%, as coloring components, and at least Fe 2 O 3 (total iron), and a CeO 2 and / or TiO 2, the sum of the coloring components is 2.0 to 3.0 It is intended to provide a UV-infrared absorbing colored glass which is wt%.
【0006】さらに本発明は、前記紫外線赤外線吸収着
色ガラスの比重が2.50〜2.52であること、Further, the present invention provides that the specific gravity of the ultraviolet and infrared absorbing colored glass is 2.50 to 2.52,
【0007】また、前記紫外線赤外線吸収着色ガラス
が、ガラス粘度−温度関係において、Logη(ポイズ)
=2における温度が1440±10℃、歪点における温度が 5
15±10℃であること、[0007] Further, the ultraviolet and infrared absorbing colored glass has a log η (poise) in terms of glass viscosity-temperature.
= 2 at 1440 ± 10 ℃, strain point at 5
15 ± 10 ° C,
【0008】加えて前記紫外線赤外線吸収着色ガラス
が、4mm厚において、A光源によるところの紫外線透過
率が10%以下、可視光線透過率が65%以上、日射透過率
が45%以下であること、から構成される。[0008] In addition, when the ultraviolet and infrared absorbing colored glass has a thickness of 4 mm, the ultraviolet light transmittance by the light source A is 10% or less, the visible light transmittance is 65% or more, and the solar transmittance is 45% or less. Consists of
【0009】[0009]
【発明の実施の形態】表1において、参考例としてのク
リアーガラスの代表的組成の例、比較例として従来のグ
リーン系着色ガラスの組成の例、本発明にかかる実施例
1〜3のガラス組成を示す。表2には、それら各ガラス
の光学特性、熱的性質、その他物理的化学的性質を示
す。以下表を参照し、本発明を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS In Table 1, examples of typical compositions of clear glass as reference examples, examples of compositions of conventional green colored glass as comparative examples, and glass compositions of Examples 1 to 3 according to the present invention are shown. Is shown. Table 2 shows the optical properties, thermal properties, and other physical and chemical properties of each glass. The invention will now be described with reference to the following tables.
【0010】本発明の成分系において、SiO2は従来クリ
アーガラスが71.7〜72wt%程度であるのに対し、 71.1
〜71.5wt%の範囲と、変化幅をなるべく抑える。SiO2は
ガラスの骨格を形成する枢要成分であり、これを著しく
増減すると各種物性も相当量変化し、操窯、製板条件も
相応に変化させなければならない。SiO2が71.1wt%未満
であるとガラス粘度を低下させ、熱膨張係数を増大さ
せ、密度を増大させ、製品ガラスの耐水耐候性を低下さ
せる傾向にある。他方71.5wt%を越えると、上記逆の傾
向があるとともに、原料溶融を困難とし、シリカ系結晶
の失透が生じ易い。従来のクリアーガラスの操窯、製板
条件に近づけるためには前記範囲内が必要である。[0010] In the component system of the present invention, SiO 2 whereas the conventional clear glass is about 71.7~72wt%, 71.1
The range of % 71.5 wt% and the range of change are suppressed as much as possible. SiO 2 is a key component that forms the skeleton of glass. If it is significantly increased or decreased, various physical properties will change considerably, and the kiln and plate making conditions must be changed accordingly. If SiO 2 is less than 71.1 wt%, the glass viscosity tends to decrease, the coefficient of thermal expansion increases, the density increases, and the water resistance and weather resistance of the product glass tends to decrease. On the other hand, if the content exceeds 71.5 wt%, the above tendency tends to be opposite, and the melting of the raw material becomes difficult, and the devitrification of the silica-based crystal tends to occur. The above range is necessary in order to approach the conventional clear glass operation furnace and plate making conditions.
【0011】なお、SiO2の減少分は、同様な四価成分で
あるCeO2、TiO2およびFe2O3の一部と置換されるかたちと
なる。Al2O3 は、従来クリアーガラスにおいては2wt%
程度あるべきものが、1.6 〜1.9 wt%の範囲に抑えるも
ので、その分導入着色成分であるFe2O3 をはじめ、Ce
O2、TiO2の一部と置換させる。Al2O3 が1.6 wt%未満で
あると、ガラスの液相温度を上昇させ、製品ガラスの耐
水耐候性を低下させる傾向にある。他方1.9 wt%を越え
ると、アルミナを含む結晶の失透が生じ易く、ガラス中
に不均質な脈理を発生し易い。従来のクリアーガラスの
操窯、製板条件に近づけるためには前記範囲内が必要で
ある。The reduced amount of SiO 2 is replaced with a part of the similar tetravalent components CeO 2, TiO 2 and Fe 2 O 3 . Al 2 O 3 is 2wt% in conventional clear glass
The content should be in the range of 1.6 to 1.9 wt%, and the coloring components such as Fe 2 O 3 and Ce
Substitute some of O 2 and TiO 2 . When Al 2 O 3 is less than 1.6 wt%, the liquidus temperature of the glass tends to increase, and the water resistance and weather resistance of the product glass tends to decrease. On the other hand, when the content exceeds 1.9 wt%, devitrification of alumina-containing crystals is apt to occur, and heterogeneous striae are liable to occur in the glass. The above range is necessary in order to approach the conventional clear glass operation furnace and plate making conditions.
【0012】MgO は、従来クリアーガラスにおいては、
3.7 〜4wt%以上程度あるべきものが、3.2 〜3.5 wt%
の範囲に、CaO は、従来クリアーガラスにおいては、8
wt%程度ないしそれ以上あるべきものが、6.9 〜7.2 wt
%の範囲に、元のクリアーガラスにおける含有量に対
し、夫々同様な割合で減少させるもので、その分導入着
色成分であるCeO2、TiO2や、MgO 、CaO 同様の二価成分
酸化物であるFeO の一部と置換させる。MgO 、CaO が前
記範囲未満であるとガラスの液相温度を上昇させ、高温
粘度が増大する傾向にある。他方MgO 、CaO が前記範囲
を越えると、ガラスにシリカ−カルシア(マグネシア)
系結晶の失透が生じ易く、製品ガラスの耐水耐候性も低
下させ、また比重も増大する傾向にある。従来のクリア
ーガラスの操窯、製板条件に近づけるためには前記範囲
内が必要である。MgO is conventionally used in clear glass.
3.7 to 4 wt% or more should be 3.2 to 3.5 wt%
In conventional clear glass, CaO is 8%.
6.9 to 7.2 wt% should be about wt% or more
% In the range of the original clear glass, it is reduced by the same ratio, respectively, and the divalent component oxide similar to CeO 2 , TiO 2 and MgO Replace with a part of certain FeO. If the content of MgO 2 or CaO 2 is less than the above range, the liquidus temperature of the glass tends to increase, and the high-temperature viscosity tends to increase. On the other hand, if MgO or CaO exceeds the above range, silica-calcia (magnesia) is added to the glass.
The system crystal tends to be devitrified, the water resistance and weather resistance of the product glass tends to decrease, and the specific gravity tends to increase. The above range is necessary in order to approach the conventional clear glass operation furnace and plate making conditions.
【0013】なお、CeO2、TiO2やFeO は、CaO 、MgO の
二価成分酸化物と類似して、ガラスの高温粘性を低下さ
せ、また比重を増大させる物性を有するので、それら二
価成分酸化物と置換して導入するうえで好都合である。Since CeO 2 , TiO 2, and FeO have properties similar to CaO and MgO divalent component oxides, which lower the high-temperature viscosity of glass and increase the specific gravity, these divalent components are used. It is convenient for introducing the oxide in place of the oxide.
【0014】ガラスを溶解させるアルカリ成分であるNa
2Oは12.8〜13.3wt%、K2O は0.6 〜0.9 wt%とするもの
で、これは従来クリアーガラスと同程度の導入量を維持
するもので、上記下限未満であると、ガラスの溶融性が
劣る傾向にある。他方上記上限を越えると、ガラス製品
の耐水耐候性が劣化する。Na, which is an alkali component for melting glass
When 2 O is 12.8~13.3wt%, K 2 O is intended to be 0.6 to 0.9 wt%, which is intended to maintain the introduced amount comparable to conventional clear glass, it is less than the above lower limit, melting of the glass It tends to be inferior. On the other hand, when it exceeds the above upper limit, the water resistance and weather resistance of the glass product deteriorates.
【0015】芒硝は、清澄剤として不可欠であり、シリ
カ 100重量部に対し0.5 〜0.8 重量部の導入が必要であ
り、従ってガラス中に0.05〜0.2 wt%残留する。なお、
芒硝とともに清澄剤としてカーボンを併用し、適度の鉄
イオン比率(Fe2+ /Fe3+)を維持することも紫外線赤外
線吸収着色ガラス製造上の常套手段である。Glauber's salt is indispensable as a fining agent, and it is necessary to introduce 0.5 to 0.8 parts by weight per 100 parts by weight of silica, and thus 0.05 to 0.2 wt% remains in the glass. In addition,
It is also common practice in the production of ultraviolet and infrared absorbing colored glass to use carbon as a fining agent together with sodium sulfate and maintain an appropriate iron ion ratio (Fe 2+ / Fe 3+ ).
【0016】紫外線赤外線吸収着色ガラスの着色成分と
して、少なくとも、赤外域を吸収するFe2O3(全鉄)と、
紫外域を吸収するCeO2および/またはTiO2とを含むもの
で、これら着色成分の和を 2.0〜3.0 wt%の範囲とす
る。前記作用効果を発揮するうえで、上記のうちFe2O
3(全鉄)は0.5 wt%以上、CeO2および/またはTiO2を1.
5wt%以上が必要となる。CeO2およびTiO2においては、
鉄イオン比率を変動させ易いが紫外域をシャープに遮断
できるCeO2を主とし、紫外域から可視光線低波長域に亘
り吸収があるが、前記還元率への影響のないTiO2を副次
的に用いるのが好ましい。As a coloring component of the ultraviolet and infrared absorbing colored glass, at least Fe 2 O 3 (total iron) absorbing the infrared region;
It contains CeO 2 and / or TiO 2 absorbing the ultraviolet region, and the sum of these coloring components is in the range of 2.0 to 3.0 wt%. In order to exhibit the above-mentioned effects, of the above, Fe 2 O
3 (total iron) 0.5 wt% or more, CeO 2 and / or TiO 2 1.
5 wt% or more is required. In CeO 2 and TiO 2 ,
Mainly CeO 2 that can easily change the iron ion ratio but can cut off the ultraviolet region sharply, has absorption from the ultraviolet region to the visible light low wavelength region, but has a secondary effect of TiO 2 that does not affect the reduction rate. Is preferably used.
【0017】なお、色調調整するうえで、適宜上記成分
を増加させる。あるいは更に適宜MnO 、CoO 、Cr2O3 等
を数ppm 〜数百ppm 導入することができる。但し、着色
成分が合せて3.0 wt%を越えると、製品の可視光線透過
率が低減する。またクリアーガラスの操窯、製板に近い
操業条件が得られ難くなるので避けなければならない。In adjusting the color tone, the above components are appropriately increased. Or further optionally MnO, CoO, Cr and 2 O 3 or the like can be several ppm ~ several hundred ppm introduction. However, if the total amount of the coloring components exceeds 3.0 wt%, the visible light transmittance of the product decreases. In addition, it is difficult to obtain operating conditions close to the operation of clear glass kilns and plate making.
【0018】前記各成分組成を調和させて、ガラスの比
重を2.50〜2.52と、クリアーガラスの比重2.49に近似さ
せることにより、特にクリアーガラス〜紫外線赤外線吸
収着色ガラスへの切り替えに際して、高比重である紫外
線赤外線吸収着色ガラス溶融物が、窯炉の底部に偏重し
て、スムーズな切り替えを困難とする等の不具合を解消
できる。The specific gravity of the glass is adjusted to 2.50 to 2.52 by harmonizing the respective component compositions to approximate the specific gravity of the clear glass to 2.49, so that the specific gravity is particularly high when switching from the clear glass to the ultraviolet and infrared absorbing colored glass. It is possible to eliminate problems such as the ultraviolet and infrared absorbing colored glass melt being biased toward the bottom of the kiln, making smooth switching difficult.
【0019】更に前記成分組成のバランスを勘案すれ
ば、ガラス粘度−温度関係において、Logη(ポイズ)
=2における温度(溶融温度とも称する. ガラス原料を
溶融し粗泡を脱泡するうえでの基準とする温度)を1440
±10℃以内、歪点における温度(Logη=14.5(ポイズ)
の温度. 徐冷下限点とも称する. 徐冷設計するうえで指
標となる温度)を 550±10℃以内とすることにより、ク
リアーガラスのそれに近似させることができ、操窯、製
板に際する大幅な製造条件の変動を必要としない。Further, considering the balance of the above-mentioned component compositions, Logη (poise)
= 2 (also referred to as the melting temperature. The temperature used as the standard for melting glass raw materials and removing coarse bubbles) is 1440
Within ± 10 ° C, temperature at strain point (Logη = 14.5 (poise)
By setting the temperature, which is an index for slow cooling design, within 550 ± 10 ° C, it can be approximated to that of clear glass. Does not require significant manufacturing condition fluctuations.
【0020】加えて、例えば Logη=4における温度
(作業温度とも称する. 成形するうえで指標とする温
度)を1040±10℃以内とする等、上記2点に加え少なく
とも1点をクリアーガラスのそれに近似させれば、公知
のFulcher の粘度−温度関係式(Logη=A+B/(T−T
o) :A、B、Tは定数. Toは測定温度)により、全粘
度範囲において、クリアーガラスの粘度−温度に近似さ
せることができ、操窯、製板を含め全域においてクリア
ーガラスの粘度に近似させることができる。In addition, at least one point in addition to the above two points, for example, the temperature at Logη = 4 (also referred to as the working temperature; the temperature used as an index for molding) is within 1040 ± 10 ° C. By approximation, the known Fulcher viscosity-temperature relationship equation (Logη = A + B / (T−T
o): A, B, T are constants. To is the measurement temperature), the viscosity of clear glass can be approximated to the temperature-temperature of clear glass in the entire viscosity range. It can be approximated.
【0021】なお、4mm厚換算において、A光源による
ところの紫外線透過率が10%以下、可視光線透過率が65
%以上、日射透過率45%以下と、従来の紫外線赤外線吸
収着色ガラスと遜色なく、同様な着色ガラスとすること
ができる。更にD65光源において主波長を500 〜540nm
とすれば、好適な緑色系着色ガラスを得ることができ
る。When converted to a thickness of 4 mm, the ultraviolet ray transmittance of the light source A is 10% or less and the visible ray transmittance is 65%.
%, And a solar transmittance of 45% or less, which is similar to a conventional ultraviolet and infrared absorbing colored glass, and can be a similar colored glass. Further 500 ~540Nm a dominant wavelength in the illuminant D 65
Then, a suitable greenish colored glass can be obtained.
【0022】本出願人は先に出願した特願平8−12781
号において、wt%で、SiO2 67〜75、Al2O3 0.05〜3.0
、CaO 7.0 〜11.0、MgO 2.0 〜4.2 、Na2O 12.0 〜16.
0、K2O 0.5 〜3.0 、SO3 0.05〜0.30をクリアー成分と
し、Fe2O3 0.40〜0.90、CeO21.0 〜2.5 、TiO2 0.1 〜
1.0 、MnO 0.001 〜0.040 、CoO 0.0001〜0.0009、Cr 2O
3 0.0001〜0.0010、SnO2 0〜1 を着色成分、色調調整成
分として含有する紫外線赤外線吸収緑色系ガラスを提唱
し、Fe2O3 、CeO2、TiO2の着色成分に、さらにMnO 、Co
O 、Cr2O3 、SnO2の着色成分、色調調整成分を加えるこ
とによって、きわめて良好な緑色系色調のガラスが得ら
れることを述べたが、前記各クリアー成分組成を本発明
の各クリアー成分組成の範囲とし、また、前記着色成
分、色調調整成分の合計を本発明の着色成分の範囲とす
れば、好適な紫外線赤外線吸収緑色系ガラスを得ること
ができる。The present applicant has previously filed Japanese Patent Application No. 8-12781.
No., in wt%, SiOTwo 67-75, AlTwoOThree 0.05-3.0
, CaO 7.0-11.0, MgO 2.0-4.2, NaTwoO 12.0-16.
0, KTwoO 0.5-3.0, SOThree0.05 ~ 0.30 with clear ingredient
And FeTwoOThree 0.40 ~ 0.90, CeOTwo1.0-2.5, TiOTwo 0.1 to
1.0, MnO 0.001-0.040, CoO 0.0001-0.0009, Cr TwoO
Three 0.0001-0.0010, SnOTwo 0 to 1 for coloring component and color tone adjustment
Proposal of ultraviolet and infrared absorbing green glass containing as a component
And FeTwoOThree , CeOTwo, TiOTwoIn addition to the coloring components, MnO and Co
O, CrTwoOThree , SnOTwoColor components and color tone adjustment components
Gives a very good greenish glass
It was stated that the composition of each of the clear components was
And the above-mentioned coloring composition.
And the total of the color tone adjusting components is defined as the range of the coloring component of the present invention.
To obtain a suitable UV-infrared absorbing green glass
Can be.
【0023】本発明によれば、板厚1mm 前後の薄板ガラ
スから10mmを越える厚板ガラスにおいて、平板または曲
げ板として、生板から、半強化したもの、強化したもの
等も容易に製造でき、単板ガラス、積層ガラスあるいは
複層ガラス等として、建築用窓材、輸送機用窓材、こと
に車両用窓ガラスとして好適に用いることができる。According to the present invention, in the case of a thin glass sheet having a thickness of about 1 mm and a thick glass sheet having a thickness of more than 10 mm, a half-strengthened or strengthened one as a flat plate or a bent plate can be easily manufactured from a raw plate. It can be suitably used as a sheet glass, a laminated glass, a double-layered glass, etc., as a window material for architecture, a window material for transport equipment, and particularly as a window glass for vehicles.
【0024】[0024]
【実施例】以下本発明の実施例について比較例と対比し
て説明するが、本発明はかかる実施例に限定されるもの
ではない。EXAMPLES The present invention will be described below in comparison with comparative examples, but the present invention is not limited to these examples.
【0025】実施例1 ガラス原料として珪砂、長石、ソーダ灰、ドロマイト、
石灰石、芒硝、ベンガラ、酸化チタン、炭酸セリウム、
カーボンに、着色成分濃縮フリットを適宜採用した。こ
れらを所望割合に調合し、該調合原料をルツボに入れ、
実窯(例えば投入口近傍横側壁部)温度と同等にある約
1450℃前後に保持した電気炉中で約3〜4時間程度溶融
しガラス化し、さらに均質化および清澄のため、1420〜
1430℃で約1.5 〜2時間程度保持した後、型に流し出し
ガラスブロックとし、板状に切り出して研削研磨し、ま
たは棒状、細線状に再加工して各測定試料とした。 Example 1 Silica sand, feldspar, soda ash, dolomite,
Limestone, Glauber's salt, Bengala, Titanium oxide, Cerium carbonate,
Colored component concentrated frit was appropriately used for carbon. These are mixed in a desired ratio, and the prepared raw materials are put in a crucible,
About the same as the temperature of the actual kiln (for example, the side wall near the inlet)
Melt and vitrify in an electric furnace maintained at about 1450 ° C for about 3 to 4 hours, and further homogenize and clarify
After being kept at 1430 ° C. for about 1.5 to 2 hours, it was poured into a mold to form a glass block, cut out into a plate shape, ground and polished, or reprocessed into a rod shape and a thin wire shape to obtain each measurement sample.
【0026】これら試料について、ガラス成分組成(重
量%)についてはJIS R-3101に基づく分析法で行い、光
学特性(4mm厚みにおける)としての可視光線(波長38
0 〜780nm )透過率(%:於A光源)、紫外線(波長29
7.5 〜377.5nm )透過率(%:於A光源)、および日射
(波長340 〜1800nm)透過率(%:於A光源)、主波長
(nm:於D65光源)、刺激純度(%:於D65光源)につ
いては、JIS Z-8722、JIS R-3106、ISO/DIS-9050に基づ
き、340 型自記分光光度計(日立製作所 (株)製)によ
り測定し算定して求め、粘度−温度(℃)関係について
は高温域においては球引き上げ法、低温域においてはベ
ンディングア−ム法により粘度曲線を測定して102 およ
び1012ポイズの温度を求めるとともに、リリ−法によっ
て歪点、リトルトン法によって軟化点を測定した。For these samples, the glass component composition (% by weight) was analyzed by an analytical method based on JIS R-3101, and the optical characteristics (at a thickness of 4 mm) of visible light (wavelength 38
0 to 780 nm) transmittance (%: A light source), ultraviolet light (wavelength 29
7.5 ~377.5Nm) transmittance (%: at A light source), and solar radiation (wavelength 340 ~1800Nm) transmittance (%: at A light source), dominant wavelength (nm: at illuminant D 65), an excitation purity (%: at D 65 light source) was measured and calculated with a 340-type self-recording spectrophotometer (manufactured by Hitachi, Ltd.) based on JIS Z-8722, JIS R-3106, and ISO / DIS-9050. (℃) sphere lifting method is in a high temperature region about the relationship, bending a in the low temperature range - with determining the temperature of the measuring and 10 2 and 10 12 poise viscosity curve by beam method, Lili - strain point by law, Littleton The softening point was measured by the method.
【0027】また、熱膨張計により線膨張係数およびガ
ラス転移温度を、アルキメデス法により密度を、JIS R
3502に基づき、耐水性を求めた。その結果、表1および
2に示す分析値、測定値を得た。The coefficient of linear expansion and the glass transition temperature are measured by a thermal dilatometer, the density is measured by an Archimedes method, and JIS R
Water resistance was determined based on 3502. As a result, analytical values and measured values shown in Tables 1 and 2 were obtained.
【0028】実施例2 前記実施例1と同様なガラス原料、フリットを用い、所
望成分組成に秤量調合し、溶融操作をし、得たガラスを
同様に測定試料に供した。 Example 2 Using the same glass raw material and frit as in Example 1, the components were weighed and blended to the desired component composition, melted, and the obtained glass was similarly used as a measurement sample.
【0029】これを前記実施例1と同様に分析、測定、
評価し、表1および2に示す分析値、測定値を得た。実施例3 前記実施例1と同様なガラス原料、フリットを用い、所
望成分組成に秤量調合し、溶融操作をし、得たガラスを
同様に測定試料に供した。This was analyzed and measured in the same manner as in Example 1 above.
Evaluation was performed, and the analytical values and measured values shown in Tables 1 and 2 were obtained. Example 3 The same glass material and frit as in Example 1 were used, and the components were weighed and adjusted to a desired component composition, melted, and the obtained glass was similarly used as a measurement sample.
【0030】これを前記実施例1と同様に分析、測定、
評価した結果、表1および2に示す分析値、測定値を得
た。比較例 既存の紫外線赤外線吸収着色ガラスについて、前記実施
例1と同様に分析、測定、評価した結果、表1および2
に示す分析値、測定値を得た。This was analyzed and measured in the same manner as in Example 1 above.
As a result of the evaluation, analytical values and measured values shown in Tables 1 and 2 were obtained. Comparative Example As a result of analyzing, measuring, and evaluating the existing ultraviolet and infrared absorbing colored glass in the same manner as in Example 1, Tables 1 and 2
The analytical values and measured values shown in Table 2 were obtained.
【0031】参考例 既存の代表的なフロート法ソーダ石灰系ガラスについ
て、前記実施例1と同様に分析、測定、評価(光学特性
においては5mm厚における)した結果、表1および2に
示す分析値、測定値を得た。 REFERENCE EXAMPLE As a result of analyzing, measuring, and evaluating (in terms of optical characteristics, a thickness of 5 mm) an existing representative float method soda-lime glass in the same manner as in Example 1, the analysis values shown in Tables 1 and 2 were obtained. , Measurements were obtained.
【0032】結果 次表1、2に示すとおり、本実施例は諸物性(熱的性
質、物理的性質、化学的性質)において、参考例のクリ
アーガラスと近似しており、一方光学特性において、比
較例の紫外線赤外線吸収着色ガラスに類似する性能を有
し、これは操窯、製板条件を大幅に換えることなくクリ
アーガラス−紫外線赤外線吸収着色ガラスの相互の切り
替えが速やかに行え、切り替え後も安定して高品質のガ
ラスを得ることができることを如実に示すものである。
他方、比較例における従来の紫外線赤外線吸収着色ガ
ラスは、成分組成範囲において本実施例とは相違し、そ
の結果高温粘性、密度その他においてクリアーガラスと
は差異を有するので、クリアーガラス−紫外線赤外線吸
収着色ガラスの相互の切り替えをスムーズに行えず、ま
たクリアーガラスに対し操窯、製板条件を相当量変更せ
ざるを得ないことをあらわすものである。 Results As shown in the following Tables 1 and 2, this example is similar in physical properties (thermal properties, physical properties, and chemical properties) to the clear glass of the reference example, while in the optical properties, It has a performance similar to the ultraviolet and infrared absorbing colored glass of the comparative example, and it is possible to quickly switch between clear glass and ultraviolet and infrared absorbing colored glass without significantly changing the kiln and plate making conditions. It clearly shows that high quality glass can be obtained stably.
On the other hand, the conventional UV-infrared absorbing colored glass in the comparative example is different from the present example in the component composition range, and as a result, it has a difference in high-temperature viscosity, density and the like from the clear glass. This means that the mutual switching of the glass cannot be performed smoothly, and that the operation of the kiln and the plate making conditions for the clear glass have to be considerably changed.
【0033】 〔表1〕 ガラス組成(wt%) 参考例 比較例 実施例 実施例 実施例 クリアー 着色 1 2 3 SiO2 71.7 69.9 71.3 71.2 71.2 Al2O3 2.0 2.01 1.72 1.72 1.90 MgO 3.7 3.53 3.31 3.37 3.38 CaO 8.2 7.89 7.03 7.04 7.01 Na2O 13.1 12.9 13.1 13.2 12.9 K2O 0.7 0.85 0.84 0.84 0.69 SO3 0.2 0.07 0.07 0.11 0.09 全Fe2O3 0.1 0.610 0.611 0.749 0.631 FeO --- 0.226 0.198 0.179 0.143 CeO2 --- 1.83 1.61 1.40 1.71 TiO2 --- 0.39 0.39 0.19 0.41 CoO(ppm) --- --- 0.0 0.0 0.3 Fe2+/Fe3+ --- 0.7 0.56 0.36 0.34 カーホ "ン 導入量 --- 0.06** 0.17* 0.16* 0.17* 芒硝導入量*** --- --- 0.5 0.5 0.5 注 *対ガラス導入量 (wt%)、**ガラス中含有量(wt%) ***対シリカ(SiO2)比(wt%)[Table 1] Glass composition (wt%) Reference example Comparative example Example Example Example Example Clear Colored 12 3 SiO 2 71.7 69.9 71.3 71.2 71.2 Al 2 O 3 2.0 2.01 1.72 1.72 1.90 MgO 3.7 3.53 3.31 3.37 3.38 CaO 8.2 7.89 7.03 7.04 7.01 Na 2 O 13.1 12.9 13.1 13.2 12.9 K 2 O 0.7 0.85 0.84 0.84 0.69 SO 3 0.2 0.07 0.07 0.11 0.09 Total Fe 2 O 3 0.1 0.610 0.611 0.749 0.631 FeO --- 0.226 0.198 0.179 0.143 CeO 2- -1.83 1.61 1.40 1.71 TiO 2 --- 0.39 0.39 0.19 0.41 CoO (ppm) --- --- 0.0 0.0 0.3 Fe 2+ / Fe 3+ --- 0.7 0.56 0.36 0.34 0.06 ** 0.17 * 0.16 * 0.17 * Amount of Glauber's salt *** --- --- 0.5 0.5 0.5 Note * Amount to glass (wt%), ** Content in glass (wt%) *** to silica (SiO 2 ) ratio (wt%)
【0034】 〔表2〕 光学特性、その他物理的化学的性質 参考例* 比較例** 実施例** 実施例** 実施例** クリアー UMFL 1 2 3 光学特性 紫外線透過率 56 7.4 7.9 8.4 8.1 可視光線透過率 90 71.2 74.7 74.5 69.0 日射透過率 83 41.5 44.4 46.2 34.2 主波長 513 510.7 515.6 524.6 500.1 刺激純度 0.3 2.9 2.6 2.6 5.5 色調 無色 ク"リーン系 ク"リーン系 ク"リーン系 ク"リーン系 熱的性質 熱膨張係数 86 85.9 84.3 85.3 84.3 転移温度(Tg ℃) 555 558 553 552 556 軟化点(Tsoft℃) 735 745 741 737 747 徐冷点(Tann ℃) 555 559 557 555 563 歪点(Tstr ℃) 515 519 519 512 520 粘度−温度 Logη=2 1440 1421 1440 1430 1437 4 1040 1033 1034 1030 1042 5 920 920 919 912 928 7 770 769 766 760 775 9 670 672 669 664 677 その他物理的化学的性質 密度(D g/cc) 2.49 2.539 2.518 2.516 2.517 耐水性(mgNa2O/Dg)0.48 0.34 0.42 0.44 0.39 注 *5mm厚 **4mm厚[Table 2] Optical Properties, Other Physical and Chemical Properties Reference Example * Comparative Example ** Example ** Example ** Example ** Clear UMFL 1 2 3 Optical Properties UV Transmittance 56 7.4 7.9 8.4 8.1 Visible light transmittance 90 71.2 74.7 74.5 69.0 Solar transmittance 83 41.5 44.4 46.2 34.2 Principal wavelength 513 510.7 515.6 524.6 500.1 Stimulation purity 0.3 2.9 2.6 2.6 5.5 Color tone Colorless Clean "Clean" Clean "Clean" Heat Properties Thermal expansion coefficient 86 85.9 84.3 85.3 84.3 Transition temperature (Tg ° C) 555 558 553 552 556 Softening point (Tsoft ° C) 735 745 741 737 747 Slow cooling point (Tann ° C) 555 559 557 555 563 Strain point (Tstr ° C) 515 519 519 512 520 Viscosity-temperature Logη = 2 1440 1421 1440 1430 1437 4 1040 1033 1034 1030 1042 5 920 920 919 912 928 7 770 769 766 760 775 9 670 672 669 664 664 677 Other physical and chemical properties Density (D g / cc) 2.49 2.539 2.518 2.516 2.517 Water resistance (mgNa 2 O / Dg) 0.48 0.34 0.42 0.44 0.39 Note * 5mm thickness ** 4mm thickness
【0035】[0035]
【発明の効果】本発明によれば、諸物性(熱的性質、物
理的性質、化学的性質)において、クリアーガラスと近
似しており、一方光学特性において、従来の紫外線赤外
線吸収着色ガラスに類似する性能を有し、操窯、製板条
件を大幅に換えることなくクリアーガラス−紫外線赤外
線吸収着色ガラスの相互の切り替えが速やかに行え、切
り替え後も安定して高品質の紫外線赤外線吸収着色ガラ
スを得ることができるという効果を奏する。According to the present invention, various physical properties (thermal properties, physical properties, chemical properties) are similar to those of clear glass, while optical properties are similar to those of conventional ultraviolet and infrared absorbing colored glass. The ability to quickly switch between clear glass and UV-infrared-absorbing colored glass without significantly changing the kiln and plate making conditions. This has the effect that it can be obtained.
Claims (4)
wt%、MgO 3.2 〜3.5 wt%、CaO 6.9 〜7.2 wt%、Na2O
12.8 〜13.3wt%、K2O 0.6 〜0.9 wt%、SO 3 0.05〜0.
2 wt%からなり、着色成分として、少なくともFe2O3(全
鉄)と、CeO2および/またはTiO2とを含み、着色成分の
和が 2.0〜3.0 wt%であることを特徴とする紫外線赤外
線吸収着色ガラス。Claims: 1. An SiOTwo 71.1 to 71.5wt%, AlTwoOThree 1.6-1.9
wt%, MgO 3.2 to 3.5 wt%, CaO 6.9 to 7.2 wt%, NaTwoO
12.8 to 13.3wt%, KTwoO 0.6 to 0.9 wt%, SO Three 0.05-0.
2 wt%, at least FeTwoOThree(all
Iron) and CeOTwoAnd / or TiOTwoAnd the coloring component
UV-infrared light whose sum is 2.0-3.0 wt%
Line absorbing colored glass.
特徴とする請求項1記載の紫外線赤外線吸収着色ガラ
ス。2. The ultraviolet and infrared absorbing colored glass according to claim 1, wherein the specific gravity of the glass is 2.50 to 2.52.
(ポイズ)=2における温度が1440±10℃、歪点におけ
る温度が 515±10℃であることを特徴とする請求項1ま
たは2記載の紫外線赤外線吸収着色ガラス。3. In the relationship between glass viscosity and temperature, Logη
3. The ultraviolet and infrared absorbing colored glass according to claim 1, wherein the temperature at (poise) = 2 is 1440 ± 10 ° C., and the temperature at the strain point is 515 ± 10 ° C.
紫外線透過率が10%以下、可視光線透過率が65%以上、
日射透過率が45%以下であることを特徴とする請求項
1、2、3または4記載の紫外線赤外線吸収着色ガラ
ス。4. At a thickness of 4 mm, the transmittance of ultraviolet light by the light source A is 10% or less, the visible light transmittance is 65% or more,
5. The ultraviolet and infrared absorbing colored glass according to claim 1, wherein the solar radiation transmittance is 45% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11207197A JPH10297934A (en) | 1997-04-30 | 1997-04-30 | Colored glass absorbing ultraviolet and infrared rays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11207197A JPH10297934A (en) | 1997-04-30 | 1997-04-30 | Colored glass absorbing ultraviolet and infrared rays |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10297934A true JPH10297934A (en) | 1998-11-10 |
Family
ID=14577349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11207197A Pending JPH10297934A (en) | 1997-04-30 | 1997-04-30 | Colored glass absorbing ultraviolet and infrared rays |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10297934A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001066477A1 (en) * | 2000-03-06 | 2001-09-13 | Nippon Sheet Glass Co., Ltd. | Flat glass having high transmittance |
WO2005042425A1 (en) * | 2003-10-31 | 2005-05-12 | Central Glass Company, Limited | Ultraviolet and infrared absorptive greenish glass |
WO2005063643A1 (en) * | 2003-12-26 | 2005-07-14 | Nippon Sheet Glass Company, Limited | Near infrared absorbing green glass composition, and laminated glass using the same |
FR2876095A1 (en) * | 2004-10-05 | 2006-04-07 | Saint Gobain Emballage Sa | Silica-soda-calcium glass compound, free of cadmium, with a very low transmission of ultraviolet light, for the production of hollow objects and flat sheets of glass |
US7598190B2 (en) | 2004-10-29 | 2009-10-06 | Central Glass Company, Limited | Ultraviolet and infrared absorptive greenish glass |
US7611773B2 (en) | 2002-09-25 | 2009-11-03 | Nippon Sheet Glass Co., Ltd. | Glass composition and laminated glass |
WO2015033562A1 (en) * | 2013-09-09 | 2015-03-12 | 日本板硝子株式会社 | Glass composition and strengthened glass sheet |
CN109415241A (en) * | 2016-06-23 | 2019-03-01 | Kcc公司 | Green glass composition |
-
1997
- 1997-04-30 JP JP11207197A patent/JPH10297934A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6844280B2 (en) | 2000-03-06 | 2005-01-18 | Nippon Sheet Glass Company, Limited | Flat glass having high transmittance |
WO2001066477A1 (en) * | 2000-03-06 | 2001-09-13 | Nippon Sheet Glass Co., Ltd. | Flat glass having high transmittance |
US7611773B2 (en) | 2002-09-25 | 2009-11-03 | Nippon Sheet Glass Co., Ltd. | Glass composition and laminated glass |
WO2005042425A1 (en) * | 2003-10-31 | 2005-05-12 | Central Glass Company, Limited | Ultraviolet and infrared absorptive greenish glass |
US7820575B2 (en) | 2003-12-26 | 2010-10-26 | Nippon Sheet Glass Company, Limited | Near infrared absorbent green glass composition, and laminated glass using the same |
WO2005063643A1 (en) * | 2003-12-26 | 2005-07-14 | Nippon Sheet Glass Company, Limited | Near infrared absorbing green glass composition, and laminated glass using the same |
EP1705161A1 (en) * | 2003-12-26 | 2006-09-27 | Nippon Sheet Glass Company, Limited | Near infrared absorbing green glass composition, and laminated glass using the same |
JPWO2005063643A1 (en) * | 2003-12-26 | 2007-07-19 | 日本板硝子株式会社 | Near-infrared absorbing green glass composition and laminated glass using the same |
JP5086541B2 (en) * | 2003-12-26 | 2012-11-28 | 日本板硝子株式会社 | Near-infrared absorbing green glass composition and laminated glass using the same |
EP1705161A4 (en) * | 2003-12-26 | 2009-11-11 | Nippon Sheet Glass Co Ltd | Near infrared absorbing green glass composition, and laminated glass using the same |
FR2876095A1 (en) * | 2004-10-05 | 2006-04-07 | Saint Gobain Emballage Sa | Silica-soda-calcium glass compound, free of cadmium, with a very low transmission of ultraviolet light, for the production of hollow objects and flat sheets of glass |
US7598190B2 (en) | 2004-10-29 | 2009-10-06 | Central Glass Company, Limited | Ultraviolet and infrared absorptive greenish glass |
WO2015033562A1 (en) * | 2013-09-09 | 2015-03-12 | 日本板硝子株式会社 | Glass composition and strengthened glass sheet |
JPWO2015033562A1 (en) * | 2013-09-09 | 2017-03-02 | 日本板硝子株式会社 | Glass composition and tempered glass plate |
CN109415241A (en) * | 2016-06-23 | 2019-03-01 | Kcc公司 | Green glass composition |
JP2019517986A (en) * | 2016-06-23 | 2019-06-27 | ケーシーシー コーポレーション | Green glass composition |
US11066318B2 (en) | 2016-06-23 | 2021-07-20 | Kcc Glass Corporation | Green glass composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8685873B2 (en) | Lithium-aluminosilicate glass with short glazing times | |
EP0757021B1 (en) | Scratch-resistant glass | |
US5858897A (en) | Glass composition for a substrate | |
JP2544035B2 (en) | High iron content / high reduction rate frit glass and blue heat ray absorbing glass using the same | |
US7341968B2 (en) | Glass plate and method for tempering a glass plate | |
US6573207B2 (en) | Grey glass composition including erbium | |
EP1034144B1 (en) | Privacy glass | |
US6313053B1 (en) | Infrared and ultraviolet radiation absorbing blue glass composition | |
JP3086165B2 (en) | UV-infrared absorbing green glass | |
JPH1067538A (en) | Glass composition | |
US10611671B2 (en) | Heat-ray- and ultraviolet-absorbent glass sheet, and method for manufacturing same | |
CZ120197A3 (en) | Glass with low ir and uvr transmission | |
JP7120339B2 (en) | UV-absorbing glass article | |
JPH10297934A (en) | Colored glass absorbing ultraviolet and infrared rays | |
EP0673891A2 (en) | Ultraviolet absorbing, fixed tint lenses | |
JPS6219370B2 (en) | ||
JPH04280834A (en) | Colored glass | |
JPH03218940A (en) | Ultraviolet transmitting glass | |
JP2740102B2 (en) | Green color tone glass | |
JP3434140B2 (en) | Dens green color glass | |
KR100824934B1 (en) | Gray soda lime glass composition | |
US11066318B2 (en) | Green glass composition | |
JP7127654B2 (en) | glass plate | |
JPH10218642A (en) | Glass absorbing ultraviolet ray | |
JP7409636B2 (en) | Multi-component oxide glass, optical element, optical fiber, and method for producing multi-component oxide glass |