JPH1026043A - Air-fuel ratio controller of internal combustion engine - Google Patents
Air-fuel ratio controller of internal combustion engineInfo
- Publication number
- JPH1026043A JPH1026043A JP17793796A JP17793796A JPH1026043A JP H1026043 A JPH1026043 A JP H1026043A JP 17793796 A JP17793796 A JP 17793796A JP 17793796 A JP17793796 A JP 17793796A JP H1026043 A JPH1026043 A JP H1026043A
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- catalyst
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内燃機関の空燃比
を制御する空燃比制御装置に関するものであり、特に排
出ガスを浄化する触媒下流の空燃比が理論空燃比となる
ように内燃機関の空燃比をフィードバック制御する装置
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for controlling an air-fuel ratio of an internal combustion engine. The present invention relates to a device for performing feedback control of an air-fuel ratio.
【0002】[0002]
【従来の技術】従来、触媒下流の空燃比が理論空燃比と
なるように空燃比を制御する装置として、例えば特開平
3−185244号公報に記載されている装置がある。
この公報に記載されている装置では、内燃機関の運転状
態に応じて触媒下流の空燃比が理論空燃比となるように
触媒上流の目標空燃比を設定し、触媒上流の空燃比がこ
の目標空燃比となるようにフィードバック制御を実施し
ている。2. Description of the Related Art Conventionally, as an apparatus for controlling an air-fuel ratio so that an air-fuel ratio downstream of a catalyst becomes a stoichiometric air-fuel ratio, there is an apparatus described in, for example, JP-A-3-185244.
In the device described in this publication, a target air-fuel ratio upstream of the catalyst is set such that the air-fuel ratio downstream of the catalyst becomes the stoichiometric air-fuel ratio in accordance with the operation state of the internal combustion engine. Feedback control is performed so that the fuel ratio is obtained.
【0003】さらに上記公報では、触媒下流の空燃比が
リッチのときにはリーン側に、リーンのときにはリッチ
側に一定量の補正を目標空燃比に加え、より精度良く空
燃比を制御している。なお、内燃機関の運転状態が変化
すると触媒下流の空燃比を理論空燃比とする触媒上流の
空燃比が変化する理由としては、排気温や触媒を通過す
る排気量により触媒の浄化能力が変化するためである。Further, in the above publication, a fixed amount of correction is added to the target air-fuel ratio to the lean side when the air-fuel ratio downstream of the catalyst is rich, and to the rich side when the air-fuel ratio is lean, to control the air-fuel ratio more accurately. Note that, when the operating state of the internal combustion engine changes, the air-fuel ratio upstream of the catalyst that changes the air-fuel ratio downstream of the catalyst to the stoichiometric air-fuel ratio changes because the purification performance of the catalyst changes depending on the exhaust gas temperature and the amount of exhaust gas passing through the catalyst. That's why.
【0004】[0004]
【発明が解決しようとする課題】上記公報に記載の装置
では、触媒下流の空燃比に基づいて目標空燃比に一定量
の補正を実施し、空燃比制御の精度を向上させている。
しかしながら、触媒の浄化能力が変化すると排出ガスが
触媒を通過するのに要する時間もそれに伴い変化する。
つまり、単位排出ガス量あたりの触媒容量(SV比)が
大きいときは触媒の浄化能力が高くなり、排出ガスが触
媒を通過するのに要する時間が長くなる。よって、触媒
上流の空燃比に対する触媒下流の空燃比の応答性が遅く
なる。逆に、SV比が小さいときは触媒の浄化能力が低
くなり、触媒上流の空燃比に対する触媒下流の空燃比の
応答性が速くなる。In the apparatus described in the above-mentioned publication, the target air-fuel ratio is corrected by a fixed amount based on the air-fuel ratio downstream of the catalyst, thereby improving the accuracy of the air-fuel ratio control.
However, when the purification ability of the catalyst changes, the time required for the exhaust gas to pass through the catalyst changes accordingly.
That is, when the catalyst capacity (SV ratio) per unit exhaust gas amount is large, the purification ability of the catalyst increases, and the time required for the exhaust gas to pass through the catalyst increases. Therefore, the response of the air-fuel ratio downstream of the catalyst to the air-fuel ratio upstream of the catalyst becomes slow. Conversely, when the SV ratio is small, the purifying ability of the catalyst decreases, and the responsiveness of the air-fuel ratio downstream of the catalyst to the air-fuel ratio upstream of the catalyst increases.
【0005】上記公報のように触媒の浄化能力に関係な
く一定量の補正を実施すると、SV比が大きく触媒下流
の空燃比の応答性が遅いときには過補正になるという問
題がある。また、SV比が小さく触媒下流の空燃比の応
答性が速いときには最適な目標空燃比への収束が遅れる
という問題がある。本発明では、排出ガス量が変化して
も精度よく空燃比を制御可能な空燃比制御装置を提供す
ることを目的とする。[0005] As described in the above publication, if a fixed amount of correction is performed irrespective of the purifying ability of the catalyst, there is a problem that overcorrection occurs when the SV ratio is large and the response of the air-fuel ratio downstream of the catalyst is slow. Further, when the SV ratio is small and the response of the air-fuel ratio downstream of the catalyst is fast, there is a problem that the convergence to the optimum target air-fuel ratio is delayed. An object of the present invention is to provide an air-fuel ratio control device capable of controlling the air-fuel ratio with high accuracy even when the amount of exhaust gas changes.
【0006】[0006]
【課題を解決するための手段】上記課題を達成するた
め、本発明では請求項1に記載の構成とした。本構成に
よれば、内燃機関の運転状態に応じて目標空燃比フィー
ドバック制御の応答速度を設定するので、SV比が大き
く触媒下流の空燃比の応答性が遅いときには補正速度を
遅くすることができる。また、SV比が小さく触媒下流
の空燃比の応答性が速いときには補正速度を速くするこ
とができる。Means for Solving the Problems In order to achieve the above object, the present invention has the configuration described in claim 1. According to this configuration, since the response speed of the target air-fuel ratio feedback control is set according to the operating state of the internal combustion engine, the correction speed can be reduced when the SV ratio is large and the response of the air-fuel ratio downstream of the catalyst is slow. . Further, when the SV ratio is small and the response of the air-fuel ratio downstream of the catalyst is fast, the correction speed can be increased.
