Nothing Special   »   [go: up one dir, main page]

JPH10288567A - Photomask and coma-aberration measuring method using it - Google Patents

Photomask and coma-aberration measuring method using it

Info

Publication number
JPH10288567A
JPH10288567A JP20417697A JP20417697A JPH10288567A JP H10288567 A JPH10288567 A JP H10288567A JP 20417697 A JP20417697 A JP 20417697A JP 20417697 A JP20417697 A JP 20417697A JP H10288567 A JPH10288567 A JP H10288567A
Authority
JP
Japan
Prior art keywords
pattern
lens
light
transparent
translucent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20417697A
Other languages
Japanese (ja)
Other versions
JP3574729B2 (en
Inventor
Katsuya Hayano
勝也 早野
Norio Hasegawa
昇雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20417697A priority Critical patent/JP3574729B2/en
Publication of JPH10288567A publication Critical patent/JPH10288567A/en
Application granted granted Critical
Publication of JP3574729B2 publication Critical patent/JP3574729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely measure the aberration of a lens by utilizing that the light intensity of sub-peak is differed between the areas opposed with a main pattern as the center according to lens aberration. SOLUTION: While the transmitted light of the main pattern 3 of a light transmitting part is a positive code, the phase of the transmitted light of a translucent phase shift membrane 2 is reversed and a negative code. In addition to a light intensity 4 transmitted by the main pattern 3, a second light intensity peak 5 or a so-called sub-peak is generated. Although the exposure of a resist is generally set so that the sub-peak is not transferred, the sub-peak is transferred to the resist on a wafer to evaluate the aberration of a lens in this invention. When the lens has no aberration the second light intensity peak 5 is generated with the same light intensity around the main pattern peak 4, and when the lens has a coma aberration, the light intensity is differed between sub-peaks 7, 8 opposed with the main pattern peak 6 as the center. The lens aberration is quantitatively determined by use of this phenomenon, whereby a precise aberration evaluation is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置などの製
造に用いる投影露光装置に関し、特に縮小投影露光装置
のレンズの評価の方法及び評価に使用するホトマスクに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus used for manufacturing semiconductor devices and the like, and more particularly, to a method for evaluating a lens of a reduction projection exposure apparatus and a photomask used for the evaluation.

【0002】[0002]

【従来の技術】半導体装置などの製造におけるリソグラ
フィ工程では縮小投影露光装置が主に用いられている、
半導体装置の微細化は縮小投影露光装置の高性能化に依
って達成されてきた。しかし、さらにパタンの微細化を
進めるには縮小投影レンズの収差を低減することが必要
である。従来、縮小投影露光装置に搭載されたレンズの
収差の評価は形成したレジストパタンの形状から得られ
る情報を用い行っていた。図9にレンズのコマ収差の有
無でのレジスト断面形状の変化の例をしめす。収差がな
い場合は、図9(a)に示すように、レジストパタン9
1の両側の側面の傾斜角はほぼ等しいのに対して、収差
がある場合は、図9(b)に示すように、レジストパタ
ン92の両側の側面の傾斜角は異なり、この場合は、右
側の側面の傾斜角がなだらかになっている。通常は、こ
の、両側の傾斜角の差、あるいは、傾斜幅93,94の
差等を用いて、経験的に評価を行っていた。しかし、こ
の評価法では基板の反射率、レジスト膜厚、レジストの
特性によって、得られる値が異なり、正確に収差量を測
定することができなかった。
2. Description of the Related Art In a lithography process for manufacturing a semiconductor device or the like, a reduced projection exposure apparatus is mainly used.
The miniaturization of semiconductor devices has been achieved by improving the performance of reduction projection exposure apparatuses. However, in order to further refine the pattern, it is necessary to reduce the aberration of the reduction projection lens. Conventionally, the aberration of a lens mounted in a reduction projection exposure apparatus has been evaluated using information obtained from the shape of a formed resist pattern. FIG. 9 shows an example of a change in the resist cross-sectional shape depending on the presence or absence of coma of the lens. When there is no aberration, as shown in FIG.
In contrast, when there is an aberration, the inclination angles of both side surfaces of the resist pattern 92 are different, as shown in FIG. The slope angle of the side is gentle. Normally, an evaluation is made empirically using the difference between the inclination angles on both sides or the difference between the inclination widths 93 and 94. However, in this evaluation method, the obtained value differs depending on the reflectance of the substrate, the resist film thickness, and the characteristics of the resist, and the amount of aberration cannot be measured accurately.

【0003】[0003]

【発明が解決しようとする課題】レンズの収差を低減す
るには、レンズの種々の収差を高精度に測定し、修正、
選定する必要がある。本発明は、上記問題を解決し、縮
小投影露光装置に搭載されたレンズの収差量を正確に測
定する手段を提供することにある。
In order to reduce the aberration of the lens, various kinds of aberration of the lens are measured with high accuracy, and corrected,
It is necessary to select. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problem and to provide a means for accurately measuring the amount of aberration of a lens mounted on a reduction projection exposure apparatus.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、半透明位相シフトマスクを用いてパタ
ンを形成する際に発生する第2の光強度ピークいわゆる
サブピークの光強度がレンズの収差量によって主パタン
を中心として対向する領域で異なる事を利用して、レン
ズ収差を定量的に求める。
In order to achieve the above object, according to the present invention, a second light intensity peak which is generated when a pattern is formed using a translucent phase shift mask, that is, a light intensity of a so-called sub-peak is determined by a lens. The lens aberration is quantitatively obtained by utilizing the fact that the difference occurs in the region facing the main pattern as the center depending on the aberration amount.

【0005】また、マスク全面に測定パタンを配置する
ことにより、1ショットの露光によって露光領域のレン
ズ収差を評価できる。
[0005] Further, by arranging the measurement pattern over the entire surface of the mask, the lens aberration in the exposed area can be evaluated by one-shot exposure.

【0006】さらに、遮光パタンを配置することによ
り、微小ピッチで露光することができ、ウエハ内のレジ
スト塗布バラツキや基板等の影響を小さくして評価する
事ができる。
Further, by arranging a light-shielding pattern, it is possible to perform exposure at a fine pitch, and it is possible to reduce the influence of variations in resist coating in a wafer, the effect of a substrate, and the like, for evaluation.

【0007】[0007]

【発明の実施の形態】本発明の原理を図1で説明する。
図1(a)は半透明位相シフトマスクの平面図であり、
図1(b)は半透明位相シフトマスクの断面図である。
1はガラス基板、2は半透明位相シフト膜、3は透明領
域で形成される主パタンである。半透明位相シフト膜2
は、CrON膜を用いた。また、半透明位相シフト膜2
の露光光に対する透過率は6%とした。なおここでは半
透明膜にCrON膜使用したがこれに限らない。Cr
O,CrN,MoSiO,MoSiONなど、あるい
は、SiO2等の透明膜との多層膜など、半透明部と透
明部と通過する光の位相がほぼ反転していればよく、通
常の半透明位相シフトマスク構造で良い。図1(c)に
示すように、このマスクを通過した光の振幅分布は、光
透過部である主パタン3を通過した光が正の符号である
のに対し、半透明位相シフト膜2を通過した光の位相は
反転し、負の符号となる。この光をレンズを通しウエハ
上に投影すると、図1(d)に示すように光透過部であ
る主パタン3と半透明位相シフト膜2の境界で位相が反
転しているため、その直下で光強度はほぼ0となる。そ
のため光強度の広がりが抑えられ、コントラストの高い
微細なパタンが形成できる。しかし、主パタン3を通過
した光強度4の他に、第2の光強度ピーク5いわゆるサ
ブピークが発生する。通常このマスクを用いる場合、こ
の第2の光強度ピークが転写しないようにレジストの露
光量を設定する。本発明では、前記通常はウエハに転写
させないサブピークをウエハ上のレジストに転写させ、
レンズの収差を評価する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle of the present invention will be described with reference to FIG.
FIG. 1A is a plan view of a translucent phase shift mask,
FIG. 1B is a cross-sectional view of the translucent phase shift mask.
1 is a glass substrate, 2 is a translucent phase shift film, and 3 is a main pattern formed in a transparent region. Translucent phase shift film 2
Used a CrON film. Further, the translucent phase shift film 2
Was 6% for the exposure light. Here, the CrON film is used as the translucent film, but the invention is not limited to this. Cr
It is sufficient that the phase of light passing through the translucent portion and the transparent portion is almost inverted, such as a multilayer film of a transparent film such as O, CrN, MoSiO, MoSiON, or SiO2. Structure is good. As shown in FIG. 1 (c), the amplitude distribution of the light passing through the mask is such that the light passing through the main pattern 3, which is the light transmitting portion, has a positive sign, while the light passing through the translucent phase shift film 2 has a positive sign. The phase of the transmitted light is inverted and has a negative sign. When this light is projected on the wafer through a lens, the phase is inverted at the boundary between the main pattern 3 which is a light transmitting portion and the translucent phase shift film 2 as shown in FIG. The light intensity becomes almost zero. Therefore, the spread of light intensity is suppressed, and a fine pattern with high contrast can be formed. However, in addition to the light intensity 4 passing through the main pattern 3, a second light intensity peak 5 or a so-called sub-peak occurs. Usually, when this mask is used, the exposure amount of the resist is set so that the second light intensity peak is not transferred. In the present invention, the sub-peak which is not normally transferred to the wafer is transferred to the resist on the wafer,
Evaluate the lens aberration.

【0008】パタンをレジスト上に投影する縮小投影露
光装置の主要構成例を図10に示す。光源101から発
する光はフライアイレンズ102,コンデンサレンズ1
03,105及びミラー104を介してマスク106を
照射する。マスク106には場合によっては異物付着に
よるパタン転写不良を防止するためのペリクル107が
設けられている。マスク106上に描かれたマスクパタ
ンは,投影レンズ108を介して試料基板であるウエハ
109上に投影される。なお,マスク106はマスク位
置制御手段117で制御されたマスクステージ118上
に載置され,その中心と投影レンズ108の光軸とは正
確に位置合わせがなされている。ウエハ109は,試料
台110上に真空吸着されている。試料台110は,投
影レンズ108の光軸方向すなわちZ方向に移動可能な
Zステージ111上に載置され,さらにXYステージ1
12上に搭載されている。Zステージ111及びXYス
テージ112は,主制御系119からの制御命令に応じ
てそれぞれの駆動手段113,114によって駆動され
るので,所望の露光位置に移動可能である。その位置は
Zステージ111に固定されたミラー116の位置とし
て,レーザ測長機115で正確にモニタされている。投
影レンズ108には、種々の収差が存在する。しかし現
在、この縮小投影露光装置に搭載された投影レンズの収
差を精度良く測定する方法が無く問題である。マスク1
06として半透明位相シフトマスクを用い、ウエハ10
9上のレジストにパタンを転写すると、このレンズ10
8の収差によって、前述した第2の光強度ピーク5が変
化する。図1(d)及び(e)はその一例である。図1
(d)はレンズの収差がない場合の光強度分布である。
第2の光強度ピーク5は、主パタン周辺に同じ光強度で
発生している。図1(e)はレンズにコマ収差がある場
合の光強度分布である。主パタンを中心として対向する
サブピーク7と8の光強度に差が生じている。本発明で
は、この現象を利用して、レンズ収差の定量化を行な
い、高精度な収差の評価を行なう。
FIG. 10 shows a main configuration example of a reduction projection exposure apparatus for projecting a pattern on a resist. The light emitted from the light source 101 is a fly-eye lens 102, a condenser lens 1
The mask 106 is irradiated via the mirrors 03 and 105 and the mirror 104. In some cases, the mask 106 is provided with a pellicle 107 for preventing pattern transfer failure due to foreign matter adhesion. The mask pattern drawn on the mask 106 is projected via a projection lens 108 onto a wafer 109 as a sample substrate. The mask 106 is placed on a mask stage 118 controlled by the mask position control means 117, and the center of the mask 106 and the optical axis of the projection lens 108 are accurately aligned. The wafer 109 is vacuum-adsorbed on the sample stage 110. The sample stage 110 is mounted on a Z stage 111 movable in the optical axis direction of the projection lens 108, that is, in the Z direction.
12 is mounted. Since the Z stage 111 and the XY stage 112 are driven by the respective driving units 113 and 114 in accordance with a control command from the main control system 119, they can be moved to desired exposure positions. The position is accurately monitored by the laser length measuring device 115 as the position of the mirror 116 fixed to the Z stage 111. The projection lens 108 has various aberrations. However, at present, there is no method for accurately measuring the aberration of the projection lens mounted on the reduction projection exposure apparatus, which is a problem. Mask 1
06, using a translucent phase shift mask,
When the pattern is transferred to the resist on the lens 9, this lens 10
Due to the aberration of 8, the above-mentioned second light intensity peak 5 changes. FIGS. 1D and 1E are examples. FIG.
(D) is a light intensity distribution when there is no lens aberration.
The second light intensity peak 5 occurs at the same light intensity around the main pattern. FIG. 1E shows a light intensity distribution when the lens has a coma aberration. There is a difference between the light intensities of the sub-peaks 7 and 8 facing each other around the main pattern. In the present invention, using this phenomenon, the lens aberration is quantified, and the aberration is evaluated with high accuracy.

【0009】本発明の第1の実施例を図2〜図5及び図
11〜図12で説明する。図2はレンズ収差の1つであ
るコマ収差と図1(e)に示す光強度分布の第2の光強
度ピーク7及び8の光強度の関係を示している。ここで
パタン転写には、露光波長λ=0.248μm、レンズ
の開口数NA=0.55のステッパを用いた。また半透
明膜の透過率は透明部の透過率を100%とした時6
%,透明部と半透明部の位相差が180°、転写する主
パタン3に該る光透過部の設計寸法Wを0.40μm角
(投影露光光学系の倍率が1/5なので、マスク上では
2μm角)のマスクを用いた。第2の光強度ピーク7の
光強度は、コマ収差量の増加にほぼ比例して大きくな
る。これに対し、主パタンを中心として対向の位置に有
る第2の光強度ピーク8の光強度は、コマ収差量の増加
にしたがって小さくなる。
A first embodiment of the present invention will be described with reference to FIGS. 2 to 5 and FIGS. FIG. 2 shows the relationship between the coma aberration, one of the lens aberrations, and the light intensity of the second light intensity peaks 7 and 8 of the light intensity distribution shown in FIG. Here, for the pattern transfer, a stepper having an exposure wavelength λ = 0.248 μm and a numerical aperture NA of the lens = 0.55 was used. The transmittance of the translucent film is 6 when the transmittance of the transparent portion is 100%.
%, The phase difference between the transparent portion and the translucent portion is 180 °, and the design dimension W of the light transmitting portion corresponding to the main pattern 3 to be transferred is 0.40 μm square (since the magnification of the projection exposure optical system is 1 /, the A 2 μm square mask was used. The light intensity at the second light intensity peak 7 increases substantially in proportion to the increase in the amount of coma. On the other hand, the light intensity of the second light intensity peak 8 located at a position facing the center of the main pattern decreases as the coma aberration amount increases.

【0010】この第2の光強度ピーク8と第2の光強度
ピーク7の光強度の比を、図3に示す。コマ収差に比例
して光強度比が大きくなっていることが判る。従って、
第2の光強度ピーク7及び8がそれぞれ転写される露光
量比を求めることにより、図3を用いてコマ収差を求め
ることができる。
FIG. 3 shows the ratio of the light intensity of the second light intensity peak 8 to the light intensity of the second light intensity peak 7. It can be seen that the light intensity ratio increases in proportion to the coma. Therefore,
By obtaining the exposure ratio at which the second light intensity peaks 7 and 8 are respectively transferred, the coma aberration can be obtained using FIG.

【0011】実際に実験したレジストパタンの断面形状
及び平面形状を図4及び図12に示す。図4(a)に示
すような基板9の上にレジスト10を塗布し、通常の工
程で露光現像して、マスクのパタンをレジストに形成す
る。ここで従来と異なることは、パタンを形成する際に
第2の光強度ピーク7及び8がレジストに転写するよう
に露光量を調整することである。図4(b)に示すよう
に、主パタンを通過した光によって形成したパタン11
の他に、第2の光強度ピーク7によってレジストが膜減
りをはじめる露光量E1を求める。この条件では、パタ
ン11を中心として対向した位置である12には第2の
光強度ピーク8は転写していない。次に図4(c)に示
すように、レジスト膜減り部14とパタン11を中心と
して対向する位置12に第2の光強度ピーク8によって
レジストが膜減りをはじめる露光量E2を求める。この
露光量E2と露光量E1の露光量比を、サブピークの光
強度比に換算し、図3に当てはめることによりコマ収差
量を求めることができる。実際の測定結果は、E1=7
6.8mJ/平方cmであり、E2=48.0mJ/平
方cmであった。この場合の光強度比は、E2/E1=
76.8/48.0=1.6となり、コマ収差量は約
0.11×λであった。この他に、第2の光強度ピーク
7および8を同時にレジストに転写し、各々のレジスト
膜の減少量を、レジストの感度特性曲線を用い光強度に
換算する方法を用いても良い。
FIGS. 4 and 12 show the cross-sectional shape and the planar shape of the resist pattern actually tested. A resist 10 is applied on a substrate 9 as shown in FIG. 4A and exposed and developed in a usual process to form a mask pattern on the resist. Here, what differs from the related art is that the amount of exposure is adjusted so that the second light intensity peaks 7 and 8 are transferred to the resist when a pattern is formed. As shown in FIG. 4B, a pattern 11 formed by light passing through the main pattern
In addition, an exposure amount E1 at which the resist starts to be reduced in film thickness is determined by the second light intensity peak 7. Under this condition, the second light intensity peak 8 is not transferred to the position 12 facing the pattern 11 as a center. Next, as shown in FIG. 4C, an exposure amount E2 at which the resist starts to be reduced in thickness at the position 12 facing the resist film reduced portion 14 with the pattern 11 as a center is determined by the second light intensity peak 8. The coma aberration amount can be obtained by converting the exposure amount ratio between the exposure amount E2 and the exposure amount E1 into the light intensity ratio of the sub-peak and applying the result to FIG. The actual measurement result is E1 = 7
It was 6.8 mJ / cm2 and E2 was 48.0 mJ / cm2. The light intensity ratio in this case is E2 / E1 =
76.8 / 48.0 = 1.6, and the coma aberration amount was about 0.11 × λ. Alternatively, a method may be used in which the second light intensity peaks 7 and 8 are simultaneously transferred to the resist, and the reduced amount of each resist film is converted into light intensity using a sensitivity characteristic curve of the resist.

【0012】なお、主パタンは四角形に限らず、六角形
や八角形など多角形でも良い。多角形パタンを用いるこ
とにより、コマ収差量と同時にコマ収差の向きを測定す
ることができる。図11は八角形のパタンを用いた場合
のマスクの平面図であり、122は半透明位相シフト領
域、123は透明領域で形成される主パタンを示してい
る。ここで主パタン123の一辺の設計寸法Wは特に制
限は無いが、W=a・λ/NA(ただし、投影露光光学
系の開口数をNA、露光波長をλ、a≧0.4)の条件
にすることが望ましい。ここでパタン転写には、露光波
長λ=0.248μm、レンズの開口数NA=0.55
のステッパを用いた。また半透明膜の透過率は透明部の
透過率を100%とした時6%,透明部と半透明部の位
相差が180°、転写する主パタン123に該る光透過
部の一辺設計寸法Wを0.50μm(投影露光光学系の
倍率が1/5なので、マスク上では2.5μm角)のマ
スクを用いた。実際に実験したレジストパタンの平面形
状を図12に示す。図に示すように通常の工程で露光現
像し、マスクのパタンをレジストに形成する。ここで従
来と異なることは、パタンを形成する際に第2の光強度
ピークがレジストに転写するように露光量を調整するこ
とである。図12(a)に示すように、主パタンを通過
した光によって形成したパタン131の他に、第2の光
強度ピークによってレジストが膜減りをはじめる露光量
E1を求める。この条件では、パタン131を中心とし
て対向した位置である132には第2の光強度ピークは
転写していない。次に図12(b)に示すように、パタ
ン131を中心としてレジスト膜減り部134と対向す
る位置132に第2の光強度ピークによってレジストが
膜減りをはじめる露光量E2を求める。この露光量E2
と露光量E1の露光量比を、サブピークの光強度比に換
算し、計算値と比較することによりコマ収差量を求める
ことができる。実際の測定結果は、E1=76.8mJ
/平方cmであり、E2=48.0mJ/平方cmであ
った。この場合の光強度比は、E2/E1=76.8/
48.0=1.6となり、コマ収差量は約0.11×λ
であった。また、正八角形としたことによりコマ収差の
向きを精度良く判別することができた。
The main pattern is not limited to a square, but may be a polygon such as a hexagon or an octagon. By using a polygon pattern, the direction of coma aberration can be measured simultaneously with the amount of coma aberration. FIG. 11 is a plan view of a mask when an octagonal pattern is used. Reference numeral 122 denotes a translucent phase shift area, and 123 denotes a main pattern formed of a transparent area. Here, the design dimension W of one side of the main pattern 123 is not particularly limited, but W = a · λ / NA (however, the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and a ≧ 0.4). It is desirable to set conditions. Here, for pattern transfer, the exposure wavelength λ = 0.248 μm and the numerical aperture NA of the lens = 0.55
Stepper was used. The transmissivity of the translucent film is 6% when the transmissivity of the transparent portion is 100%, the phase difference between the transparent portion and the translucent portion is 180 °, one side design dimension of the light transmitting portion of the main pattern 123 to be transferred. A mask having a W of 0.50 μm (2.5 μm square on the mask because the magnification of the projection exposure optical system is 5) was used. FIG. 12 shows the plan shape of the resist pattern actually tested. As shown in the figure, exposure and development are performed in a normal process to form a mask pattern on a resist. Here, the difference from the related art is that the amount of exposure is adjusted so that the second light intensity peak is transferred to the resist when a pattern is formed. As shown in FIG. 12A, in addition to the pattern 131 formed by the light that has passed through the main pattern, an exposure amount E1 at which the resist starts to be reduced in thickness by the second light intensity peak is obtained. Under this condition, the second light intensity peak is not transferred to 132, which is a position facing the pattern 131 as a center. Next, as shown in FIG. 12B, an exposure amount E2 at which the resist starts to be reduced by the second light intensity peak is obtained at a position 132 facing the resist reduced portion 134 with the pattern 131 as a center. This exposure amount E2
The coma aberration amount can be obtained by converting the exposure amount ratio of the exposure amount E1 to the light intensity ratio of the sub-peak and comparing the calculated value with the calculated value. The actual measurement result is E1 = 76.8 mJ
/ Square cm, and E2 = 48.0 mJ / square cm. The light intensity ratio in this case is E2 / E1 = 76.8 /
48.0 = 1.6, and the coma aberration amount is about 0.11 × λ.
Met. In addition, the regular octagon made it possible to determine the direction of coma with high accuracy.

【0013】コマ収差は、縮小投影露光装置の1ショッ
トの面内で分布している。したがって、ショット内の全
面を一度に計測できることが望ましい。図5は、レンズ
のコマ収差量を測定するためにマスクの有効露光領域に
測定用パタンを配置したものである。図5(a)はマス
クの平面図であり、図5(b)は評価用パタンの1つを
拡大したものである。52は半透明位相シフト領域であ
り、マスクの有効露光領域に配置してある。53は透明
領域で形成される主パタン、56はマスクの有効露光領
域外を示している。ここで主パタン3の設計寸法Wは特
に制限は無いが、W=a・λ/NA(ただし、投影露光
光学系の開口数をNA、露光波長をλ、a≧0.4)の
条件にすることが望ましい。ここでは0.40μm角の
パタンとした。また露光波長λ=0.248μm、レン
ズの開口数NA=0.55のステッパを用いた。マスク
の半透明部の透過率は6%,透明部と半透明部の位相差
が180°のホトマスクを用いた。主パタンの配置ピッ
チPが0.78μm未満では、隣のパタンの影響を受け
て測定精度が低下してしまうため、主パタンの配置ピッ
チは0.78μm以上とした。主パタンの配置ピッチP
はP=b・λ/NAで表わされる。ただし、投影露光光
学系の開口数をNA、露光波長をλ、b≧1.72であ
る。このマスクを用い、レンズ全面のコマ収差量を測定
することができた。また、ウエハ内に、露光時間を変え
てステップアンドリピートでパタンを転写し、サブピー
クパタンの転写の有無を通常のパタン欠陥検査装置を用
いパタンの欠陥と認識させることにより、サブピーク転
写の露光量を求めた結果、効率良くサブピーク光強度比
を求めることができた。なお、上記パタン欠陥検査装置
は、基準パタンと検査パタンの転写形状を比較し、基準
パタンと異なる部分を欠陥と認識するもので有る。
The coma is distributed in the plane of one shot of the reduction projection exposure apparatus. Therefore, it is desirable that the entire surface within a shot can be measured at once. FIG. 5 shows an arrangement in which a measurement pattern is arranged in an effective exposure area of a mask for measuring the amount of coma aberration of a lens. FIG. 5A is a plan view of the mask, and FIG. 5B is an enlarged view of one of the evaluation patterns. Reference numeral 52 denotes a translucent phase shift area, which is arranged in an effective exposure area of the mask. Reference numeral 53 denotes a main pattern formed of a transparent area, and reference numeral 56 denotes an area outside the effective exposure area of the mask. Here, the design dimension W of the main pattern 3 is not particularly limited, but under the condition of W = a · λ / NA (where the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and a ≧ 0.4). It is desirable to do. Here, the pattern is a 0.40 μm square pattern. A stepper having an exposure wavelength λ = 0.248 μm and a numerical aperture NA of the lens = 0.55 was used. A photomask having a transmittance of 6% in the translucent portion of the mask and a phase difference of 180 ° between the transparent portion and the translucent portion was used. If the arrangement pitch P of the main pattern is less than 0.78 μm, the accuracy of measurement is reduced due to the influence of the adjacent pattern. Therefore, the arrangement pitch of the main pattern is set to 0.78 μm or more. Arrangement pitch P of main pattern
Is represented by P = b · λ / NA. Here, the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and b ≧ 1.72. Using this mask, the amount of coma aberration on the entire surface of the lens could be measured. In addition, the pattern is transferred to the wafer by changing the exposure time in a step-and-repeat manner, and the presence or absence of the transfer of the sub-peak pattern is recognized as a pattern defect using a normal pattern defect inspection apparatus, so that the exposure amount of the sub-peak transfer is reduced. As a result, the sub-peak light intensity ratio could be efficiently obtained. Note that the pattern defect inspection apparatus compares a transfer shape between a reference pattern and an inspection pattern and recognizes a portion different from the reference pattern as a defect.

【0014】第2の実施例を図6を用い説明する。第1
の実施例では1ショットの露光領域とほぼ同じステップ
で基板を移動し、露光量を変化させながら露光を繰り返
し、第2の光強度の対称性を評価した。この場合、被加
工材料である基板やレジストの膜厚誤差、装置起因の焦
点位置誤差などが測定精度の低下の原因となる。しか
し、基板移動ステップを露光ショットサイズより小さく
した場合、半透明部が2重に露光される為、正確に光強
度ピークの強度比を求めることができない。
A second embodiment will be described with reference to FIG. First
In Example 1, the substrate was moved in substantially the same step as the exposure area of one shot, and the exposure was repeated while changing the exposure amount, and the symmetry of the second light intensity was evaluated. In this case, an error in the film thickness of the substrate or the resist as the material to be processed, an error in the focal position caused by the apparatus, and the like cause a decrease in measurement accuracy. However, if the substrate moving step is smaller than the exposure shot size, the translucent portion is double-exposed, so that the intensity ratio of the light intensity peak cannot be obtained accurately.

【0015】第2の実施例は2重露光を回避するマスク
構造および露光方法に関する。マスクのパタン配置を図
6に示す。露光ショットサイズより究めて小さいピッチ
で基板を移動し、露光できるように、遮光膜ここではC
r膜を配置した。図6(a)はパタンの平面図であり、
図6(b)はパタンの拡大図である。62は半透明位相
シフト部、63は透明部、64は遮光部である。露光条
件、半透明部の透過率、位相差等は第1の実施例と同じ
である。このマスク構造は半透明部の周りを遮光部にし
たことであり、究めて小さいステップでステップアンド
リピートでパタンを転写しても、2重露光にならない構
造である。但し、望ましくは透明部63と遮光部64の
間の半透明部の幅は≧0.4μm必要である。半透明部
の幅が<0.4μmの場合、遮光パタンの影響を受けて
サブピークが転写されなくなる場合が発生し、測定の精
度が低下する。転写光学系が異なる場合は、遮光パタン
の配置位置W1はW1=c・λ/NAで表わされる。た
だし、投影露光光学系の開口数をNA、露光波長をλ、
c≧0.89である。また、ステップアンドリピートの
ピッチは半透明部が多重露光されないように、半透明部
の大きさよりも大きいステップにする必要がある。ま
た、マスクパタン配置は図6以外の配置でも多重露光を
防止できる構造であれば、適用可能で有る。たとえば、
図7に示すように、ステップアンドリピート方向に遮光
部を配置する構造にしても良い。72は半透明位相シフ
ト部、73は透明部、74は遮光部である。半透明部の
幅W1を0.4μm以上にすることにより、遮光部74
の影響を受けることなく第2の光強度ピーク値が得ら
れ、本発明の適用が可能である。半透明部の幅W1はW
1=c・λ/NAで表わされる。ただし、投影露光光学
系の開口数をNA、露光波長をλ、c≧0.89であ
る。また遮光パタン74は、少なくとも露光するステッ
プの方向と主パタン73を中心として対向する位置に配
置する。遮光パタン74の一辺の寸法W2はステップア
ンドリピートの回数やピッチに合わせて設定する必要が
ある。遮光パタン74の一辺の寸法W2はW2=d・λ
/NAで表わされる。ただし、投影露光光学系の開口数
をNA、露光波長をλ、d≧2.66である。
The second embodiment relates to a mask structure and an exposure method for avoiding double exposure. FIG. 6 shows the pattern arrangement of the mask. In order to move the substrate at a pitch that is ultimately smaller than the exposure shot size and perform exposure,
An r film was placed. FIG. 6A is a plan view of the pattern,
FIG. 6B is an enlarged view of the pattern. 62 is a translucent phase shift section, 63 is a transparent section, and 64 is a light shielding section. Exposure conditions, transmittance of the translucent portion, phase difference, and the like are the same as in the first embodiment. This mask structure is a structure in which a light-shielding portion is formed around a translucent portion. Even if a pattern is transferred by step-and-repeat in very small steps, double exposure is not performed. However, preferably, the width of the translucent portion between the transparent portion 63 and the light shielding portion 64 needs to be ≧ 0.4 μm. If the width of the translucent portion is <0.4 μm, the sub-peak may not be transferred due to the effect of the light-shielding pattern, and the measurement accuracy is reduced. When the transfer optical systems are different, the arrangement position W1 of the light-shielding pattern is represented by W1 = c · λ / NA. However, the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ,
c ≧ 0.89. Further, the pitch of the step and repeat needs to be a step larger than the size of the translucent portion so that the translucent portion is not subjected to multiple exposure. The mask pattern arrangement can be applied to any arrangement other than that shown in FIG. 6 as long as it can prevent multiple exposure. For example,
As shown in FIG. 7, a structure in which the light shielding portion is arranged in the step and repeat direction may be adopted. 72 is a translucent phase shift section, 73 is a transparent section, and 74 is a light shielding section. By setting the width W1 of the translucent portion to 0.4 μm or more, the light shielding portion 74 is formed.
The second light intensity peak value is obtained without being affected by the above, and the present invention can be applied. The width W1 of the translucent portion is W
1 = c · λ / NA. Here, the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and c ≧ 0.89. The light-shielding pattern 74 is disposed at a position facing at least the direction of the exposure step with the main pattern 73 as a center. The dimension W2 of one side of the light shielding pattern 74 needs to be set according to the number of steps and repeats and the pitch. The dimension W2 of one side of the light shielding pattern 74 is W2 = d · λ
/ NA. Here, the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and d ≧ 2.66.

【0016】このマスクを用い投影レンズの収差測定を
行なった。露光ステップは半透明部が2回重ならないよ
うに決定した。レジスト上に形成したパタンの断面図及
び平面図を図8に示す。ここで85は基板、86はレジ
スト、81、82、83、84は透明パタン3が転写し
たパタンであり、81、82、83、84は第2の光強
度7によってレジストが膜減りをする部分、81、8
2、83、84は第2の光強度8によってレジストが膜
減りをする部分を示している。露光は露光ステップ1、
2、3、4の順で露光量を増加させながらステップ露光
を行なった。露光ステップ2で主パタン82の左にサブ
ピーク82が転写され始め、露光ステップ4で主パタン
84の右に84にサブピークが転写された。露光ステッ
プ2と露光量ステップ4の露光量は、実際に実験を行な
った結果、露光ステップ2の露光量E1=48.0mJ
/平方cmであり、露光量ステップ4の露光量E2=7
6.8mJ/平方cmであった。したがって光強度比
は、E1/E2=76.8/48.0=1.6となる。
図3を用いてこの値からコマ収差量を求めると、コマ収
差量は約0.11×λであることが簡単に判る。また、
露光ステップが遮光パタンを配置することによって小さ
くなっていることにより、レジスト膜厚バラツキや基板
影響等が小さくなることから、精度良く定量的なコマ収
差が評価できた。また、主パタンを多角形及び円形に変
更した場合にも、第1の実施例同様の効果が得られた。
Using this mask, the aberration of the projection lens was measured. The exposure step was determined so that the translucent portions did not overlap twice. FIG. 8 shows a sectional view and a plan view of the pattern formed on the resist. Here, 85 is a substrate, 86 is a resist, 81, 82, 83 and 84 are patterns to which the transparent pattern 3 has been transferred, and 81, 82, 83 and 84 are portions where the resist is reduced in film thickness by the second light intensity 7. , 81, 8
Reference numerals 2, 83 and 84 denote portions where the resist is reduced in film thickness by the second light intensity 8. Exposure is exposure step 1,
Step exposure was performed while increasing the exposure amount in the order of 2, 3, and 4. The sub-peak 82 began to be transferred to the left of the main pattern 82 in the exposure step 2, and the sub-peak was transferred to the right of the main pattern 84 in the exposure step 4. As a result of an actual experiment, the exposure amount in the exposure step 2 and the exposure amount step 4 was set to 48.0 mJ in the exposure step E1.
/ Square cm, and the exposure amount E2 = 7 in the exposure amount step 4
It was 6.8 mJ / square cm. Therefore, the light intensity ratio is E1 / E2 = 76.8 / 48.0 = 1.6.
When the coma aberration amount is obtained from this value using FIG. 3, it is easily understood that the coma aberration amount is about 0.11 × λ. Also,
Since the exposure step was reduced by arranging the light-shielding pattern, variations in the resist film thickness and the influence of the substrate were reduced, so that quantitative coma aberration could be evaluated with high accuracy. Further, even when the main pattern was changed to a polygon and a circle, the same effect as in the first embodiment was obtained.

【0017】なお、主パタンや遮光パタンの寸法及び係
数を上記のように限定したが、主パタン及び遮光パタン
の大きさや形状は半透明領域の透過率によって最適値は
異なる。例えば透過率が変わることによって、半透明領
域を通過する光強度が変化する。例えば透過率を4%に
変更する場合、半透明領域を通過する光強度は小さくな
る。これによって、主パタン寸法及び遮光パタン配置位
置等変更するが、各々最適化すればほぼ問題なくレンズ
収差測定ができる。したがって、半透明領域の透過率及
び主パタンに合わせて遮光パタン位置等の最適化が必要
である。主パタン及び遮光パタンの形状は長方形及びホ
ールパタンに限らない。線パタン、十字形状パタン、六
角形、八角形などの多角形パタン、円形パタン等サブピ
ークが主パタンの周辺に発生する場合は適用可能で有
る。但し、本実施例に示したホールパタンが、レンズの
収差の方向によらず評価でき、実用的である。また半透
明領域の透過率も本実施例に限らず、透過率に適した係
数を使用する事によって適用できる。遮光領域は遮光膜
を配置したが、これに限らない。ウエハ上で光強度が0
になるように、解像限界以下の透明パタンを所定のピッ
チで配置する方法など手段は選ばない。但し、マスクの
作成が簡便である事から、本実施例に示す様に遮光膜を
配置する事が実用的である。また、マスクの構造及び材
料は本実施例で用いた材料に限らない。すなわち、本発
明では使用するマスクの構造が透明領域と半透明領域と
遮光領域を含み、かつ透明領域と半透明領域を通過する
光の位相差が180°であって、投影する主パタンの周
辺に第2の光強度が転写するようパタンが配置されてい
れば目的を達成できる。また、本測定法を用いて縮小投
影露光装置のレンズ選別及び修正を行なった所、レンズ
の個体差を従来の1/2に小さくすることができた。さ
らに本測定法を用いてレンズ選別を行なった縮小投影露
光装置を用いて超LSIのパタン形成を行なった結果、
レンズのコマ収差によるパタンの位置ずれを従来の1/
3に低減でき、その結果より高密度なパタンの配置が実
現できた。また、超LSI製品の不良率を2/3に低減
が実現できた。
Although the dimensions and coefficients of the main pattern and the light-shielding pattern are limited as described above, the optimal values of the size and shape of the main pattern and the light-shielding pattern differ depending on the transmittance of the translucent region. For example, when the transmittance changes, the light intensity passing through the translucent region changes. For example, when the transmittance is changed to 4%, the light intensity passing through the translucent region becomes small. As a result, the main pattern size, the light shielding pattern arrangement position, and the like are changed. However, if each is optimized, the lens aberration measurement can be performed with almost no problem. Therefore, it is necessary to optimize the light shielding pattern position and the like in accordance with the transmittance of the translucent region and the main pattern. The shapes of the main pattern and the light-shielding pattern are not limited to rectangles and hole patterns. It is applicable when sub-peaks such as a line pattern, a cross-shaped pattern, a polygonal pattern such as a hexagon and an octagon, and a circular pattern are generated around the main pattern. However, the hole patterns shown in this embodiment can be evaluated regardless of the direction of the aberration of the lens, and are practical. The transmissivity of the translucent region is not limited to this embodiment, but can be applied by using a coefficient suitable for the transmissivity. Although the light-shielding region is provided with the light-shielding film, it is not limited to this. 0 light intensity on wafer
Any method such as a method of arranging transparent patterns having a resolution equal to or less than the resolution limit at a predetermined pitch can be used. However, since the formation of the mask is simple, it is practical to arrange a light-shielding film as shown in this embodiment. Further, the structure and material of the mask are not limited to the materials used in this embodiment. That is, in the present invention, the structure of the mask used includes a transparent region, a translucent region, and a light-shielding region, and the phase difference between light passing through the transparent region and the translucent region is 180 °, and the periphery of the main pattern to be projected is If the pattern is arranged so that the second light intensity is transferred, the object can be achieved. Further, when the lens was selected and corrected in the reduction projection exposure apparatus using the present measurement method, the individual difference of the lens could be reduced to half of the conventional one. Further, as a result of forming a pattern of an VLSI using a reduced projection exposure apparatus in which a lens was selected using this measurement method,
The displacement of the pattern due to the coma of the lens is reduced by 1 /
3, and as a result, a higher density pattern arrangement was realized. Further, the defect rate of the VLSI product was reduced to 2/3.

【0018】[0018]

【発明の効果】本発明の適用により、縮小投影露光装置
に搭載されたレンズの種々の収差を高精度に測定でき
る。これによりレンズの修正、選定が可能であり、レン
ズの個体差を従来より小さくすることができる。特にレ
ンズのコマ収差によるパタンの位置ずれを従来よりも低
減でき、その結果、より高密度なパタンの配置が実現で
き、超LSIの製造を光リソグラフィを用いて実現する
事が可能となる。また、超LSI製品の不良率の低減が
可能となり、工業上有利である。
According to the present invention, various aberrations of a lens mounted on a reduction projection exposure apparatus can be measured with high accuracy. Thereby, the lens can be corrected and selected, and the individual difference of the lens can be made smaller than before. In particular, the pattern displacement due to the coma aberration of the lens can be reduced as compared with the related art, and as a result, a higher-density pattern arrangement can be realized, and the manufacture of the VLSI can be realized using optical lithography. Further, the defect rate of the VLSI product can be reduced, which is industrially advantageous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理の説明図。FIG. 1 is an explanatory diagram of the principle of the present invention.

【図2】本発明の原理の説明図。FIG. 2 is an explanatory diagram of the principle of the present invention.

【図3】本発明の原理の説明図。FIG. 3 is an explanatory diagram of the principle of the present invention.

【図4】本発明の主たる実施例の説明図。FIG. 4 is an explanatory diagram of a main embodiment of the present invention.

【図5】本発明の主たる実施例の平面図。FIG. 5 is a plan view of a main embodiment of the present invention.

【図6】本発明の第2の実施例の平面図。FIG. 6 is a plan view of a second embodiment of the present invention.

【図7】本発明の第2の実施例の説明図。FIG. 7 is an explanatory diagram of a second embodiment of the present invention.

【図8】本発明の第2の実施例の説明図。FIG. 8 is an explanatory view of a second embodiment of the present invention.

【図9】従来技術の説明図。FIG. 9 is an explanatory diagram of a conventional technique.

【図10】本発明の原理の説明図。FIG. 10 is an explanatory diagram of the principle of the present invention.

【図11】本発明の主たる実施例の説明図。FIG. 11 is an explanatory view of a main embodiment of the present invention.

【図12】本発明の主たる実施例の説明図。FIG. 12 is an explanatory diagram of a main embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ガラス基板、2,52,62,72,122…半透
明位相シフト膜、3,53,63,73,123…透明
主パタン、4…透明主パタンの光強度ピーク、5…透明
主パタンのサブピーク、6…レンズのコマ収差がある場
合の透明主パタンの光強度ピーク、7…レンズのコマ収
差がある場合の第1のサブピーク、8…レンズのコマ収
差がある場合の第2のサブピーク、9,85,90…基
板、10,86,13……レジスト、11,81,8
2,83,84,131…透明主パタンの転写したパタ
ン、12,81,82,83,84,132…第2の光
強度ピーク所謂サブピーク8によるレジスト膜減り部、
14,81,82,83,84,134…第2の光強度
ピーク所謂サブピーク7によるレジスト膜減り部、5
6,76…有効露光領域外、64,74…遮光パタン、
106…マスク、108…投影レンズ、109…ウエ
ハ。
DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2, 52, 62, 72, 122 ... Translucent phase shift film, 3, 53, 63, 73, 123 ... Transparent main pattern, 4 ... Light intensity peak of transparent main pattern, 5 ... Transparent main pattern , A light intensity peak of the transparent main pattern when there is a coma of the lens, a first subpeak when there is a coma of the lens, a second subpeak when there is a coma of the lens , 9, 85, 90 ... substrate, 10, 86, 13 ... resist, 11, 81, 8
2, 83, 84, 131: pattern transferred with a transparent main pattern, 12, 81, 82, 83, 84, 132: reduced portion of resist film due to second light intensity peak, so-called sub-peak 8.
14, 81, 82, 83, 84, 134... A resist film reduced portion due to a second light intensity peak, so-called sub-peak 7, 5
6, 76: outside the effective exposure area, 64, 74: light shielding pattern,
106: mask, 108: projection lens, 109: wafer.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】少なくとも露光光に対して半透明な領域と
透明な領域を含み、上記半透明な領域と透明な領域を通
過する光の位相差がおよそ180°となるようにしたホ
トマスクを用い縮小投影露光装置で転写したパタンの、
マスク上の透明パタンに対応する主パタンの周囲のマス
ク上の半透明領域に対応する位置の一部に形成される、
いわゆるサブピークの光強度が、前記主パタンを中心と
して対向する領域で異なる事を利用し、レンズの収差量
を評価する事を特徴とするレンズ収差の測定方法。
1. A photomask including at least a translucent area and a transparent area with respect to exposure light, wherein a phase difference between light passing through the translucent area and the transparent area is approximately 180 °. The pattern transferred by the reduction projection exposure device
Formed at a part of the position corresponding to the translucent area on the mask around the main pattern corresponding to the transparent pattern on the mask,
A lens aberration measurement method characterized by evaluating the amount of aberration of a lens by using the fact that the light intensity of a so-called sub-peak differs in a region facing the main pattern as a center.
【請求項2】少なくとも露光光に対して不透明な領域と
半透明な領域と透明な領域を含み、上記半透明な領域と
透明な領域を通過する光の位相差がおよそ180°とな
るようにしたホトマスクを用い縮小投影露光装置で転写
したパタンの、マスク上の透明パタンに対応する主パタ
ンの周囲のマスク上の半透明領域に対応する位置の一部
に形成される、いわゆるサブピークの光強度が、前記主
パタンを中心として対向する領域で異なる事を利用し、
レンズの収差量を評価する事を特徴とするレンズ収差の
測定方法。
2. The method according to claim 1, further comprising an opaque area, a translucent area, and a transparent area with respect to the exposure light, wherein the phase difference between the light passing through the translucent area and the transparent area is approximately 180 °. The light intensity of the so-called sub-peak, which is formed at a part of the pattern transferred by the reduced projection exposure apparatus using the photomask and corresponding to the translucent area on the mask around the main pattern corresponding to the transparent pattern on the mask However, utilizing the fact that it is different in the area facing the main pattern as a center,
A lens aberration measuring method characterized by evaluating an amount of aberration of a lens.
【請求項3】サブピークをレジストに転写するのに必要
な露光量から、サブピークの光強度を求めることを特徴
とする請求項1及び2記載のレンズ収差の測定方法。
3. The method for measuring lens aberration according to claim 1, wherein the light intensity of the sub-peak is determined from an exposure amount necessary for transferring the sub-peak to the resist.
【請求項4】前記マスク上の透明パタンに対応する主パ
タンの形状が、多角形である事を特徴とする、請求項1
及び2記載のレンズ収差の測定方法。
4. The apparatus according to claim 1, wherein the shape of the main pattern corresponding to the transparent pattern on the mask is a polygon.
3. The method for measuring lens aberration according to claim 2.
【請求項5】前記マスク上の透明パタンに対応する主パ
タンの形状が、収差の向きを判別することを目的とし、
八角形である事を特徴とする、請求項1及び2記載のレ
ンズ収差の測定方法。
5. The shape of a main pattern corresponding to a transparent pattern on the mask is provided for determining the direction of aberration,
3. The method for measuring lens aberration according to claim 1, wherein the lens is octagonal.
【請求項6】前記マスク上の透明パタンに対応する主パ
タンの形状が、収差の向きを判別することを目的とし、
十二角形である事を特徴とする、請求項1及び2記載の
レンズ収差の測定方法。
6. A shape of a main pattern corresponding to a transparent pattern on the mask is provided for determining a direction of aberration,
3. The method for measuring lens aberration according to claim 1, wherein the lens aberration is a dodecagon.
【請求項7】前記マスク上の透明パタンに対応する主パ
タンの形状が、収差の向きを判別することを目的とし、
円形である事を特徴とする、請求項1及び2記載のレン
ズ収差の測定方法。
7. The main pattern corresponding to the transparent pattern on the mask is provided for determining the direction of aberration,
3. The method for measuring lens aberration according to claim 1, wherein the lens aberration is circular.
【請求項8】前記縮小投影露光装置で転写したパタン
が、レンズ収差測定パタンが複数個配置されたホトマス
クを用い、レジストが塗布された基板に第1の露光を行
ない、前記収差測定パタン間の距離よりも小さいピッチ
で基板を移動した後に第2の露光を行なう動作を複数回
行なう事を含む工程で形成された事を特徴とする請求項
2記載のレンズ収差の測定方法。
8. A pattern transferred by the reduction projection exposure apparatus is subjected to a first exposure on a substrate coated with a resist using a photomask on which a plurality of lens aberration measurement patterns are arranged. 3. The method for measuring lens aberration according to claim 2, wherein the step of performing the second exposure after moving the substrate at a pitch smaller than the distance is performed in a plurality of steps.
【請求項9】前記パタン形成に使用するホトマスクが、
少なくとも透明な主パタンの周辺が半透明部からなり、
半透明部の周辺の少なくとも基板の移動方向及び逆方向
に遮光領域が配置され、前記透明主パタンと遮光領域の
間の半透明領域の幅が基板の移動距離の1/2以下に調
整されている事を特徴とする請求項8記載のレンズ収差
の測定方法。
9. A photomask used for forming the pattern,
At least the periphery of the transparent main pattern consists of translucent parts,
A light-shielding region is arranged at least in the moving direction and the reverse direction of the substrate around the translucent portion, and the width of the translucent region between the transparent main pattern and the light-shielding region is adjusted to be equal to or less than 1 / of the moving distance of the substrate. The method for measuring lens aberration according to claim 8, wherein:
【請求項10】前記パタン形成に使用するホトマスク
が、少なくとも透明な主パタンの周辺が半透明部からな
り、半透明部の周辺の少なくとも基板の移動方向及び逆
方向に遮光領域が配置され、前記透明主パタンと遮光領
域の間の半透明領域の幅W1がW1=c・λ/NA(た
だし、投影露光光学系の開口数をNA、露光波長をλ、
c≧0.89)に調整されている事を特徴とする請求項
8記載のレンズ収差の測定方法。
10. A photomask used for forming the pattern, wherein at least a periphery of the transparent main pattern is formed of a translucent portion, and a light-shielding region is arranged at least in the direction of movement of the substrate and in the opposite direction around the translucent portion. The width W1 of the translucent region between the transparent main pattern and the light-shielding region is W1 = c · λ / NA (where the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ,
9. The method for measuring lens aberration according to claim 8, wherein c ≧ 0.89).
【請求項11】少なくとも露光光に対して不透明な領域
と半透明な領域と透明な領域を含み、上記半透明な領域
と透明な領域を通過する光の位相差がおよそ180°と
なるようにしたホトマスクにおいて、少なくとも透明な
主パタンの周辺が半透明部からなり、半透明部の周辺の
少なくとも主パタンを中心とする直線方向に遮光領域が
配置され、前記透明主パタンと遮光領域の間の半透明領
域の幅が0.89×λ/NA以上(但し、NAはレンズ
の開口数、λは露光波長)であることを特徴とするレン
ズ収差測定用マスク。
11. A method comprising: at least an opaque area, a translucent area, and a transparent area with respect to exposure light, such that a phase difference between light passing through the translucent area and the transparent area is approximately 180 °. In the photomask, at least the periphery of the transparent main pattern is composed of a translucent portion, and a light-shielding region is arranged in a linear direction centered on at least the main pattern around the translucent portion. A mask for measuring lens aberration, wherein the width of the translucent region is 0.89 × λ / NA or more (where NA is the numerical aperture of the lens and λ is the exposure wavelength).
【請求項12】前記遮光領域の幅W2がW2=d・λ/
NA(ただし、投影露光光学系の開口数をNA、露光波
長をλ、c≧2.66)に調整されている事を特徴とす
る請求項9及び10記載のレンズ収差の測定方法。
12. The width W2 of the light-shielding region is W2 = d.lamda. /
11. The method for measuring lens aberration according to claim 9, wherein the numerical aperture of the projection exposure optical system is adjusted to NA, the exposure wavelength is set to λ, and c ≧ 2.66.
【請求項13】少なくとも露光光に対して不透明な領域
と半透明な領域と透明な領域を含み、上記半透明な領域
と透明な領域を通過する光の位相差がおよそ180°と
なるようにしたホトマスクにおいて、少なくとも透明な
主パタンの周辺が半透明部からなり、半透明部の周辺の
少なくとも主パタンを中心とする直線方向に遮光領域が
配置され、前記遮光領域の幅が2.66×λ/NA以上
(但し、NAはレンズの開口数、λは露光波長)である
ことを特徴とするレンズ収差測定用マスク。
13. At least an opaque area, a translucent area, and a transparent area with respect to exposure light, wherein the phase difference between light passing through the translucent area and the transparent area is approximately 180 °. In the photomask described above, at least the periphery of the transparent main pattern is composed of a translucent portion, and the light shielding region is arranged in a linear direction centered on at least the main pattern around the translucent portion, and the width of the light shielding region is 2.66 × A lens aberration measuring mask characterized by being at least λ / NA (where NA is the numerical aperture of the lens and λ is the exposure wavelength).
【請求項14】請求項1〜10及び12記載のレンズ収
差測定法を用い選定したレンズを搭載した事を特徴とす
る縮小投影露光装置。
14. A reduction projection exposure apparatus comprising a lens selected by using the lens aberration measurement method according to claim 1.
【請求項15】基板にレジスト膜を形成する工程、縮小
投影露光装置に少なくとも露光光に対して不透明な領域
と半透明な領域と透明な領域を含み、上記半透明な領域
と透明な領域を通過する光の位相差がおよそ180°と
なるようにした領域を含むホトマスクを装着する工程、
露光現像処理により、ホトマスクのパタンをレジストに
転写する工程、マスク上の透明領域に対応する転写パタ
ンの周辺に発生するサブピークパタンの転写情報を用い
レンズの収差量を測定することを特徴とするレンズ収差
の測定方法。
15. A step of forming a resist film on a substrate, wherein the reduction projection exposure apparatus includes at least an opaque area, a translucent area, and a transparent area with respect to exposure light, wherein the translucent area and the transparent area are A step of mounting a photomask including a region where the phase difference of light passing therethrough is approximately 180 °,
A step of transferring a pattern of a photomask to a resist by exposure and development processing, and measuring a lens aberration amount using transfer information of a sub-peak pattern generated around a transfer pattern corresponding to a transparent region on the mask. How to measure aberrations.
【請求項16】請求項1または2または3または15記
載のレンズ収差測定法を用い選定したレンズを搭載した
縮小投影露光装置を用い作成した事を特徴とする半導体
装置
16. A semiconductor device produced by using a reduction projection exposure apparatus equipped with a lens selected by using the lens aberration measuring method according to claim 1, 2, 3 or 15.
【請求項17】サブピークパタンの転写情報が、レジス
トへサブピークパタンが転写される露光量である事を特
徴とする請求項15記載のレンズ収差の測定方法。
17. The method according to claim 15, wherein the transfer information of the sub-peak pattern is an exposure amount at which the sub-peak pattern is transferred to the resist.
【請求項18】サブピークパタンの転写情報が、レジス
トへのサブピークパタンの転写深さから求めた、光強度
である事を特徴とする請求項15記載のレンズ収差の測
定方法。
18. The method according to claim 15, wherein the transfer information of the sub-peak pattern is a light intensity obtained from a transfer depth of the sub-peak pattern to the resist.
【請求項19】サブピークパタンの転写の有無を、基準
パタンとの形状を比較してパタンの変形や異物の付着を
検査するいわゆる欠陥検査装置を用いて行なうことを特
徴とする請求項15記載のレンズ収差の測定方法。
19. The method according to claim 15, wherein the presence or absence of the transfer of the sub-peak pattern is performed by using a so-called defect inspection apparatus for inspecting the deformation of the pattern and the adhesion of foreign matter by comparing the shape with the reference pattern. How to measure lens aberration.
【請求項20】レンズ収差がコマ収差であることを特徴
とする請求項1および2および15記載のレンズ収差の
測定方法。
20. The method for measuring lens aberration according to claim 1, wherein the lens aberration is coma.
JP20417697A 1997-02-14 1997-07-30 Lens aberration measurement method Expired - Fee Related JP3574729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20417697A JP3574729B2 (en) 1997-02-14 1997-07-30 Lens aberration measurement method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-30028 1997-02-14
JP3002897 1997-02-14
JP20417697A JP3574729B2 (en) 1997-02-14 1997-07-30 Lens aberration measurement method

Publications (2)

Publication Number Publication Date
JPH10288567A true JPH10288567A (en) 1998-10-27
JP3574729B2 JP3574729B2 (en) 2004-10-06

Family

ID=26368291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20417697A Expired - Fee Related JP3574729B2 (en) 1997-02-14 1997-07-30 Lens aberration measurement method

Country Status (1)

Country Link
JP (1) JP3574729B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002244271A (en) * 2001-02-15 2002-08-30 Oki Electric Ind Co Ltd Mask for manufacturing semiconductor and semiconductor manufacturing method
US6548312B1 (en) 1999-08-27 2003-04-15 Hitachi, Ltd. Manufacturing method of semiconductor integrated circuit devices and mask manufacturing methods
US6743554B2 (en) 2001-11-22 2004-06-01 Renesas Technology Corp. Photomask for aberration measurement, aberration measurement method unit for aberration measurement and manufacturing method for device
JP2005322740A (en) * 2004-05-07 2005-11-17 Nec Electronics Corp Method of measuring aberration
JP2017054006A (en) * 2015-09-09 2017-03-16 ウシオ電機株式会社 Light irradiation method, manufacturing method of on-substrate structure, and on-substrate structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548312B1 (en) 1999-08-27 2003-04-15 Hitachi, Ltd. Manufacturing method of semiconductor integrated circuit devices and mask manufacturing methods
JP2002244271A (en) * 2001-02-15 2002-08-30 Oki Electric Ind Co Ltd Mask for manufacturing semiconductor and semiconductor manufacturing method
US6743554B2 (en) 2001-11-22 2004-06-01 Renesas Technology Corp. Photomask for aberration measurement, aberration measurement method unit for aberration measurement and manufacturing method for device
JP2005322740A (en) * 2004-05-07 2005-11-17 Nec Electronics Corp Method of measuring aberration
JP4516353B2 (en) * 2004-05-07 2010-08-04 ルネサスエレクトロニクス株式会社 Aberration measurement method
JP2017054006A (en) * 2015-09-09 2017-03-16 ウシオ電機株式会社 Light irradiation method, manufacturing method of on-substrate structure, and on-substrate structure

Also Published As

Publication number Publication date
JP3574729B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
KR100714480B1 (en) systems and methods for detecting focus variation in photolithograph process using test features printed from photomask test pattern images
JP3105234B2 (en) Method for manufacturing semiconductor device
US7368208B1 (en) Measuring phase errors on phase shift masks
US7327436B2 (en) Method for evaluating a local flare, correction method for a mask pattern, manufacturing method for a semiconductor device and a computer program product
JP4057847B2 (en) Lithographic projection apparatus calibration method, patterning apparatus, and device manufacturing method
JP2996127B2 (en) Pattern formation method
KR19990045024A (en) Double exposure method and device manufacturing method using the same
JP3981664B2 (en) Inspection method and device manufacturing method
KR19980071829A (en) Photomasks Used for Projection Exposure Equipment
KR100495297B1 (en) Method for measuring illumination ununinformity, method for correcting illumination ununinformity, method of manufacturing semiconductor apparatus, and exposure apparatus
US7563547B2 (en) Photomask and method of manufacturing the same
US5439767A (en) Phase shift mask and its inspection method
US5700602A (en) Method and apparatus for precision determination of phase-shift in a phase-shifted reticle
JP3287017B2 (en) Measurement method of imaging characteristics
JP3080024B2 (en) Exposure method and method of measuring spherical aberration
US6627356B2 (en) Photomask used in manufacturing of semiconductor device, photomask blank, and method of applying light exposure to semiconductor wafer by using said photomask
JP2006085174A (en) Lithographic apparatus and device-manufacturing method
US6632574B1 (en) Mask having pattern areas whose transmission factors are different from each other
JP3574729B2 (en) Lens aberration measurement method
US7011909B2 (en) Photolithography mask and method of fabricating a photolithography mask
JP2004054092A (en) Mask and its manufacturing method
KR0184277B1 (en) Mask having a phase shifter and method of manufacturing the same
JP3082529B2 (en) Mask defect repair method
JPH09293764A (en) Process defect inspection method of semiconductor device
JPH11354411A (en) Method for evaluating aligner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees