Nothing Special   »   [go: up one dir, main page]

JPH10295081A - Voltage-dividing circuit with serial capacitor body - Google Patents

Voltage-dividing circuit with serial capacitor body

Info

Publication number
JPH10295081A
JPH10295081A JP9031169A JP3116997A JPH10295081A JP H10295081 A JPH10295081 A JP H10295081A JP 9031169 A JP9031169 A JP 9031169A JP 3116997 A JP3116997 A JP 3116997A JP H10295081 A JPH10295081 A JP H10295081A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
resistor
transistor
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9031169A
Other languages
Japanese (ja)
Inventor
Takuya Hatakeyama
卓也 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP9031169A priority Critical patent/JPH10295081A/en
Publication of JPH10295081A publication Critical patent/JPH10295081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable use of an electrolytic capacitor having a low withstand voltage by adding a simple electrical circuit, setting a high resistance value for voltage division, in order to take a voltage balance of the serial bodies of electrolytic capacitors, and suppressing heating from a voltage-dividing resistor, thereby reducing the size of the circuit. SOLUTION: A collector of an NPN transistor 4a is connected to a positive pole of a capacitor 1a through a resistor 3e, an emitter of the NPN transistor 4a is connected to a negative pole of a capacitor 1a, and a resistor 3g is connected between the positive pole of the capacitor 1a and a base of the NPN transistor 4a. A collector of a PNP transistor 4b is connected to the negative pole of a capacitor 1b through a resistor 3f, an emitter of the PNP transistor is connected to a positive pole of the capacitor 1b, and a resistor 3h is connected between the negative pole of the capacitor 1b and the base of the PNP transistor 4b. Moreover, the emitters of the NPN transistor 4a and the PNP transistor 4b are connected to each other and as their bases are also connected each other as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータ駆動用イン
バータや無停電電源装置などの電力変換回路において使
用される、直列接続されたコンデンサ直列体の分圧回路
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage dividing circuit of a series-connected capacitor series used in a power conversion circuit such as an inverter for driving a motor or an uninterruptible power supply.

【0002】[0002]

【従来の技術】モータ駆動用インバータや無停電電源装
置などの電力変換装置においては、交流入力をコンバー
タ回路によって整流し直流に変換した後、インバータ回
路によって再び所望の交流に変換して出力することが行
われる。この際、コンバータ回路にて整流した後にコン
デンサを接続して脈動電圧の少ない直流に平滑するが、
直流平滑には概して大きな静電容量のコンデンサが必要
であり、一般的には小型で静電容量の大きい電解コンデ
ンサが使用される。コンバータ回路で整流した後の直流
電圧は、交流入力の相数や電圧に依存するが、おおよそ
交流入力電圧の1.3倍程度となる。大電力の電力変換
回路においては、交流入力電圧として3相400Vが使
用されることがあり、この場合の直流電圧は500V以
上になる。
2. Description of the Related Art In a power converter such as an inverter for driving a motor or an uninterruptible power supply, an AC input is rectified by a converter circuit, converted into DC, and then converted again into a desired AC by an inverter circuit and output. Is performed. At this time, after rectification by the converter circuit, a capacitor is connected to smooth the direct current with a small pulsation voltage.
DC smoothing generally requires a capacitor having a large capacitance, and generally, a small electrolytic capacitor having a large capacitance is used. The DC voltage after rectification by the converter circuit depends on the number of phases and voltage of the AC input, but is approximately 1.3 times the AC input voltage. In a high-power power conversion circuit, a three-phase 400 V may be used as an AC input voltage, and in this case, the DC voltage is 500 V or more.

【0003】一方、電解コンデンサの耐電圧は、定格電
圧450Vサージ過電圧500V程度までのものが性能
的に実用的であり、前述のように直流電圧が500V以
上になる場合は、適当な耐電圧の電解コンデンサを直列
にして使用することが行われる。電解コンデンサに電圧
が印加されると、主に内部の誘電体が要因となり、漏れ
電流が流れる。簡略には図4に示すように、電解コンデ
ンサ1はコンデンサ成分2と並列抵抗成分3をもつ等価
回路と考えることができる。(実際にはコンデンサと直
列の小さな抵抗成分を持つが、本件の動作説明上は無視
できるので、並列抵抗成分のみを示す)
On the other hand, the withstand voltage of an electrolytic capacitor having a rated voltage of 450 V and a surge overvoltage of about 500 V is practically practical, and when the DC voltage is 500 V or more as described above, an appropriate withstand voltage is required. It is common to use electrolytic capacitors in series. When a voltage is applied to the electrolytic capacitor, a leakage current flows mainly due to an internal dielectric. Briefly, as shown in FIG. 4, the electrolytic capacitor 1 can be considered as an equivalent circuit having a capacitor component 2 and a parallel resistance component 3. (In fact, it has a small resistance component in series with the capacitor, but it can be ignored in the operation explanation of this case, so only the parallel resistance component is shown.)

【0004】ところで、大容量の電力変換装置に使われ
る高耐電圧で高静電容量の電解コンデンサの漏れ電流
は、常温(20℃程度)で定格電圧印加時に最大5mA
程度あり、その個体差は数倍あると言われている。 ま
た温度上昇によっても比例的に増加する。すなわち、図
4に示した並列抵抗成分3に個体差があり、しかも温度
によって大きく変化する。このような特性を持つ電解コ
ンデンサを電力変換回路において直列接続して使用する
場合、並列抵抗成分の偏差によって個々の電解コンデン
サの分担電圧がアンバランスになる。そこで、直列接続
された電解コンデンサ個々に並列に分圧抵抗を接続し、
漏れ電流に起因する内部の並列抵抗成分の偏差を補正す
ることが行われる。
Incidentally, the leakage current of an electrolytic capacitor having a high withstand voltage and a high capacitance used in a large-capacity power converter has a maximum current of 5 mA at normal temperature (about 20 ° C.) when a rated voltage is applied.
It is said that there are several times the individual differences. It also increases proportionally with temperature rise. That is, there is an individual difference in the parallel resistance component 3 shown in FIG. When electrolytic capacitors having such characteristics are used in series in a power conversion circuit, the shared voltage of the individual electrolytic capacitors becomes unbalanced due to the deviation of the parallel resistance component. Therefore, a voltage-dividing resistor is connected in parallel to each series-connected electrolytic capacitor,
The deviation of the internal parallel resistance component due to the leakage current is corrected.

【0005】図5は、電解コンデンサ1a、1bを直列
接続した場合を示し、2a、2bはコンデンサ成分、3
a、3bは内部の並列抵抗成分、3j、3kは並列抵抗
成分3a、3bの偏差を補正するためにコンデンサの外
部に並列接続した分圧抵抗である。付加される分圧抵抗
3j、3kは、一般に直列接続された電解コンデンサの
並列抵抗成分3a、3bの偏差がどのようになっている
かは不明であるので、抵抗値を等しく設定する。図5に
おいて並列抵抗成分3a、3bのうち、3aが大きいと
してその抵抗値をRx、一方3bをRm、また分圧抵抗
3j、3kの抵抗値はRpとする。RxとRpおよびR
mとRpの並列合成抵抗値をRc1、Rc2とすると、 Rc1=Rx×Rp/(Rx+Rp)、Rc2=Rm×
Rp/(Rm+Rp) となり、個々の電解コンデンサ1a、1bの分担電圧は
Rc1とRc2の比で決定される。
FIG. 5 shows a case in which electrolytic capacitors 1a and 1b are connected in series.
Reference numerals a and 3b denote internal parallel resistance components, and reference numerals 3j and 3k denote voltage-dividing resistors connected in parallel outside the capacitor in order to correct the deviation of the parallel resistance components 3a and 3b. The added voltage-dividing resistors 3j and 3k are generally set to have the same resistance value because it is unclear what the deviation of the parallel resistance components 3a and 3b of the electrolytic capacitors connected in series is. In FIG. 5, among the parallel resistance components 3a and 3b, 3a is assumed to be large, and its resistance value is Rx, while 3b is Rm, and the resistance values of the voltage dividing resistors 3j and 3k are Rp. Rx and Rp and R
Assuming that the parallel combined resistance value of m and Rp is Rc1 and Rc2, Rc1 = Rx × Rp / (Rx + Rp) and Rc2 = Rm ×
Rp / (Rm + Rp), and the shared voltage of the individual electrolytic capacitors 1a and 1b is determined by the ratio of Rc1 and Rc2.

【0006】ここで、並列抵抗成分の偏差は、RxがR
mのα倍であるものとし、また並列抵抗成分の大きい電
解コンデンサ1aの分担電圧を電解コンデンサ1bのβ
倍に抑えることにした場合、Rx=α×Rm、Rc1=
β×Rc2で表され、これを上記Rc1、Rc2に代入
することにより、必要となる分圧抵抗3j、3kの抵抗
値Rpは、次式の通りになる。 Rp=α(β−1)×Rm/(α−β)・・・・・・・・・・・・・・・(1)
Here, the deviation of the parallel resistance component is as follows:
m, and the shared voltage of the electrolytic capacitor 1a having a large parallel resistance component is β
Rx = α × Rm, Rc1 =
It is represented by β × Rc2, and by substituting these into Rc1 and Rc2, the necessary resistance values Rp of the voltage dividing resistors 3j and 3k are as follows. Rp = α (β-1) × Rm / (α-β) (1)

【0007】たとえば、耐電圧定格400V、サージ電
圧450Vの電解コンデンサを2直列にして、直流60
0Vの回路に適用する場合について計算してみる。電解
コンデンサの漏れ電流を、温度上昇等考慮して定格電圧
印加時に10mAであるとした場合、その並列抵抗成分
は400V/10mAで40kΩとなり、これをRmと
する。これに対して漏れ電流の偏差は3倍程度あること
を想定しα=3とし、Rxを40kΩ×3より120k
Ωとする。また、分担電圧は、一方が定格耐電圧である
400Vまで許容するとして一方は200Vになると考
え、β=400/200=2とする。この場合、上式よ
りRpは3×Rm、すなわち120kΩとなる。この
時、印加電圧の大きい分圧抵抗3jの発熱は1.33
W、一方の分圧抵抗3kの発熱は0.33Wであり発熱
による合計損失は1.7Wとなる。
For example, an electrolytic capacitor having a withstand voltage rating of 400 V and a surge voltage of 450 V is connected in series to form a DC 60
Let's calculate for the case of applying to a 0V circuit. Assuming that the leakage current of the electrolytic capacitor is 10 mA at the time of application of the rated voltage in consideration of temperature rise and the like, the parallel resistance component is 40 kΩ at 400 V / 10 mA, which is defined as Rm. On the other hand, assuming that the deviation of the leakage current is about three times, α = 3, and Rx is set to 120 k from 40 kΩ × 3.
Ω. Further, one of the shared voltages is assumed to be 200 V when one is allowed up to the rated withstand voltage of 400 V, and β = 400/200 = 2. In this case, from the above equation, Rp is 3 × Rm, that is, 120 kΩ. At this time, heat generated by the voltage dividing resistor 3j having a large applied voltage is 1.33.
W, the heat generated by one of the voltage dividing resistors 3k is 0.33W, and the total loss due to the heat is 1.7W.

【0008】[0008]

【発明が解決しようとする課題】近年、装置の小型化が
非常に重要視されており、電解コンデンサを使用した電
力変換回路についても例外ではない。その一環として、
インバータ回路等の小型化も必至であり、電解コンデン
サを含めた個々の部品の小型化が重要になってきてい
る。一般に、電解コンデンサは外形が同じならば耐電圧
が低いほど静電容量を大きくすることができ、寿命を決
定するリプル電流耐量も大きくできるので、電解コンデ
ンサの小型化を図るためには、耐電圧を下げることが重
要である。したがって、前述したようにインバータ回路
等で電解コンデンサを直列接続して使用する場合におい
ても、個々の電解コンデンサの耐電圧を極力低いものを
選択使用することが行われる。
In recent years, miniaturization of devices has been regarded as very important, and power conversion circuits using electrolytic capacitors are no exception. As part of that,
Inverter circuits and the like are inevitably downsized, and downsizing individual components including electrolytic capacitors is becoming important. In general, if the external dimensions of an electrolytic capacitor are the same, the lower the withstand voltage, the greater the capacitance can be.The larger the ripple current capacity that determines the service life, the greater the withstand voltage can be. It is important to lower Therefore, even when the electrolytic capacitors are connected in series in an inverter circuit or the like as described above, the capacitors having the lowest withstand voltage of each electrolytic capacitor are selected and used.

【0009】ところが、印加電圧に対して電解コンデン
サの耐電圧に余裕がないと、電解コンデンサ内部の等価
的な並列抵抗成分の個体差による分担電圧のアンバラン
スが大きな課題となる。この分担電圧アンバランスを抑
制するためには、電解コンデンサの外部に並列接続する
分圧抵抗の抵抗値を小さくし、電解コンデンサの並列抵
抗成分の偏差の影響を補正する必要がある。耐電圧の低
い電解コンデンサを使用するものとして、従来技術で説
明した計算を行い比較してみる。定格電圧350V、サ
ージ電圧400Vの電解コンデンサを2直列にして、直
流600Vの回路に適用する場合を想定し、前述と同様
電解コンデンサの漏れ電流は10mAで並列抵抗成分を
350V/10mA=35kΩとし、これをRmとす
る。漏れ電流の偏差も同様に3倍程度あるものとしα=
3と設定する。
However, if there is no margin in the withstand voltage of the electrolytic capacitor with respect to the applied voltage, the imbalance of the shared voltage due to the individual difference of the equivalent parallel resistance component inside the electrolytic capacitor becomes a serious problem. In order to suppress the shared voltage imbalance, it is necessary to reduce the resistance value of the voltage dividing resistor connected in parallel to the outside of the electrolytic capacitor and correct the influence of the deviation of the parallel resistance component of the electrolytic capacitor. Assuming that an electrolytic capacitor having a low withstand voltage is used, the calculation described in the related art will be performed and a comparison will be made. Assuming a case where the electrolytic capacitor having a rated voltage of 350 V and a surge voltage of 400 V is connected in series and applied to a DC 600 V circuit, the leakage current of the electrolytic capacitor is 10 mA and the parallel resistance component is 350 V / 10 mA = 35 kΩ as described above. This is defined as Rm. Similarly, it is assumed that the deviation of the leakage current is about three times, and α =
Set to 3.

【0010】また、分担電圧は、一方が定格耐電圧であ
る350Vまで許容するとして一方は250Vになると
考え、β=350/250=1.4とする。(1)式よ
り、Rpは0.75×Rmすなわち26.3kΩとな
る。このとき、印加電圧の高い電解コンデンサの分圧抵
抗3jの発熱は4.6W、一方の分圧抵抗3kの発熱は
2.4Wで合計7Wとなり、前述の計算と比較すると電
解コンデンサの耐電圧を50V下げたことにより、分圧
抵抗値を下げることが必要となり、その損失は約4倍に
増加する。このように、電解コンデンサの耐電圧を下げ
て使用する場合、分圧抵抗値を下げる必要があり、これ
に伴い、分圧抵抗回路での発熱が大きくなるため、許容
損失が大きい大型の抵抗を使用することとなり、電解コ
ンデンサを小型化したこととは相反した大型抵抗の追
加、抵抗発熱による損失の増加を生じる。また、大容量
の電力変換装置で電解コンデンサを多数使用する時に
は、特にこの問題が顕著となってくる。
Further, it is assumed that one of the shared voltages is 250 V when one is allowed up to the rated withstand voltage of 350 V, and β = 350/250 = 1.4. From equation (1), Rp is 0.75 × Rm, that is, 26.3 kΩ. At this time, the heat generated by the voltage dividing resistor 3j of the electrolytic capacitor having a high applied voltage is 4.6W, and the heat generated by the voltage dividing resistor 3k is 2.4W, which is 7W in total. By reducing the voltage by 50 V, it is necessary to reduce the voltage dividing resistance value, and the loss increases about four times. As described above, when the electrolytic capacitor is used with a reduced withstand voltage, it is necessary to reduce the voltage dividing resistance value, and accordingly, the heat generated in the voltage dividing resistance circuit increases, so that a large resistor having a large allowable loss is used. The use of such a capacitor results in the addition of a large resistor, which is contrary to the downsizing of the electrolytic capacitor, and an increase in loss due to resistance heating. In addition, when a large number of electrolytic capacitors are used in a large-capacity power converter, this problem becomes remarkable.

【0011】また、電解コンデンサは、大きい静電容量
を確保できるものの、静電容量の許容誤差は±20%が
標準的である。そこで、耐電圧に余裕の少ない場合、電
源電圧変動や負荷変動などに伴い生じる電圧変動時に、
電解コンデンサの静電容量の許容誤差により起きる分担
電圧のアンバランスも問題となる。これについて、電圧
印加されていない状態から電解コンデンサを充電する、
いわゆる初期充電時の例で説明する。
Although an electrolytic capacitor can secure a large capacitance, the tolerance of the capacitance is typically ± 20%. Therefore, when there is little margin in the withstand voltage, at the time of voltage fluctuation caused by power supply voltage fluctuation or load fluctuation,
The imbalance of the shared voltage caused by the tolerance of the capacitance of the electrolytic capacitor is also a problem. Regarding this, charge the electrolytic capacitor from the state where no voltage is applied,
This will be described with an example at the time of so-called initial charging.

【0012】電力変換装置において、コンバータ回路で
交流を直流に変換し電解コンデンサを初期充電する際、
電解コンデンサのインピーダンスは充電当初非常に小さ
いため、初期充電用の低抵抗を介して充電電流を抑制す
ることが行われる。上記のように充電抵抗は低抵抗で、
それに比べ分圧抵抗の抵抗値は発熱損失低減のため極力
大きく設定される。したがって、初期充電抵抗値と電解
コンデンサの静電容量によって決まる時定数は、分圧抵
抗と電解コンデンサで決まるそれよりも大きくなる。一
般的には、電解コンデンサ静電容量は数千μFで、初期
充電抵抗が数Ω〜数10Ωに対し、分圧抵抗は数kΩ〜
数10kΩ程度が選定され、充電抵抗とコンデンサで決
まる時定数が数十ms程度であるのに対し、分圧抵抗と
コンデンサで決まる時定数は数十秒程度と非常に大きな
差が生じる。
In a power converter, when an alternating current is converted to a direct current by a converter circuit to initially charge an electrolytic capacitor,
Since the impedance of the electrolytic capacitor is very small at the beginning of charging, the charging current is suppressed through a low resistance for initial charging. As mentioned above, the charging resistance is low,
On the other hand, the resistance value of the voltage dividing resistor is set as large as possible to reduce heat loss. Therefore, the time constant determined by the initial charging resistance value and the capacitance of the electrolytic capacitor is larger than that determined by the voltage dividing resistor and the electrolytic capacitor. Generally, the capacitance of an electrolytic capacitor is several thousand μF, and the initial charging resistance is several Ω to several tens of Ω, whereas the voltage dividing resistance is several kΩ to
The time constant determined by the charging resistor and the capacitor is about several tens of ms, while the time constant determined by the voltage dividing resistor and the capacitor is about several tens of seconds, which is a very large difference.

【0013】図6にコンデンサ初期充電時の等価回路
を、また図7に動作波形図を示す。図6は、図5の回路
に直流電源5、充電抵抗3n、投入スイッチ6、を追加
したものであり、図5と同一部分には同一符号を付して
いる。また、電解コンデンサ1a、1bのコンデンサ成
分は2aが小さく、2bが大きいものとし、内部の並列
抵抗成分3a、3bおよび分圧抵抗3j、3kはそれぞ
れ等しいものとする。投入スイッチ6を入れ、直流電圧
5の電圧2Eを印加すると、電解コンデンサ1a、1b
の直列体の電圧は図7の(イ)のように上昇するが、こ
の時、静電容量の小さい1aの分担電圧は(ロ)、一方
の1bは(ハ)のようになる。上述のようにこの充電時
定数は短いので、初期充電終了当初(Tsの時点)の電
圧バランスは電解コンデンサの静電容量値で決まり、静
電容量の小さいコンデンサ1aの分担電圧は大きくな
り、コンデンサ1bの電圧は小さくなる。続いて、電解
コンデンサと分圧抵抗によって決まる時定数で、緩やか
に分担電圧が均等化されるようになる。
FIG. 6 shows an equivalent circuit when the capacitor is initially charged, and FIG. 7 shows an operation waveform diagram. FIG. 6 is obtained by adding a DC power supply 5, a charging resistor 3n, and a closing switch 6 to the circuit of FIG. 5, and the same parts as those of FIG. 5 are denoted by the same reference numerals. The capacitor components of the electrolytic capacitors 1a and 1b have a smaller value of 2a and a larger value of 2b, and the internal parallel resistance components 3a and 3b and the voltage dividing resistors 3j and 3k are equal to each other. When the switch 6 is turned on and the voltage 2E of the DC voltage 5 is applied, the electrolytic capacitors 1a, 1b
7 rises as shown in (a) of FIG. 7. At this time, the shared voltage of 1a having a small capacitance is (b), and the other 1b is as shown in (c). As described above, since this charging time constant is short, the voltage balance at the beginning of the initial charging (at the time of Ts) is determined by the capacitance value of the electrolytic capacitor, and the shared voltage of the capacitor 1a having a small capacitance is increased. The voltage of 1b decreases. Subsequently, the shared voltage is gradually equalized by the time constant determined by the electrolytic capacitor and the voltage dividing resistor.

【0014】充電初期の分担電圧アンバランスは、電解
コンデンサの静電容量誤差±20%つまり、一方が1.
2に対して他方が0.8の比になることを考慮しなけれ
ばならない。したがって、図7の例では(ロ)のピーク
電圧は1.2Eとなる。この際、定格電圧を越える時間
が非常に短いのであれば、電解コンデンサのサージ耐電
圧を越えない範囲内で設計することも可能であるが、前
述したようにバランス状態になるには、数十秒といった
長時間を要するため定格電圧を上げる必要が生じてく
る。以上のように、静電容量が±20%程度のバラツキ
があるため、従来方法では耐電圧の低い電解コンデンサ
を選定することが難しく、このようなことから回路の小
型化を妨げる要因となっていた。
The shared voltage imbalance at the beginning of charging has a capacitance error of the electrolytic capacitor of ± 20%, ie, one of the two is 1.
It must be taken into account that the other has a ratio of 0.8 to 2. Therefore, in the example of FIG. 7, the peak voltage of (b) is 1.2E. At this time, if the time of exceeding the rated voltage is very short, it is possible to design within a range that does not exceed the surge withstand voltage of the electrolytic capacitor. However, as described above, it takes several tens of seconds to achieve a balanced state. Since it takes a long time, it is necessary to increase the rated voltage. As described above, since the capacitance varies about ± 20%, it is difficult to select an electrolytic capacitor having a low withstand voltage by the conventional method, and this is a factor that hinders downsizing of the circuit. Was.

【0015】[0015]

【課題を解決するための手段】かかる課題を解決するた
めに、本発明では請求項1に記載の如く、NPNトラン
ジスタのコレクタを第一の抵抗を介して第一のコンデン
サの正極に接続し、該NPNトランジスタのエミッタは
前記第一のコンデンサの負極に接続し、前記第一のコン
デンサの正極と前記NPNトランジスタのベース間に第
二の抵抗を接続し、PNPトランジスタのコレクタは第
三の抵抗を介して第二のコンデンサの負極に接続し、該
PNPトランジスタのエミッタは前記第二のコンデンサ
の正極に接続し、前記第二のコンデンサの負極と前記P
NPトランジスタのベース間に第四の抵抗を接続し、前
記NPNトランジスタのエミッタと前記PNPトランジ
スタのエミッタを接続し、前記NPNトランジスタのベ
ースと前記PNPトランジスタのベースを接続して構成
する。請求項2に記載のとおり、上記構成を複数組備え
ることも可能である。
According to the present invention, a collector of an NPN transistor is connected to a positive electrode of a first capacitor via a first resistor. The emitter of the NPN transistor is connected to the negative electrode of the first capacitor, the second resistor is connected between the positive electrode of the first capacitor and the base of the NPN transistor, and the collector of the PNP transistor is connected to the third resistor. And the emitter of the PNP transistor is connected to the positive electrode of the second capacitor, and the negative electrode of the second capacitor is connected to the negative electrode of the second capacitor.
A fourth resistor is connected between the bases of the NP transistors, the emitter of the NPN transistor is connected to the emitter of the PNP transistor, and the base of the NPN transistor is connected to the base of the PNP transistor. As described in claim 2, a plurality of the above configurations can be provided.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図1は、電解コンデンサ1a、1bの
2直列の回路に、本発明を適用した例であり、NPNト
ランジスタ4aのコレクタを抵抗3eを介してコンデン
サ1aの正極に接続し、NPNトランジスタ4aのエミ
ッタはコンデンサ1aの負極に接続し、コンデンサ1a
の正極とNPNトランジスタ4aのベース間に抵抗3g
を接続する。PNPトランジスタ4bのコレクタは、抵
抗3fを介してコンデンサ1bの負極に接続し、PNP
トランジスタ4bのエミッタはコンデンサ1bの正極に
接続し、コンデンサ1bの負極とPNPトランジスタ4
bのベース間に抵抗3hを接続する。さらに、NPNト
ランジスタ4aとPNPトランジスタ4bのエミッタ同
志、ベース同志を接続する。エミッタ同志の接続点を
(a)、ベース同志の接続点を(b)とする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example in which the present invention is applied to a two-series circuit of electrolytic capacitors 1a and 1b. The collector of an NPN transistor 4a is connected to the positive electrode of a capacitor 1a via a resistor 3e, and the emitter of the NPN transistor 4a is Connected to the negative electrode of the capacitor 1a,
3g between the positive electrode of the transistor and the base of the NPN transistor 4a
Connect. The collector of the PNP transistor 4b is connected to the negative electrode of the capacitor 1b via the resistor 3f.
The emitter of the transistor 4b is connected to the positive electrode of the capacitor 1b, and the negative electrode of the capacitor 1b is connected to the PNP transistor 4b.
A resistor 3h is connected between the bases of b. Further, the emitter and the base of the NPN transistor 4a and the PNP transistor 4b are connected. The connection point between the emitters is (a), and the connection point between the bases is (b).

【0017】ここで、図1の電解コンデンサの直列体内
部の並列抵抗成分3a、3bは図5と同様3aが大きく
(その抵抗値をRx)、3bが小さい(その抵抗値をR
m)場合、電解コンデンサの負極から見た(a)点の電
位は、印加電圧の1/2より小さくなり、一方(b)点
の電位は、抵抗3gと3hにより印加電圧の1/2とな
っている。(a)点はトランジスタ4a、4bのエミッ
タ端子、(b)はトランジスタ4a、4bのベース端子
となっているので、この場合NPNトランジスタ4aに
ベース電流が供給され導通する。トランジスタの動作が
理想的なスイッチ動作とした場合の等価回路を図2に示
す。トランジスタ4aの導通により、抵抗3aと3eが
並列回路を構成するので、電解コンデンサの分担電圧を
等しくすることは、抵抗3aと3eの合成抵抗値と抵抗
3bの抵抗値を等しくすることである。つまり抵抗3e
の抵抗値をRfとして、 Rx×Rf/(Rx+Rf)=Rm が成り立ち、ここで図の電解コンデンサの内部抵抗偏差
をαつまりRx=αRmとした場合、必要なRfの値は Rf=α×Rm/(α−1) となり、RfはRm以下の値にする必要はない。
Here, the parallel resistance components 3a and 3b in the series body of the electrolytic capacitor shown in FIG. 1 have a large value 3a (the resistance value is Rx) and a small value 3b (the resistance value is R), as in FIG.
m), the potential at the point (a) viewed from the negative electrode of the electrolytic capacitor is smaller than 1 / of the applied voltage, while the potential at the point (b) is と of the applied voltage by the resistors 3g and 3h. Has become. Point (a) is the emitter terminal of transistors 4a and 4b, and point (b) is the base terminal of transistors 4a and 4b. In this case, a base current is supplied to NPN transistor 4a to conduct. FIG. 2 shows an equivalent circuit when the operation of the transistor is an ideal switch operation. Since the resistors 3a and 3e form a parallel circuit due to the conduction of the transistor 4a, equalizing the shared voltage of the electrolytic capacitor means equalizing the combined resistance value of the resistors 3a and 3e and the resistance value of the resistor 3b. That is, the resistor 3e
Assuming that the internal resistance deviation of the electrolytic capacitor shown in the figure is α, that is, Rx = αRm, the required value of Rf is Rf = α × Rm, where Rx × Rf / (Rx + Rf) = Rm. / (Α-1), and Rf does not need to be equal to or less than Rm.

【0018】ここで、前述例にならって印加電圧600
V、Rm=35kΩ、α=3として計算してみると、必
要なRfは52.5kΩでその発熱は1.7Wとなる。
また、図1の抵抗3fはトランジスタ4bが導通してい
ないため、回路から切り離され発熱を生じない。そし
て、(b)点の電位は分圧電圧の基準となるため、抵抗
3gと3hはある程度の精度が必要となるが、ベース電
流を供給するだけなので高抵抗値とすることができる。
したがって、前述例に比較して、抵抗での発熱損失をほ
ぼ1/4にすることが可能である。無論、電解コンデン
サの抵抗偏差の関係が反転した場合には、図1の(a)
点の電位が(b)点の電位よりも高くなり、今度はPN
Pトランジスタ4bにベース電流が供給されて導通し、
上記と同様に動作をすることは明らかである。
Here, the applied voltage 600
When calculating with V, Rm = 35 kΩ and α = 3, the required Rf is 52.5 kΩ and the heat generation is 1.7 W.
Further, since the transistor 4b is not conducting, the resistor 3f in FIG. 1 is separated from the circuit and does not generate heat. Since the potential at the point (b) is used as a reference for the divided voltage, the resistors 3g and 3h need a certain degree of accuracy. However, since only the base current is supplied, the resistors 3g and 3h can have a high resistance value.
Therefore, the heat loss due to the resistance can be reduced to approximately 1/4 as compared with the above-described example. Of course, when the relationship of the resistance deviation of the electrolytic capacitor is reversed, FIG.
The potential at the point becomes higher than the potential at the point (b),
A base current is supplied to the P transistor 4b to make it conductive,
Obviously, the operation is the same as described above.

【0019】また、本実施例による分圧回路によれば、
図1の分圧用抵抗の抵抗値Rfを損失を増加させること
なく、分圧用抵抗値を小さく設定することが可能で、ア
ンバランス補正動作を急速におこなうことができる。分
圧抵抗値を小さく設定した状態で、たとえば初期充電時
等に電解コンデンサの静電容量偏差による分担電圧アン
バランスを生じた際、図1に示した(a)点と(b)点
は短時間に電位差が大きくなりトランジスタ4aあるい
は4bのベースに供給される電流も大きくなる。したが
って、トランジスタのコレクタに流れる電流つまり分圧
抵抗3eあるいは3fに流れる電流も分圧用抵抗が小さ
く設定されているが故に大きくなり、電解コンデンサの
分担電圧アンバランス状態を急速に補正する。
Further, according to the voltage dividing circuit of this embodiment,
The resistance value for voltage division can be set small without increasing the loss of the resistance value Rf of the voltage division resistance of FIG. 1, and the imbalance correction operation can be performed quickly. In a state where the voltage dividing resistance is set small, for example, when a shared voltage imbalance occurs due to a capacitance deviation of the electrolytic capacitor at the time of initial charging or the like, the points (a) and (b) shown in FIG. The potential difference increases with time, and the current supplied to the base of the transistor 4a or 4b also increases. Therefore, the current flowing through the collector of the transistor, that is, the current flowing through the voltage dividing resistor 3e or 3f also becomes large because the voltage dividing resistor is set small, thereby rapidly correcting the state of unbalanced voltage of the electrolytic capacitor.

【0020】電解コンデンサの分担電圧アンバランスが
解消されるにつれ(a)点と(b)点の電位差もなくな
り、トランジスタのベース電流が減少するとともに、コ
レクタ電流も低下し、最終的には電解コンデンサの並列
抵抗成分偏差による差分のみが分圧用抵抗ならびにトラ
ンジスタを流れる。この時電解コンデンサ印加電圧はバ
ランスしており、分圧回路の印加電圧は、分圧用抵抗に
は上記の差電流による電圧降下分のみかかり残りがトラ
ンジスタに印加される。したがって、トランジスタを含
んだ分圧回路での損失は図2で示した回路の分圧用抵抗
と等しくなり、損失が増大することはない。
As the shared voltage imbalance of the electrolytic capacitor is eliminated, the potential difference between the points (a) and (b) disappears, the base current of the transistor decreases, and the collector current also decreases. Only the difference due to the parallel resistance component deviation flows through the voltage dividing resistor and the transistor. At this time, the applied voltage of the electrolytic capacitor is balanced, and the applied voltage of the voltage dividing circuit is applied to the voltage dividing resistor only by the voltage drop due to the above-mentioned difference current, and the remaining voltage is applied to the transistor. Therefore, the loss in the voltage dividing circuit including the transistor becomes equal to the voltage dividing resistance of the circuit shown in FIG. 2, and the loss does not increase.

【0021】次に、請求項2についての実施例を図3示
す。図3は複数の電解コンデンサ直列体に対し、図1に
よる分圧回路を電解コンデンサ直列体と一対にして付加
したものである。図中、1a1〜1a3、1b1〜1b
3は電解コンデンサ、2a1〜2a3、2b1〜2b3
はコンデンサ成分、3a1〜3a3、3b1〜3b3は
並列抵抗成分、3e1〜3e3、3f1〜3f3、3g
1〜3g3、3h1〜3h3は分圧抵抗、4a1〜4a
3、4b1〜4b3はトランジスタである。個々の分圧
回路動作については図1にて説明したものと何ら変わり
はないので、その有用性は明白である。
Next, an embodiment according to claim 2 is shown in FIG. FIG. 3 shows a configuration in which the voltage dividing circuit shown in FIG. 1 is added to a plurality of series electrolytic capacitors in a pair with the series electrolytic capacitors. In the figure, 1a1 to 1a3, 1b1 to 1b
3 is an electrolytic capacitor, 2a1-2a3, 2b1-2b3
Is a capacitor component, 3a1-3a3, 3b1-3b3 are parallel resistance components, 3e1-3e3, 3f1-3f3, 3g
1-3g3, 3h1-3h3 are voltage dividing resistors, 4a1-4a
Reference numerals 3, 4b1 to 4b3 are transistors. Since the operation of each voltage dividing circuit is not different from that described in FIG. 1, its usefulness is clear.

【0022】[0022]

【発明の効果】本発明によれば簡略な電気回路を付加す
るだけで、電解コンデンサ直列体の電圧バランスを図る
ための分圧用抵抗値を大きく設定することができ、分圧
抵抗の発熱を抑制し小型のものにしながらも、耐電圧の
低い電解コンデンサを使用することが可能となる。ま
た、分圧抵抗の抵抗値を回路損失を増大することなく小
さくすることもできるで、初期充電時等に生じる静電容
量誤差による分圧アンバランスを急速に補正することが
可能で、電解コンデンサのサージ耐電圧領域を使用する
ことを考慮した設計をおこなうことも可能となる。
According to the present invention, by simply adding a simple electric circuit, it is possible to set a large resistance value for voltage division for balancing the voltage of the series body of electrolytic capacitors, and to suppress heat generation of the voltage division resistance. In addition, it is possible to use an electrolytic capacitor having a low withstand voltage while reducing the size. Also, the resistance value of the voltage dividing resistor can be reduced without increasing the circuit loss, so that the voltage dividing imbalance due to a capacitance error occurring at the time of initial charging or the like can be rapidly corrected, and an electrolytic capacitor can be used. It is also possible to carry out a design in consideration of using the surge withstand voltage region of FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の請求項1を説明するための回路
図である。
FIG. 1 is a circuit diagram for explaining claim 1 of the present invention.

【図2】図2は本発明の請求項1を説明するための等価
回路図である。
FIG. 2 is an equivalent circuit diagram for explaining claim 1 of the present invention.

【図3】図3は本発明の請求項2を説明するための回路
図である。
FIG. 3 is a circuit diagram for explaining claim 2 of the present invention.

【図4】図4は従来例を説明するための回路図である。FIG. 4 is a circuit diagram for explaining a conventional example.

【図5】図5は従来例を説明するための回路図である。FIG. 5 is a circuit diagram for explaining a conventional example.

【図6】図6は従来例の問題点を説明するための回路図
である。
FIG. 6 is a circuit diagram for explaining a problem of the conventional example.

【図7】図7は従来例の問題点を説明するための波形図
である。
FIG. 7 is a waveform chart for explaining a problem of the conventional example.

【符号の説明】[Explanation of symbols]

1,1a,1b・・・・電解コンデンサ 2,2a,2b・・・・コンデンサ成分 3,3a,3b・・・・並列抵抗成分 3e,3f,3g,3h,3j,3k,3n・・・・抵
抗 4a,4b・・・・トランジスタ 5・・・・直流電源 6・・・・投入スイッチ
··· electrolytic capacitor 2, 2a, 2b ··· capacitor component 3, 3a, 3b ··· parallel resistance component 3e, 3f, 3g, 3h, 3j, 3k, 3n ··· · Resistance 4a, 4b · · · Transistor 5 · · · DC power supply 6 · · · ON switch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 NPNトランジスタのコレクタは第一の
抵抗を介して第一のコンデンサの正極に接続し、該NP
Nトランジスタのエミッタは前記第一のコンデンサの負
極に接続し、前記第一のコンデンサの正極と前記NPN
トランジスタのベース間に第二の抵抗を接続し、PNP
トランジスタのコレクタは第三の抵抗を介して第二のコ
ンデンサの負極に接続し、該PNPトランジスタのエミ
ッタは前記第二のコンデンサの正極に接続し、前記第二
のコンデンサの負極と前記PNPトランジスタのベース
間に第四の抵抗を接続し、前記NPNトランジスタのエ
ミッタと前記PNPトランジスタのエミッタを接続し、
前記NPNトランジスタのベースと前記PNPトランジ
スタのベースを接続して構成したことを特徴とするコン
デンサ直列体の分圧回路。
1. A collector of an NPN transistor is connected to a positive electrode of a first capacitor through a first resistor.
The emitter of the N transistor is connected to the negative electrode of the first capacitor, and the positive electrode of the first capacitor and the NPN
A second resistor is connected between the bases of the transistors, and a PNP
The collector of the transistor is connected through a third resistor to the negative electrode of the second capacitor, the emitter of the PNP transistor is connected to the positive electrode of the second capacitor, and the negative electrode of the second capacitor is connected to the negative electrode of the PNP transistor. Connecting a fourth resistor between the bases, connecting the emitter of the NPN transistor and the emitter of the PNP transistor,
A voltage dividing circuit of a capacitor series body, wherein a base of the NPN transistor is connected to a base of the PNP transistor.
【請求項2】 請求項1記載のコンデンサ直列体の分圧
回路を複数組直列接続して構成したコンデンサ直列体の
分圧回路。
2. A voltage dividing circuit for a capacitor series body comprising a plurality of series-connected voltage dividing circuits for the capacitor series body according to claim 1.
JP9031169A 1997-01-30 1997-01-30 Voltage-dividing circuit with serial capacitor body Pending JPH10295081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9031169A JPH10295081A (en) 1997-01-30 1997-01-30 Voltage-dividing circuit with serial capacitor body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9031169A JPH10295081A (en) 1997-01-30 1997-01-30 Voltage-dividing circuit with serial capacitor body

Publications (1)

Publication Number Publication Date
JPH10295081A true JPH10295081A (en) 1998-11-04

Family

ID=12323945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9031169A Pending JPH10295081A (en) 1997-01-30 1997-01-30 Voltage-dividing circuit with serial capacitor body

Country Status (1)

Country Link
JP (1) JPH10295081A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1315276A2 (en) * 2001-11-27 2003-05-28 Power Integrations, Inc. Method and apparatus for balancing active capacitor leakage current
US6670778B2 (en) 2001-08-07 2003-12-30 Denso Corporation AC power generating apparatus having electrolytic capacitor and ceramic capacitor
JP2005354788A (en) * 2004-06-09 2005-12-22 Mitsubishi Electric Corp Inverter control device
JP2008236826A (en) * 2007-03-16 2008-10-02 Cooper Technologies Co System having coilless circuit for controlling voltage unbalance, capacitor protection, balanced circuit module, and capacitor device
JP2008301623A (en) * 2007-05-31 2008-12-11 Daikin Ind Ltd Balancing circuit with discharge function
JP2009247186A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp System-cooperative inverter
WO2010016519A1 (en) * 2008-08-06 2010-02-11 Fdk株式会社 Inter-module voltage balance correcting circuit in power storage system
CN103684023A (en) * 2012-09-18 2014-03-26 东芝施耐德变换器公司 Voltage balancing circuit
JP2014087144A (en) * 2012-10-23 2014-05-12 Tamagawa Seiki Co Ltd Bleeder resistor energization circuit
CN103795283A (en) * 2012-10-31 2014-05-14 东芝施耐德变换器公司 Stored electric power discharging circuit for inverter
JP2014103805A (en) * 2012-11-21 2014-06-05 Mitsubishi Heavy Ind Ltd Unit cell voltage regulator
JP2015050934A (en) * 2013-09-02 2015-03-16 エルエス産電株式会社Lsis Co., Ltd. Power-factor correction circuit
JP2016029349A (en) * 2014-07-25 2016-03-03 日立オートモティブシステムズ株式会社 Battery monitoring circuit
EP3151405A1 (en) * 2015-09-30 2017-04-05 Siemens Aktiengesellschaft Circuit for balancing the voltages of dc-link capacitors
CN110445211A (en) * 2019-08-08 2019-11-12 欣旺达电子股份有限公司 Voltage balance circuit
US11329591B2 (en) 2019-06-26 2022-05-10 Fanuc Corporation Power conversion apparatus having two DC voltage modes and motor drive apparatus

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670778B2 (en) 2001-08-07 2003-12-30 Denso Corporation AC power generating apparatus having electrolytic capacitor and ceramic capacitor
US7397680B2 (en) 2001-11-27 2008-07-08 Power Integrations, Inc. Method and apparatus for balancing active capacitor leakage current
EP1315276A3 (en) * 2001-11-27 2005-03-23 Power Integrations, Inc. Method and apparatus for balancing active capacitor leakage current
EP1315276A2 (en) * 2001-11-27 2003-05-28 Power Integrations, Inc. Method and apparatus for balancing active capacitor leakage current
US6980451B2 (en) 2001-11-27 2005-12-27 Power Integrations, Inc. Method and apparatus for balancing active capacitor leakage current
US7133301B2 (en) 2001-11-27 2006-11-07 Power Integrations, Inc. Method and apparatus for balancing active capacitor leakage current
JP2005354788A (en) * 2004-06-09 2005-12-22 Mitsubishi Electric Corp Inverter control device
JP4509659B2 (en) * 2004-06-09 2010-07-21 三菱電機株式会社 Inverter control device
JP2008236826A (en) * 2007-03-16 2008-10-02 Cooper Technologies Co System having coilless circuit for controlling voltage unbalance, capacitor protection, balanced circuit module, and capacitor device
JP2008301623A (en) * 2007-05-31 2008-12-11 Daikin Ind Ltd Balancing circuit with discharge function
JP2009247186A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp System-cooperative inverter
WO2010016519A1 (en) * 2008-08-06 2010-02-11 Fdk株式会社 Inter-module voltage balance correcting circuit in power storage system
JP2010041858A (en) * 2008-08-06 2010-02-18 Fdk Corp Voltage balance correcting circuit between modules in energy storage system
US8917059B2 (en) 2008-08-06 2014-12-23 Fdk Corporation Inter-module voltage balance correcting circuit of a power storage system
JP2014060852A (en) * 2012-09-18 2014-04-03 Toshiba Schneider Inverter Corp Voltage balancing circuit
EP2709259A3 (en) * 2012-09-18 2018-03-28 Toshiba Schneider Inverter Corporation Voltage balancing circuit
US9110479B2 (en) 2012-09-18 2015-08-18 Toshiba Schneider Inverter Corporation Voltage balancing circuit
CN103684023A (en) * 2012-09-18 2014-03-26 东芝施耐德变换器公司 Voltage balancing circuit
JP2014087144A (en) * 2012-10-23 2014-05-12 Tamagawa Seiki Co Ltd Bleeder resistor energization circuit
CN103795283A (en) * 2012-10-31 2014-05-14 东芝施耐德变换器公司 Stored electric power discharging circuit for inverter
US9231415B2 (en) 2012-10-31 2016-01-05 Toshiba Schneider Inverter Corporation Stored electric power discharging circuit for inverter
EP2728731A3 (en) * 2012-10-31 2017-11-15 Toshiba Schneider Inverter Corporation Stored electric power discharging circuit for inverter
JP2014090627A (en) * 2012-10-31 2014-05-15 Toshiba Schneider Inverter Corp Storage power discharge circuit for inverter device
JP2014103805A (en) * 2012-11-21 2014-06-05 Mitsubishi Heavy Ind Ltd Unit cell voltage regulator
JP2015050934A (en) * 2013-09-02 2015-03-16 エルエス産電株式会社Lsis Co., Ltd. Power-factor correction circuit
US9509206B2 (en) 2013-09-02 2016-11-29 Lsis Co., Ltd. Power factor corrector correcting a power factor of an alternating current (AC) voltage
JP2016029349A (en) * 2014-07-25 2016-03-03 日立オートモティブシステムズ株式会社 Battery monitoring circuit
EP3151405A1 (en) * 2015-09-30 2017-04-05 Siemens Aktiengesellschaft Circuit for balancing the voltages of dc-link capacitors
US10181732B2 (en) 2015-09-30 2019-01-15 Siemens Aktiengesellschaft Circuit for balancing capacitor voltages at capacitors in a DC circuit
US11329591B2 (en) 2019-06-26 2022-05-10 Fanuc Corporation Power conversion apparatus having two DC voltage modes and motor drive apparatus
CN110445211A (en) * 2019-08-08 2019-11-12 欣旺达电子股份有限公司 Voltage balance circuit

Similar Documents

Publication Publication Date Title
JPH10295081A (en) Voltage-dividing circuit with serial capacitor body
CN111181396B (en) Suspension capacitance type multi-level bridge circuit and control method thereof
JP5186829B2 (en) Direct power converter
US20200389086A1 (en) Converter and current control system thereof
JP4238935B1 (en) Direct AC power converter
JPH11215841A (en) Power supply for electric car
JP2003219555A (en) Method for balancing active capacitor leakage current and its device
CN107147289B (en) Control method, control circuit and multiphase converter
WO2022121828A1 (en) Power conversion circuit, control method for power conversion circuit, and transformer
CN103236786B (en) A kind of equalizer circuit and inverter
EP2709259A2 (en) Voltage balancing circuit
US20210175797A1 (en) Boost converter
CN110557031A (en) Frequency converter and frequency converter system
Wang et al. Impedance characteristics modeling of a two-terminal active capacitor
US11368147B2 (en) Gate drive circuit
JP4543718B2 (en) Power converter
US20210175802A1 (en) Boost converter
CN210405105U (en) Frequency converter and frequency converter system
JP2013074763A (en) Power conversion device and control method thereof
JP2709210B2 (en) Initial charging circuit of voltage source inverter
CN220325524U (en) Inverter circuit based on three-phase full-bridge intelligent power module
CN111446864B (en) Multiphase DC/DC parallel control method and control circuit thereof
CN112072911B (en) Bus capacitor voltage regulating circuit, frequency converter and air conditioner
CN118353238A (en) Voltage equalizing circuit, voltage equalizing control method and power conversion equipment
JP6439835B1 (en) Multi-level power converter and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051102