【0007】また、触媒下流の空燃比が理論空燃比とな
る触媒上流の空燃比は内燃機関の運転状態により変化す
る。よって、請求項2に記載のように、内燃機関の運転
状態に基づいて目標空燃比を設定する構成とすることが
好ましい。この際、目標空燃比として各々の内燃機関の
運転状態において触媒の浄化率が最大となる目標空燃比
を設定することが好ましい。このときの内燃機関の運転
状態のパラメータとしては、触媒の浄化能力と相関のあ
るパラメータを用いることが好ましい。特にパラメータ
として触媒の浄化能力と相関の強い内燃機関の回転数と
内燃機関の負荷(内燃機関に吸入される空気量(吸入空
気量)や吸気管圧力)を用いることが好ましい。[0007] The air-fuel ratio upstream of the catalyst at which the air-fuel ratio downstream of the catalyst becomes the stoichiometric air-fuel ratio changes depending on the operating state of the internal combustion engine. Therefore, it is preferable that the target air-fuel ratio is set based on the operating state of the internal combustion engine. At this time, it is preferable to set, as the target air-fuel ratio, a target air-fuel ratio that maximizes the purification rate of the catalyst in the operating state of each internal combustion engine. At this time, it is preferable to use, as the parameter of the operating state of the internal combustion engine, a parameter having a correlation with the purification ability of the catalyst. In particular, it is preferable to use, as parameters, the rotational speed of the internal combustion engine and the load of the internal combustion engine (the amount of air (intake air amount) and the intake pipe pressure) that are highly correlated with the purification performance of the catalyst.
【0008】また、目標空燃比のフィードバック制御と
して、請求項3に記載のように、触媒下流の空燃比のリ
ッチ/リーンに基づいて目標空燃比を所定量ずつフィー
ドバック制御する手法を用いるようにしてもよい。この
ような目標空燃比フィードバック制御を採用した場合、
応答速度設定手段は、その所定量を内燃機関の運転状態
に応じて設定することが好ましい。またこの際、所定量
を触媒下流の空燃比の理論空燃比からのずれ量を考慮し
て設定するようにしてもよい。Further, as the feedback control of the target air-fuel ratio, a method of performing feedback control of the target air-fuel ratio by a predetermined amount based on the rich / lean air-fuel ratio downstream of the catalyst as described in claim 3 is used. Is also good. When such target air-fuel ratio feedback control is adopted,
It is preferable that the response speed setting means sets the predetermined amount according to the operating state of the internal combustion engine. At this time, the predetermined amount may be set in consideration of a deviation amount of the air-fuel ratio downstream of the catalyst from the stoichiometric air-fuel ratio.
【0009】また、目標空燃比フィードバック制御の応
答速度を決定するための内燃機関のパラメータとしては
触媒の浄化能力に相関のあるパラメータを用いることが
好ましい。特に、請求項4に記載のように、触媒の浄化
能力と相関の強い排出ガス量をパラメータとして用いる
ことが好ましい。このとき、排出ガス量を内燃機関の回
転数と負荷(例えば、吸入空気量や吸気管圧力)とに基
づいて推定するようにしても良いし、これらのパラメー
タで代用してもよい。Further, it is preferable to use a parameter correlated with the purifying ability of the catalyst as a parameter of the internal combustion engine for determining the response speed of the target air-fuel ratio feedback control. In particular, as described in claim 4, it is preferable to use, as a parameter, the amount of exhaust gas having a strong correlation with the purification ability of the catalyst. At this time, the exhaust gas amount may be estimated based on the rotational speed of the internal combustion engine and the load (for example, the intake air amount or the intake pipe pressure), or these parameters may be used instead.
【0010】請求項5に記載の構成では、内燃機関の運
転状態に応じて目標空燃比フィードバック制御の応答速
度を設定するので、SV比が大きく触媒下流の空燃比の
応答性が遅いときには補正速度を遅くすることができ
る。また、SV比が小さく触媒下流の空燃比の応答性が
速いときには補正速度を速くすることができる。また、
触媒下流の空燃比が理論空燃比となる触媒上流の空燃比
は内燃機関の運転状態により変化する。よって、請求項
6に記載のように、内燃機関の運転状態に基づいて目標
空燃比を設定する構成とすることが好ましい。この際、
目標空燃比として各々の内燃機関の運転状態において触
媒の浄化率が最大となる目標空燃比を設定することが好
ましい。このときの内燃機関の運転状態のパラメータと
しては、触媒の浄化能力と相関のあるパラメータを用い
ることが好ましい。特にパラメータとして触媒の浄化能
力と相関の強い内燃機関の回転数と内燃機関の負荷(例
えば、吸入空気量や吸気管圧力)を用いることが好まし
い。According to the fifth aspect of the present invention, the response speed of the target air-fuel ratio feedback control is set according to the operating state of the internal combustion engine. Therefore, when the SV ratio is large and the response of the air-fuel ratio downstream of the catalyst is slow, the correction speed is reduced. Can be slowed down. Further, when the SV ratio is small and the response of the air-fuel ratio downstream of the catalyst is fast, the correction speed can be increased. Also,
The air-fuel ratio upstream of the catalyst at which the air-fuel ratio downstream of the catalyst becomes the stoichiometric air-fuel ratio changes depending on the operating state of the internal combustion engine. Therefore, it is preferable that the target air-fuel ratio be set based on the operating state of the internal combustion engine. On this occasion,
It is preferable to set, as the target air-fuel ratio, a target air-fuel ratio that maximizes the purification rate of the catalyst in each operating state of the internal combustion engine. At this time, it is preferable to use, as the parameter of the operating state of the internal combustion engine, a parameter having a correlation with the purification ability of the catalyst. In particular, it is preferable to use, as parameters, the rotational speed of the internal combustion engine and the load of the internal combustion engine (for example, the intake air amount and the intake pipe pressure) that have a strong correlation with the purification performance of the catalyst.
【0011】また、目標空燃比のフィードバック制御と
して、請求項7に記載のように、触媒下流の空燃比のリ
ッチ/リーンに基づいて目標空燃比を所定量ずつフィー
ドバック制御する手法を用いるようにしてもよい。この
ような目標空燃比フィードバック制御を採用した場合、
応答速度設定手段は、その所定量を内燃機関の運転状態
に応じて設定することが好ましい。またこの際、触媒下
流空燃比センサとしてリニア空燃比センサを用いている
場合には、所定量を触媒下流の空燃比の理論空燃比から
のずれ量を考慮して設定するようにしてもよい。Further, as the feedback control of the target air-fuel ratio, a method of performing feedback control of the target air-fuel ratio by a predetermined amount based on the rich / lean air-fuel ratio downstream of the catalyst as described in claim 7 is used. Is also good. When such target air-fuel ratio feedback control is adopted,
It is preferable that the response speed setting means sets the predetermined amount according to the operating state of the internal combustion engine. In this case, when a linear air-fuel ratio sensor is used as the catalyst downstream air-fuel ratio sensor, the predetermined amount may be set in consideration of a deviation amount of the air-fuel ratio downstream of the catalyst from the stoichiometric air-fuel ratio.
【0012】また、目標空燃比フィードバック制御の応
答速度を決定するための内燃機関のパラメータとしては
触媒の浄化能力に相関のあるパラメータを用いることが
好ましい。特に、請求項8に記載のように、触媒の浄化
能力と相関の強い排出ガス量をパラメータとして用いる
ことが好ましい。このとき、内燃機関の回転数を検出す
るセンサと内燃機関の負荷を検出するセンサ(例えば、
吸入空気量センサや吸気管圧力センサ)を設け、排出ガ
ス量を内燃機関の回転数と負荷とに基づいて推定するよ
うにしても良いし、これらのパラメータで代用してもよ
い。Further, it is preferable to use, as a parameter of the internal combustion engine for determining a response speed of the target air-fuel ratio feedback control, a parameter having a correlation with the purifying ability of the catalyst. In particular, as described in claim 8, it is preferable to use an exhaust gas amount having a strong correlation with the purification ability of the catalyst as a parameter. At this time, a sensor that detects the rotational speed of the internal combustion engine and a sensor that detects the load of the internal combustion engine (for example,
An intake air amount sensor or an intake pipe pressure sensor) may be provided, and the exhaust gas amount may be estimated based on the rotation speed and load of the internal combustion engine, or these parameters may be used instead.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施形態の一実施
例として、本発明を採用した内燃機関(エンジン)用空
燃比制御装置について説明する。図1は、空燃比制御が
行われるエンジン10とその周辺装置を示す概略構成図
である。図1に示すように本実施例では、エンジン10
の燃料噴射量TAUの制御が、電子制御装置(ECU)
20により行われる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, an air-fuel ratio control device for an internal combustion engine (engine) employing the present invention will be described below. FIG. 1 is a schematic configuration diagram showing an engine 10 for which air-fuel ratio control is performed and its peripheral devices. As shown in FIG. 1, in this embodiment, the engine 10
The control of the fuel injection amount TAU is performed by an electronic control unit (ECU).
20.
【0014】図1に示すように、エンジン10の各気筒
にはエアクリーナ11、吸気管12、スロットルバルブ
13、サージタンク14、吸気分岐管15を介して空気
が吸入される。一方、燃料は図示しない燃料タンクより
圧送されて各吸気分岐管15に設けられた燃料噴射弁1
6から噴射・供給されるよう構成されている。また、エ
ンジン10には、エンジン10の回転数Neを検出する
回転数センサ30、スロットルバルブ13の開度THを
検出するスロットルセンサ31、スロットルバルブ13
下流の吸気圧PMを検出する吸気圧センサ32、エンジ
ン10の冷却水温Thwを検出する水温センサ33、吸
気温Tamを検出する吸気温センサ34が備えられてい
る。As shown in FIG. 1, air is sucked into each cylinder of the engine 10 through an air cleaner 11, an intake pipe 12, a throttle valve 13, a surge tank 14, and an intake branch pipe 15. On the other hand, the fuel is pressure-fed from a fuel tank (not shown) and the fuel injection valve 1 provided in each intake branch pipe 15 is provided.
6 to be injected and supplied. The engine 10 includes a rotation speed sensor 30 for detecting the rotation speed Ne of the engine 10, a throttle sensor 31 for detecting the opening TH of the throttle valve 13, and a throttle valve 13.
An intake pressure sensor 32 that detects a downstream intake pressure PM, a water temperature sensor 33 that detects a cooling water temperature Thw of the engine 10, and an intake temperature sensor 34 that detects an intake temperature Tam are provided.
【0015】さらに、エンジン10の排気管35には、
エンジン10から排出される排気ガス中の有害成分(C
O、HC、NOx等)を低減するための三元触媒38が
備えられている。この三元触媒38の上流側には触媒上
流の排出ガスの空燃比λに応じたリニアな検出信号を出
力する上流空燃比センサとしてのリニア空燃比センサ3
6が設けられている。また、三元触媒38の下流側に
は、触媒下流の空燃比λが理論空燃比λ0 に対してリッ
チか、リーンかに応じた検出信号を出力する下流空燃比
センサとしてのO2 センサ37が設けられている。Further, the exhaust pipe 35 of the engine 10 includes
Harmful components (C) in the exhaust gas discharged from the engine 10
A three-way catalyst 38 for reducing O, HC, NOx, etc.) is provided. On the upstream side of the three-way catalyst 38, a linear air-fuel ratio sensor 3 serving as an upstream air-fuel ratio sensor that outputs a linear detection signal according to the air-fuel ratio λ of the exhaust gas upstream of the catalyst
6 are provided. On the downstream side of the three-way catalyst 38, an O 2 sensor 37 as a downstream air-fuel ratio sensor that outputs a detection signal according to whether the air-fuel ratio λ downstream of the catalyst is rich or lean with respect to the stoichiometric air-fuel ratio λ 0 . Is provided.
【0016】電子制御装置20は、周知のCPU21、
ROM22、RAM23、バックアップRAM24等を
中心に算術論理演算回路として構成され、上述した各セ
ンサからの入力を行う入力ポート25や各アクチュエー
タへ制御信号を出力する出力ポート26等とバス27を
介して相互に接続されている。電子制御装置20は、入
力ポート25を介して入力した各センサからの信号に基
づいて燃料噴射量TAUを算出し、出力ポート26を介
して燃料噴射弁16に制御信号を出力する。The electronic control unit 20 includes a well-known CPU 21,
The ROM 22, RAM 23, backup RAM 24, and the like are configured as an arithmetic and logic operation circuit, and communicate with each other via a bus 27 via an input port 25 for inputting from each sensor and an output port 26 for outputting a control signal to each actuator. It is connected to the. The electronic control unit 20 calculates a fuel injection amount TAU based on a signal from each sensor input through the input port 25, and outputs a control signal to the fuel injection valve 16 through the output port 26.
【0017】以下、図2に示すフローチャートに基づい
て空燃比制御について説明する。図2は燃料噴射量TA
Uを設定する処理であり、回転に同期して(本実施例で
は、360゜CA毎)実行されるものである。まず、ス
テップ101で吸気圧PM、回転数Neに応じて基本燃
料噴射量Tpが演算される。続くステップ102で空燃
比フィードバック条件が成立しているか否かを検出す
る。ここでは、冷却水温Thwが所定値以上であって、
高負荷、高回転運転中でないことを空燃比フィードバッ
ク条件としている。ステップ102で空燃比フィードバ
ック条件が成立していない時は、ステップ103で空燃
比補正係数FAFが1に設定され、ステップ106へ進
む。Hereinafter, the air-fuel ratio control will be described with reference to the flowchart shown in FIG. FIG. 2 shows the fuel injection amount TA.
This is a process for setting U, which is executed in synchronization with the rotation (every 360 ° CA in this embodiment). First, at step 101, the basic fuel injection amount Tp is calculated according to the intake pressure PM and the rotation speed Ne. In the following step 102, it is detected whether or not the air-fuel ratio feedback condition is satisfied. Here, the cooling water temperature Thw is equal to or higher than a predetermined value,
The air-fuel ratio feedback condition is that the vehicle is not under high load and high speed operation. If the air-fuel ratio feedback condition is not satisfied in step 102, the air-fuel ratio correction coefficient FAF is set to 1 in step 103, and the routine proceeds to step 106.
【0018】また、ステップ102で空燃比フィードバ
ック条件が成立している時は、ステップ104で目標空
燃比λTGが設定される(詳細は後述)。そして、ステッ
プ105で空燃比λが目標空燃比λTGとなるように空燃
比補正係数FAFが設定される。詳しくは、目標空燃比
λTGと空燃比センサ36で検出される空燃比λ(k)に
応じて、次式により空燃比補正係数FAFが演算され
る。If the air-fuel ratio feedback condition is satisfied in step 102, a target air-fuel ratio λ TG is set in step 104 (details will be described later). Then, the air-fuel ratio correction coefficient FAF is set so that the air-fuel ratio lambda becomes equal to the target air-fuel ratio lambda TG in step 105. More specifically, the air-fuel ratio correction coefficient FAF is calculated by the following equation according to the target air-fuel ratio λ TG and the air-fuel ratio λ (k) detected by the air-fuel ratio sensor 36.
【0019】 FAF(k)=K1 ・λ(k) +K2 ・FAF(k−3) +K3 ・FAF(k−2) +K4 ・FAF(k−1)+Z1 (k) ……(1) ここで、K1 〜K4 はフィードバックゲインである。ま
た、FAF(k−1),FAF(k−2),FAF(k
−3)は、それぞれ前回の空燃比補正係数、前々回の空
燃比補正係数、3回前の空燃比補正係数である。なお、
積分項Z1 (k)は目標空燃比λTGと実際の空燃比λ
(k)との偏差と積分定数Kaとから決まる値であっ
て、次式により求められる。FAF (k) = K 1 · λ (k) + K 2 · FAF (k-3) + K 3 · FAF (k-2) + K 4 · FAF (k-1) + Z 1 (k) 1) Here, K 1 to K 4 are feedback gains. Also, FAF (k-1), FAF (k-2), FAF (k
-3) is the air-fuel ratio correction coefficient of the previous time, the air-fuel ratio correction coefficient of two times before, and the air-fuel ratio correction coefficient of three times before. In addition,
The integral term Z 1 (k) is the target air-fuel ratio λ TG and the actual air-fuel ratio λ
This is a value determined from the deviation from (k) and the integration constant Ka, and is obtained by the following equation.
【0020】 Z1 (k)=Z1 (k−1) +Ka・(λTG−λ(k)) ……(2) そして、ステップ106で基本燃料噴射量Tpに対して
空燃比補正係数FAF及び他の補正係数FALLに応じ
て次式により補正され、燃料噴射量TAUが設定され
る。Z 1 (k) = Z 1 (k−1) + Ka · (λ TG −λ (k)) (2) Then, in step 106, the air-fuel ratio correction coefficient FAF for the basic fuel injection amount Tp And the fuel injection amount TAU is set according to the following equation according to the correction coefficient FALL and the other correction coefficient FALL.
【0021】 TAU=FAF×Tp×FALL ……(3) 以上のようにして設定された燃料噴射量TAUに応じた
作動信号が燃料噴射弁16へ出力される。次に、目標空
燃比λTGの設定(図2中のステップ104)について、
図3に示すフローチャートに基づいて説明する。TAU = FAF × Tp × FALL (3) An operation signal corresponding to the fuel injection amount TAU set as described above is output to the fuel injection valve 16. Next, the setting of the target air-fuel ratio λ TG (step 104 in FIG. 2)
This will be described based on the flowchart shown in FIG.
【0022】まず、ステップ201にて内燃機関の運転
状態を表すパラメータとしてエンジン回転数Neと吸気
圧PMを読み込む。次にステップ202にて目標空燃比
λTGを設定する。本実施例ではこの目標空燃比λTGを図
4に示すようにエンジン回転数Neと吸気圧PMとのマ
ップから読み込む。なお、このマップはそれぞれの運転
状態において三元触媒38の浄化率が最大となる目標空
燃比λTGが記憶されている。本実施例では、エンジン回
転数Neおよび吸気圧PMが高いほど目標空燃比がリッ
チとなるように設定されている。First, in step 201, the engine speed Ne and the intake pressure PM are read as parameters representing the operating state of the internal combustion engine. Next, at step 202, a target air-fuel ratio λ TG is set. In the present embodiment, the target air-fuel ratio λ TG is read from a map of the engine speed Ne and the intake pressure PM as shown in FIG. In this map, the target air-fuel ratio λ TG at which the purification rate of the three-way catalyst 38 is maximized in each operation state is stored. In this embodiment, the target air-fuel ratio is set to be richer as the engine speed Ne and the intake pressure PM are higher.
【0023】次に、ステップ203において、目標空燃
比補正量λM を設定する。本実施例ではこの目標空燃比
補正量λM を図5に示すエンジン回転数Neと吸気圧P
Mとのマップから読み込む。このマップにはそれぞれの
運転状態においてO2 センサ37による目標空燃比フィ
ードバック制御の応答速度が最適となる目標空燃比補正
量λM が記憶されている。なお、後述するステップ20
4〜ステップ210にて実行される目標空燃比フィード
バック制御の応答速度はこの目標空燃比補正量λM によ
り決まる。Next, at step 203, a target air-fuel ratio correction amount λ M is set. In the present embodiment, the target air-fuel ratio correction amount λ M is determined based on the engine speed Ne and the intake pressure P shown in FIG.
Read from the map with M. This map stores the target air-fuel ratio correction amount λ M at which the response speed of the target air-fuel ratio feedback control by the O 2 sensor 37 becomes optimum in each operating state. In addition, step 20 described later
The response speed of the target air-fuel ratio feedback control performed at 4 to step 210 is determined by the target air-fuel ratio correction quantity lambda M.
【0024】続くステップ204〜ステップ210にお
いて、O2 センサ37の出力に基づく目標空燃比フィー
ドバック処理が実行される。まず、ステップ204にお
いて、今回、触媒下流の空燃比がリッチであるか否かを
判断する。本実施例では、今回、O2 センサ37により
検出された空燃比がリッチであるか否かを検出する。こ
こで、O2 センサ37により検出された空燃比がリッチ
のときには肯定判断され、ステップ205に進む。次に
ステップ205にて、前回の処理時に触媒下流の空燃比
がリッチであったか否かを判断する。ここでもステップ
204と同様に前回、O2 センサ37により検出された
空燃比がリッチであったか否かを判断する。ここでも肯
定判断されたときにはステップ206に進む。そして、
ステップ206にてステップ202で設定された目標空
燃比λTGをステップ203で設定された補正量λM だけ
大きく設定する。つまり、触媒下流の空燃比がリッチの
ときには目標空燃比を所定値(補正量λM )だけリーン
側に設定し、これを最終的に目標空燃比λTGとして(λ
TG←λTG+λM )本処理を終了する。[0024] In the following step 204 to step 210, the target air-fuel ratio feedback process based on the output of the O 2 sensor 37 is executed. First, in step 204, it is determined whether the air-fuel ratio downstream of the catalyst is rich this time. In the present embodiment, it is detected whether or not the air-fuel ratio detected by the O 2 sensor 37 this time is rich. Here, when the air-fuel ratio detected by the O 2 sensor 37 is rich, an affirmative determination is made, and the routine proceeds to step 205. Next, at step 205, it is determined whether or not the air-fuel ratio downstream of the catalyst was rich at the time of the previous processing. Here, as in step 204, it is determined whether the air-fuel ratio detected by the O 2 sensor 37 was rich last time. Here also, when an affirmative determination is made, the process proceeds to step 206. And
In step 206, the target air-fuel ratio λ TG set in step 202 is set to be larger by the correction amount λ M set in step 203. That is, when the air-fuel ratio downstream of the catalyst is rich, the target air-fuel ratio is set to the lean side by a predetermined value (correction amount λ M ), and this is finally set as the target air-fuel ratio λ TG (λ
TG ← λ TG + λ M ) This processing ends.
【0025】また、ステップ205で否定判断されたと
きには、スキップ処理を実行する。つまり、目標空燃比
λTGに補正量よりも大きいスキップ量λSKP を加えこれ
を最終目標空燃比λTGとして設定し(λTG←λTG+λ
SKP )、本処理を終了する。なお、本実施例ではこのス
キップ量λSKP は予め与えられている固定値である。一
方、ステップ204にてO2 センサ37により検出され
た空燃比がリーンの場合は、ステップ208で前回の処
理時に検出された空燃比がリッチであったか否かを判断
する。ここで肯定判断されるとステップ209に進む。
ステップ209では、ステップ207と同様にスキップ
処理を実行する。但し、ここでは目標空燃比λTGに補正
量よりも大きいスキップ量λSKP を減算し、これを最終
目標空燃比λTGとして設定し(λTG←λTG−λSKP )、
本処理を終了する。If a negative determination is made in step 205, skip processing is executed. In other words, added large skip amount lambda SKP than the correction amount to the target air-fuel ratio lambda TG is set as the final target air-fuel ratio λ TG (λ TG ← λ TG + λ
SKP ), and terminates the process. In this embodiment, the skip amount λ SKP is a fixed value given in advance. On the other hand, the air-fuel ratio detected by the O 2 sensor 37 in the case of lean air-fuel ratio detected during the previous processing in step 208 it is determined whether a rich at step 204. If the determination is affirmative, the process proceeds to step 209.
In step 209, skip processing is executed as in step 207. However, here it subtracts a large skip amount lambda SKP than the correction amount to the target air-fuel ratio lambda TG, was set as the final target air-fuel ratio λ TG (λ TG ← λ TG -λ SKP),
This processing ends.
【0026】また、ステップ208にて否定判断された
ときにはステップ210に進む。そして、ステップ21
0にてステップ206と同様に今度は目標空燃比λTGを
補正量λM だけ小さくする。つまり、触媒下流の空燃比
がリーンのときには目標空燃比を所定値(補正量λM )
だけリッチ側に設定し(λTG←λTG−λM )、本処理を
終了する。If a negative determination is made in step 208, the process proceeds to step 210. And step 21
At 0, similarly to step 206, the target air-fuel ratio λ TG is reduced by the correction amount λ M. That is, when the air-fuel ratio downstream of the catalyst is lean, the target air-fuel ratio is set to a predetermined value (correction amount λ M ).
Only on the rich side (λ TG ← λ TG −λ M ), and this processing ends.
【0027】以上の処理をタイムチャートで示したもの
が図6である。以下、この図6にしたがって本発明の本
実施例における作用及び効果を説明する。なお、図中の
実線は本発明の装置の、破線は従来の装置の各パラメー
タの動きを表している。図6において、時間t1までは
内燃機関の運転状態は低回転低負荷の状態にあるため、
触媒上流の目標空燃比は略理論空燃比であり、目標空燃
比補正量も小さく、従来の空燃比制御と略同じ波形であ
る。FIG. 6 is a time chart showing the above processing. Hereinafter, the operation and effect of this embodiment of the present invention will be described with reference to FIG. The solid line in the figure represents the movement of each parameter of the apparatus of the present invention, and the broken line represents the movement of each parameter of the conventional apparatus. In FIG. 6, since the operation state of the internal combustion engine is in a low rotation and low load state until time t1,
The target air-fuel ratio upstream of the catalyst is substantially the stoichiometric air-fuel ratio, the target air-fuel ratio correction amount is small, and has substantially the same waveform as the conventional air-fuel ratio control.
【0028】次に、時間t1から時間t2にかけてエン
ジン回転数Neと負荷PMとが高くなると、本発明の空
燃比制御装置は目標空燃比フィードバック制御の応答速
度が最適となるように目標空燃比補正量λM を大きくす
る。また、本実施例では、触媒の浄化率が最大となるよ
うに目標空燃比もリッチ側に設定するため、目標空燃比
はリッチ側に大きく移行する。よって、目標空燃比フィ
ードバック制御の応答速度が最適に設定され、高い触媒
浄化率が維持されるので、触媒下流の空燃比が略理論空
燃比に保たれる。これにより、排出ガス中の有害成分で
あるHC,NOx の排出を抑制することができる。Next, when the engine speed Ne and the load PM increase from time t1 to time t2, the air-fuel ratio control device of the present invention corrects the target air-fuel ratio so that the response speed of the target air-fuel ratio feedback control becomes optimal. Increase the quantity λ M. Further, in the present embodiment, the target air-fuel ratio is also set to the rich side so that the purification rate of the catalyst becomes the maximum, so that the target air-fuel ratio largely shifts to the rich side. Therefore, the response speed of the target air-fuel ratio feedback control is optimally set, and a high catalyst purification rate is maintained, so that the air-fuel ratio downstream of the catalyst is maintained at substantially the stoichiometric air-fuel ratio. As a result, emission of harmful components HC and NOx in the exhaust gas can be suppressed.
【0029】しかしながら、従来の空燃比制御装置は、
目標空燃比は触媒の浄化率が最大となる目標空燃比に設
定されるものの、目標空燃比フィードバック制御の応答
性が良くないためしばらくの間触媒上流の空燃比が乱
れ、ひいては触媒下流の空燃比が乱れてしまう。つま
り、排出ガス中の有害成分の一部が触媒で浄化されない
まま排出されることになる。However, the conventional air-fuel ratio control device is
Although the target air-fuel ratio is set to the target air-fuel ratio at which the purification rate of the catalyst is maximized, the air-fuel ratio upstream of the catalyst is disturbed for a while because the response of the target air-fuel ratio feedback control is not good, and thus the air-fuel ratio downstream of the catalyst. Is disturbed. That is, some of the harmful components in the exhaust gas are discharged without being purified by the catalyst.
【0030】さらに、時間t3から時間t4の間で吸気
圧PM,エンジン回転数Neが高くなったときにも同様
の効果を得ることができる。なお、ここではエンジン回
転数Ne,吸気管圧力PMが高くなった場合を説明した
が、逆の場合、つまりエンジン回転数Ne,吸気管圧力
PMが高い状態から低い状態に移行するときにも同様の
効果が得られることは言うまでもない。Further, the same effect can be obtained when the intake pressure PM and the engine speed Ne increase between time t3 and time t4. Although the case where the engine speed Ne and the intake pipe pressure PM are increased has been described here, the same applies to the opposite case, that is, when the engine speed Ne and the intake pipe pressure PM shift from a high state to a low state. Needless to say, the effect is obtained.
【0031】以上述べたように本発明の上記実施例で
は、エンジン回転数Neと吸気圧PMとに応じて目標空
燃比フィードバックの応答速度を最適に設定している。
つまり、触媒の浄化能力に強く関係する排出ガス量の代
用としてエンジン回転数Neと吸気圧PMとをパラメー
タとし、目標空燃比フィードバックの応答速度を設定し
ている。As described above, in the above embodiment of the present invention, the response speed of the target air-fuel ratio feedback is optimally set according to the engine speed Ne and the intake pressure PM.
In other words, the response speed of the target air-fuel ratio feedback is set using the engine speed Ne and the intake pressure PM as parameters as substitutes for the amount of exhaust gas strongly related to the purification performance of the catalyst.
【0032】このため、単位排出ガス量あたりの触媒容
量(SV比)が変化し、触媒の浄化能力が変化すること
により触媒上流の空燃比に対する触媒下流の空燃比の応
答速度が変化しても触媒下流の空燃比を略理論空燃比に
保つことができる。よって、エンジンの運転状態にかか
わらず、排出ガス中の有害成分の排出を抑制することが
できる。For this reason, even if the catalyst capacity per unit exhaust gas amount (SV ratio) changes and the purifying ability of the catalyst changes, the response speed of the air-fuel ratio downstream of the catalyst to the air-fuel ratio upstream of the catalyst changes. The air-fuel ratio downstream of the catalyst can be kept substantially at the stoichiometric air-fuel ratio. Therefore, regardless of the operating state of the engine, the emission of harmful components in the exhaust gas can be suppressed.
【0033】さらに、本実施例ではエンジン回転数Ne
と吸気圧PMとに応じて目標空燃比を設定している。つ
まり、触媒の浄化能力と相関の強いパラメータをエンジ
ンの運転状態を表すパラメータとして用い、これらのパ
ラメータに基づいて目標空燃比を設定しているため、よ
り正確に触媒下流の空燃比を理論空燃比に制御すること
ができる。Further, in this embodiment, the engine speed Ne
The target air-fuel ratio is set in accordance with and the intake pressure PM. In other words, parameters having a strong correlation with the purification performance of the catalyst are used as parameters representing the operating state of the engine, and the target air-fuel ratio is set based on these parameters. Can be controlled.
【0034】なお、上記実施例において、図2のステッ
プ105が空燃比フィードバック制御手段に、図3のス
テップ202が目標空燃比設定手段に、図3のステップ
204〜ステップ210が目標空燃比フィードバック制
御手段に、図3のステップ203が応答速度設定手段に
それぞれ相当し、機能する。また、上記実施例におい
て、下流空燃比センサとして理論空燃比よりもリッチか
リーンかのみを出力するO2 センサを用いているが、こ
れに限られることはなく、例えば上流空燃比センサと同
じリニア空燃比センサを用いてもよい。このとき、触媒
下流の空燃比が理論空燃比からずれている量を検出する
ことができるので、このずれ量に応じても目標空燃比フ
ィードバックの応答速度を設定するようにしてもよい。In the above embodiment, step 105 in FIG. 2 corresponds to the air-fuel ratio feedback control means, step 202 in FIG. 3 corresponds to the target air-fuel ratio setting means, and steps 204 to 210 in FIG. Step 203 of FIG. 3 corresponds to the response speed setting means, and functions. Further, in the above embodiment, the O2 sensor which outputs only rich or lean than the stoichiometric air-fuel ratio is used as the downstream air-fuel ratio sensor. However, the present invention is not limited to this. A fuel ratio sensor may be used. At this time, since the amount by which the air-fuel ratio downstream of the catalyst deviates from the stoichiometric air-fuel ratio can be detected, the response speed of the target air-fuel ratio feedback may be set according to this deviation amount.
【0035】また、上記実施例では内燃機関の運転状態
を表すパラメータとして、エンジン回転数と吸気圧とを
用いているがこれに限られることはなく、例えばエンジ
ン回転数と吸入空気量とをパラメータとして設定しても
よく、他にも、触媒上流または/および触媒下流の空燃
比センサ出力や排気温センサが備えられているシステム
ではその出力を用いてもよい。In the above embodiment, the engine speed and the intake pressure are used as parameters representing the operating state of the internal combustion engine. However, the present invention is not limited to this. For example, the engine speed and the intake air amount are used as parameters. Alternatively, the output may be used in a system provided with an air-fuel ratio sensor output upstream of the catalyst or / and downstream of the catalyst or an exhaust gas temperature sensor.
【0036】さらに、上記実施例では目標空燃比フィー
ドバックの応答速度を目標空燃比補正量を変えることで
最適な応答速度に設定しているが、これに限られること
はなく、例えば、本実施例中のスキップ量を変更するよ
うにしてもよいし、スキップ量と目標空燃比補正量との
両方を変更するようにしてもよい。また、当然のことな
がら本発明の適用範囲は上記実施例のシステムに限られ
ることはなく、例えば、スキップ制御を実施していない
システムにも適用可能である。Further, in the above embodiment, the response speed of the target air-fuel ratio feedback is set to an optimum response speed by changing the target air-fuel ratio correction amount. However, the present invention is not limited to this. The middle skip amount may be changed, or both the skip amount and the target air-fuel ratio correction amount may be changed. In addition, it is needless to say that the scope of application of the present invention is not limited to the system of the above embodiment, but can be applied to, for example, a system in which skip control is not performed.
【0037】以上、述べたように本発明を適用した空燃
比制御装置は、触媒上流の空燃比に対する触媒下流の空
燃比の応答速度に応じて目標空燃比フィードバック制御
の応答速度を設定しているので、排出ガス量が変化して
も精度良く空燃比を制御することができる。As described above, in the air-fuel ratio control apparatus to which the present invention is applied, the response speed of the target air-fuel ratio feedback control is set according to the response speed of the air-fuel ratio downstream of the catalyst with respect to the air-fuel ratio upstream of the catalyst. Therefore, even if the amount of exhaust gas changes, the air-fuel ratio can be accurately controlled.
【図1】本発明を適用した一実施例の空燃比制御装置の
構成図である。FIG. 1 is a configuration diagram of an air-fuel ratio control device according to an embodiment to which the present invention is applied.
【図2】一実施例において燃料噴射量を演算するための
フローチャートである。FIG. 2 is a flowchart for calculating a fuel injection amount in one embodiment.
【図3】一実施例において目標空燃比を設定するための
フローチャートである。FIG. 3 is a flowchart for setting a target air-fuel ratio in one embodiment.
【図4】内燃機関の運転状態に応じて目標空燃比を設定
するためのマップである。FIG. 4 is a map for setting a target air-fuel ratio according to an operation state of the internal combustion engine.
【図5】内燃機関の運転状態に応じて目標空燃比補正量
を設定するためのマップである。FIG. 5 is a map for setting a target air-fuel ratio correction amount according to an operation state of the internal combustion engine.
【図6】一実施例における各パラメータの動きを示すタ
イムチャートである。FIG. 6 is a time chart showing the movement of each parameter in one embodiment.
10 内燃機関(エンジン) 20 電子制御装置 30 回転数センサ 32 吸気圧センサ 36 リニア空燃比センサ 37 O2 センサ 38 三元触媒、 DESCRIPTION OF SYMBOLS 10 Internal combustion engine (engine) 20 Electronic control unit 30 Speed sensor 32 Intake pressure sensor 36 Linear air-fuel ratio sensor 37 O2 sensor 38 Three-way catalyst,
Claims (8)
の上流の空燃比が目標空燃比となるようにフィードバッ
ク制御する空燃比フィードバック制御手段と、 前記目標空燃比を設定する目標空燃比設定手段と、 触媒下流の空燃比が理論空燃比となるように前記目標空
燃比をフィードバック制御する目標空燃比フィードバッ
ク制御手段と、 内燃機関の運転状態に基づいて前記目標空燃比フィード
バック制御の応答速度を設定する応答速度設定手段とを
備えることを特徴とする内燃機関の空燃比制御装置。1. An air-fuel ratio feedback control means for performing feedback control so that an air-fuel ratio upstream of a catalyst provided in an exhaust system of an internal combustion engine becomes a target air-fuel ratio, and a target air-fuel ratio setting for setting the target air-fuel ratio. Means, target air-fuel ratio feedback control means for feedback-controlling the target air-fuel ratio so that the air-fuel ratio downstream of the catalyst becomes the stoichiometric air-fuel ratio, and the response speed of the target air-fuel ratio feedback control based on the operating state of the internal combustion engine. An air-fuel ratio control device for an internal combustion engine, comprising: a response speed setting means for setting.
運転状態に基づいて前記目標空燃比を設定することを特
徴とする請求項1に記載の内燃機関の空燃比制御装置。2. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein said target air-fuel ratio setting means sets the target air-fuel ratio based on an operation state of the internal combustion engine.
は、触媒下流の空燃比がリッチのときには前記目標空燃
比を所定値だけリーン側に、触媒下流の空燃比がリーン
のときには前記目標空燃比を所定値だけリッチ側にフィ
ードバック制御する手段であり、 前記応答速度設定手段は、内燃機関の運転状態に応じて
前記所定値を設定する手段であることを特徴とする請求
項1または2に記載の内燃機関の空燃比制御装置。3. The target air-fuel ratio feedback control means sets the target air-fuel ratio to a lean side by a predetermined value when the air-fuel ratio downstream of the catalyst is rich, and sets the target air-fuel ratio to a predetermined value when the air-fuel ratio downstream of the catalyst is lean. 3. The internal combustion engine according to claim 1, further comprising: means for performing feedback control on the rich side only by a value; and wherein the response speed setting means is means for setting the predetermined value in accordance with an operating state of the internal combustion engine. Engine air-fuel ratio control device.
の運転状態を表すパラメータとして排出ガス量を用い、
排出ガス量が多いほど応答速度を速く設定することを特
徴とする請求項1乃至3のいずれか一つに記載の内燃機
関の空燃比制御装置。4. The response speed setting means uses an exhaust gas amount as a parameter representing an operation state of the internal combustion engine,
4. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the response speed is set faster as the amount of exhaust gas increases.
と、 前記触媒の上流に設けられており、触媒上流の空燃比を
リニアに検出する上流空燃比センサと、 前記触媒の下流に設けられており、触媒下流の空燃比を
検出する下流空燃比センサと、 前記上流空燃比センサの出力に基づいて触媒上流の空燃
比が目標空燃比となるようにフィードバック制御する空
燃比フィードバック制御手段と、 前記目標空燃比を設定する目標空燃比設定手段と、 前記下流空燃比センサの出力に基づいて触媒下流の空燃
比が理論空燃比となるように前記目標空燃比をフィード
バック制御する目標空燃比フィードバック制御手段と、 内燃機関の運転状態に基づいて前記目標空燃比フィード
バック制御の応答速度を設定する応答速度設定手段とを
備えることを特徴とする内燃機関の空燃比制御装置。5. A catalyst provided in an exhaust system of an internal combustion engine, an upstream air-fuel ratio sensor provided upstream of the catalyst and linearly detecting an air-fuel ratio upstream of the catalyst, and provided downstream of the catalyst. A downstream air-fuel ratio sensor that detects an air-fuel ratio downstream of the catalyst, and an air-fuel ratio feedback control unit that performs feedback control based on the output of the upstream air-fuel ratio sensor so that the air-fuel ratio upstream of the catalyst becomes a target air-fuel ratio. Target air-fuel ratio setting means for setting the target air-fuel ratio; and target air-fuel ratio feedback for feedback-controlling the target air-fuel ratio based on the output of the downstream air-fuel ratio sensor so that the air-fuel ratio downstream of the catalyst becomes the stoichiometric air-fuel ratio. Control means; and response speed setting means for setting a response speed of the target air-fuel ratio feedback control based on an operation state of the internal combustion engine. Control device for an internal combustion engine.
運転状態に基づいて前記目標空燃比を設定することを特
徴とする請求項5に記載の内燃機関の空燃比制御装置。6. The air-fuel ratio control device for an internal combustion engine according to claim 5, wherein the target air-fuel ratio setting means sets the target air-fuel ratio based on an operation state of the internal combustion engine.
は、前記下流空燃比センサにより検出された空燃比がリ
ッチのときには前記目標空燃比を所定値だけリーン側
に、リーンのときには前記目標空燃比を所定値だけリッ
チ側にフィードバック制御する手段であり、 前記応答速度設定手段は、内燃機関の運転状態に応じて
前記所定値を設定する手段であることを特徴とする請求
項1または2に記載の内燃機関の空燃比制御装置。7. The target air-fuel ratio feedback control means sets the target air-fuel ratio to a lean side by a predetermined value when the air-fuel ratio detected by the downstream air-fuel ratio sensor is rich, and sets the target air-fuel ratio to a predetermined value when the air-fuel ratio is lean. 3. The internal combustion engine according to claim 1, further comprising: means for performing feedback control on the rich side only by a value; and wherein the response speed setting means is means for setting the predetermined value in accordance with an operating state of the internal combustion engine. Engine air-fuel ratio control device.
の運転状態を表すパラメータとして排出ガス量を用い、
排出ガス量が多いほど応答速度を速く設定することを特
徴とする請求項5乃至7のいずれか一つに記載の内燃機
関の空燃比制御装置。8. The response speed setting means uses an exhaust gas amount as a parameter representing an operation state of the internal combustion engine,
The air-fuel ratio control device for an internal combustion engine according to any one of claims 5 to 7, wherein the response speed is set faster as the exhaust gas amount is larger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17793796A JP3864455B2 (en) | 1996-07-08 | 1996-07-08 | Air-fuel ratio control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17793796A JP3864455B2 (en) | 1996-07-08 | 1996-07-08 | Air-fuel ratio control device for internal combustion engine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006069800A Division JP2006153026A (en) | 2006-03-14 | 2006-03-14 | Air fuel ratio control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1026043A true JPH1026043A (en) | 1998-01-27 |
JP3864455B2 JP3864455B2 (en) | 2006-12-27 |
Family
ID=16039681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17793796A Expired - Fee Related JP3864455B2 (en) | 1996-07-08 | 1996-07-08 | Air-fuel ratio control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3864455B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008005873A1 (en) | 2007-06-04 | 2008-12-24 | Mitsubishi Electric Corp. | Air-fuel ratio control device for an internal combustion engine |
-
1996
- 1996-07-08 JP JP17793796A patent/JP3864455B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008005873A1 (en) | 2007-06-04 | 2008-12-24 | Mitsubishi Electric Corp. | Air-fuel ratio control device for an internal combustion engine |
DE102008005873B4 (en) * | 2007-06-04 | 2010-07-15 | Mitsubishi Electric Corp. | Air-fuel ratio control device for an internal combustion engine |
US7895826B2 (en) | 2007-06-04 | 2011-03-01 | Mitsubishi Electric Corporation | Air fuel ratio control apparatus for an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP3864455B2 (en) | 2006-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3868693B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH109022A (en) | Air-fuel ratio control device of internal combustion engine | |
JP5001183B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3625163B2 (en) | Exhaust purification catalyst deterioration detection device | |
JP4314636B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH11311142A (en) | Air-fuel ratio controller for internal combustion engine | |
JPH1182114A (en) | Air-fuel ratio control device for internal combustion engine | |
JP2518247B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP5116868B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH10159625A (en) | Air-fuel ratio control device for internal combustion engine | |
JP3788497B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0526076A (en) | Air-fuel ratio control method for internal combustion engine | |
JP3826997B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP4032840B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3864455B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0642387A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH09310635A (en) | Air-fuel ratio control device of internal combustion engine | |
JP2518254B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP4072412B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP5331931B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH01305142A (en) | Fuel injection controller of internal combustion engine | |
JP4636214B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2518246B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP4258733B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS58217745A (en) | Air-fuel ratio control method for internal-combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050603 |
|
A02 | Decision of refusal |
Effective date: 20060214 Free format text: JAPANESE INTERMEDIATE CODE: A02 |
|
A521 | Written amendment |
Effective date: 20060314 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Effective date: 20060324 Free format text: JAPANESE INTERMEDIATE CODE: A911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20060912 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060925 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20101013 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101013 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20111013 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121013 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |